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Abstract 1.2.8 [Artificial Intelligencd: Problem Solving, Control

Models of energy consumption and performance are Méthods, and Search—Control theory

necessary to understand and identify system behaviorgeneral Terms Measurement, Performance

prior to designing advanced controls that can balance

out performance and energy use. This paper consid-Keywords Energy efficiency, System identification,
ers the energy consumption and performance of serverd?ata compression

running a relatively simple file-compression workload.

We found that standard techniques for system identi- 1.  Introduction

fication do not produce acceptable models of energy The carbon footprint of the IT industry, though only 2%
consumption and performance, due to the intricate in- of the world economy, is estimated to be equal to that
terplay between the discrete nature of software and theof the entire aviation industry [7]. Energy consumption
continuous nature of energy and performance. This mo-js emerging as a critical issue in the design of com-
tivated us to perform a detailed empirical study of the puting systems [5, 14, 20, 21, 28, 32, 41]. The goals
energy consumption and performance of this systemof energy-aware system design include saving energy
with varying compression algorithms and compression without sacrificing performance, and supporting flex-
levels, file types, persistent storage media, CPU DVFSible, dynamic trade-offs between energy consumption
levels, and disk I/O schedulers. Our results identify and and performance. Accurate models of energy consump-
illustrate factors that complicate the system’s energy tion and performance provide a foundation for the de-
consumption and performance, including nonlinearity, sign of energy-aware systems.

instability, and multi-dimensionality. Our results pro- A large portion of the energy consumed by IT in-
vide a basis for future work on modeling energy con- frastructure is due to desktop machines and commer-
sumption and performance to support principled design cial servers [8]. Moreover, the total amount of elec-

of controllable energy-aware systems. tronic data stored world-wide is rising exponentially.

By 2020, that figure is expected to reach 35 Zetta
Categories and Subject Descriptors C.4 [Perfor- Bytes [16]; energy consumption is expected to grow
mance of SystefhsModeling techniques; H.3.41M-  just as rapidly. Thus, it is desirable to develop highly

formation Storage and RetrieJaBystems and Software—scalable solutions that are significantly better than to-
Performance evaluation (efficiency and effectiveness); day’s solutions.
In prior work, we analyzed the energy and per-

formance profiles of server workloads, such as Web
Permission to make digital or hard copies of all or part of twork for servers, email servers, database servers, and file com-
personal or classroom use is granted without fee providatidbpies are ; ; ot
not made or distributed for profit or commercial advantage: that copies pression [23’ 33]' We discovered large quIatlonS for
bear this notice and the full citation on the first page. Toycoierwise, to both performance and energy consumption—as much
republish, to post on servers or to redistribute to listguires prior specific as 10 times—suggesting that there are significant op-
permission and/or a fee. .. di f
SYSTOR ’11, May 30 - June 1, Haifa, Israel portunities to save energy and improve performance.

Copyright(©® 2011 ACM [to be supplied]. .. $10.00 Our past work considered those systems only as black-



boxes and reported their performance and energy con2.1 System Identification
sumption without a deeper understanding of the exact

reasons for those deviations. CPU Frequency

Seeking a better understanding of the system inter- compression Algorithm Plant Energy
nals of these workloads, we tried to identify their inter-
. . Compression Level Performance
nal behavior, so we could build advanced controllers to (Compressor)

better manage both energy and performance. Unfortu- File Type
nately, our initial attempts to identify these systems us-
ing traditional linear-systems identification techniques
resulted in poor models with low prediction accuracy  System identification is the first step of control en-

(under 50%). gineering that uses statistical methods to build models

In this paper, we shed considerable light on the from observed behavior.
complexities underlying systems-software energy con-  As is shown in Figure 1, our system consists of three
sumption and performance. In particular, we presentinputs: compression algorithm, compression level, and
an in-depth experimental evaluation of the energy con- CPU frequency—and two outputs: energy and perfor-
sumption and performance of a relatively simple yet mance. Applying off-the-shelf technology for system
familiar file-compression workload as a representa- jdentification, such as MATLAB’s system identifica-
tive workload involving both substantial CPU usage tion tool-box [24] has considerable appeal, since one
and disk 1/0. We also analyze the effects of several needs to know only the inputs and outputs. It does not
input parameters, including choice of compression al- require a detailed understanding of the system’s behav-
gorithm, compression level, file type, persistent storage jor. By applying statistical techniques to data collected
media (e.g., SATA, SAS, and SSD), CPU Dynamic from the target system, system identification attempts
\oltage and Frequency Scaling (DVFS) level, and disk to construct a mathematical model of the relationships
I/O scheduler—all under the Linux operating system. petween inputs and outputs.

Our experimental results show that energy con- A typical workflow for system identification follows
sumption and performance are unexpectedly complexthese four steps: (1) Specify the model in the form of
and cannot be easily modeled using standard systeminputs and outputs, and design experiments to collect
identification techniques. We identify several factors data; (2) Apply the system-identification algorithm to
that contribute to this complexity, in terms of nonlin- estimate the values of the coefficients of the model;
earity, instability, and multi-dimensionality. Our resul  (3) Verify the accuracy of the resulting model by eval-
suggest that hybrid discrete-continuous models [1, 18] yating it against additional measured data; (4) Check
may provide a suitable foundation for modeling and whether the model is OK or not. If the prediction accu-
control of energy consumption and performance in racy is low, one or more steps in the workflow need to
energy-aware systems software. be revisited.

The rest of the paper is organized as follows. Sec-  \We used a traditional linear state space model of the
tion 2 provides the motivation for this work, while following form:

Section 3 provides the requisite background. Section 4
considers related work. Section 5 presents our experi-
mental setup and benchmarks, while Section 6 contains
our experim?antal results. We conclude in Section 7 and z(n +1) = Az(n) + Bu(n) + Kw(n) (1a)
describe future work in Section 8. y(n) = Cz(n) + Du(n) + w(n)  (1b)

Figure 1. Plant: Compressor

whereu(n) are the inputsy(n) are the outputsz(n)

o the internal states of the plant, andn) is a white
2. Motivation Gaussian noise representing uncontrollable inputs and
Section 2.1 gives background on system identification. output measurement errors (e.g., errors introduced by
Section 2.2 describes the problems we encountered trythe power meter while sampling the energy consumed

ing to apply system identification techniques to model by the device) at time. MatricesA, B, C, D, and K
the energy consumption of our workload. denote the significance or weight that each element in



the input, output, and Gaussian noise have in determin-the MATLAB’s system identification tool-box to learn

ing the next state or output of the system. Single-Input-Single-Output (SISO) and other system
models. However, we achieved only limited accuracy,
2.2  Problems Encountered less than 50% in overall. This was clearly insufficient

as a basis to design a controller.

In order to better understand the causes of the prob-
lem, and to find ways of splitting the nonlinear behavior
into segments that can be more accurately modeled as

gorithm (GzIP, BzIP2, LZOP, or NONE for no com- . . ,
. i . linear systems, we decided to study the system'’s energy
pression), and CPU frequency/voltage (eight available . . .
consumption and performance in more detalil.

choices). We considered energy consumption and per-

formance as the outputs
The system inputs and outputs must be quantified 3. Background

in order to apply system identification. Energy is mea- In this section, we describe background work in terms

sured in Watt-hours. Performance is measured as thedf compression algorithms (Section 3.1), 1/O sched-

number of files compressed per second. The CPU fre-ulers (Section 3.2), and power and energy consumption

quency is measured in Hertz. However, it is difficult to (Section 3.3).

choose appropriate numerical values to represent file

types, compression levels and compression algorithms.
The compression level is numerical, but the level In Linux, there are three main compression utilities:

number is actually just a label (in other words, a name); gzip , bzip2 ,andlzop , each of which has compres-

the numerical value has no direct significance other sion levels ranging from level 1 to level 9. A higher

than ordering. Similarly, file types and compression level tries to achieve a better compression ratio at the

algorithms are naturally identified by discrete, non- expense of additional CPU cycles.

numerical labels but must be represented numerically Gzip [15] is based on theeFLATE algorithm, which

to apply the system identification algorithm. The num- is a combination of LZ77 and Huffman coding. Bzip2

bers chosen are significant because they must be relatedses the Burrows-Wheeler transform to convert fre-

to the next states and outputs by Equation 1 for systemquently recurring character sequences into strings of

identification to succeed and should not impose arbi- identical letters and then applies a move-to-front trans-

trary quantitative relationships. However, we have no form and Huffman coding [6]. Lzop [29] uses the LZO

a-priori way of deciding what values to use. library and produces files a bit larger than gzip’s but
We tried a simple linear approach using consecutive with a lower CPU use. Moreover, i@op , compres-

integers (e.g., 0 fokONE, 1 for GzIp, 2 for BzIP2 and sion levels 1 to 6 are identical.

3 for Lzop), as well as other numbers. We also tried

a non-linear approach, assigning each compression al3-2 /O schedulers

gorithm a number corresponding to its compression ra-1/0 scheduling has been studied aggressively [2, 4,

tio; but the compression ratio varies with file type and 19, 22, 37] especially since the speed of disk lags far

hence is not a fixed value associated solely with the behind the CPU and RAM speeds.

compression algorithm. Normally, a disk scheduler tries to maintain a bal-
In conclusion, labels are similar to the discrete statesance between fairness, performance, and latency (or,

of a finite automaton. In our case, they represent differ- real time guarantees). Fairness guarantees that every

ent modes of system behavior, that is, they representprocess has fair share of the access to disk on a multi-

the modes of a hybrid automaton. Any attempt to give user system. Performance requires the scheduler to

them a numerical meaning, is doomed to fail. serve requests predictably to save both time and energy.
We prepared two data sets of the same size to iden-Latency means that any request must be served within

tify the system. One data set is used to estimate the paa given time limit. There are four main 1/0O schedulers

rameters of the model using least-squares techniquesin Linux systems: (1XFQ (the default) which empha-

the other is used to evaluate the quality of the model sizes fairness; (2ZANTICIPATORY which emphasizes

fit. Accuracy is the percentage of model fit. We applied performance; (3DEADLINE which is design for low

Our system is a simple file compressor. System in-
puts x can be file type ZERO, TEXT, BINARY, RAN-
DOM), compression level (1 to 9) compression al-

3.1 Compression Algorithms



latency and real time access; and ®oP, which is a
simple first-come-first-served scheduler.

3.3 Power and Energy Consumption Edisk = Espin + Ehead (4)

In this subsection, we introduce the power and energy

consumption patterns for both CPU and disk since our

workload is both CPU-intensive and disk-intensive.
The power consumed in a processor consists o

three portions: dynamic powety,,,mi., Static power

Pyiaiic, and short-circuit power [25]. For Comple- 4. Related Work

mentary Metal Oxide Semiconductor (CMOS) chips, This section places our work in the context of past

dynamic power refers to the energy consumption in work.

switching transistors, while static power refers to the

flowing leakage current when a transistor if off. Short- 4.1  Energy Efficiency

circuit power is consumed only during signal transi-

tions and is insignificant. The dynamic power is calcu-

lated as follows:

whereL,,, refers to the energy consumed by the spin-
ning platter andvy,..q refers to the energy consumption
fincurred by disk head movement.

Many energy-saving techniques have been developed
at the hardware and software levels. For example, vir-
tualization allows multiple Operating Systems (OS)
to run on one server, sharing most of the resources,
thereby reducing energy consumption. Moreover, there
Paynamic = C x V2 x f 2 are energy-aware cache replacement algorithms [39],
energy-aware task and interrupt management tech-
where(' is the capacitance per cycl¥, is the supply  niques [35], online-learning-based power management [10]
voltage andf is processor clock frequency. predictive data grouping and replication [14], and
Although dynamic power is the primary source energy-aware file systems configuration pruning tech-
of power dissipation in CMOS-based systems, static niques [33]. Some of our own past studies show sig-
power is becoming an important issue. Static power is nificant energy savings possible in commodity Linux
computed as follows: servers running common workloads such as Web,
email, database, compression, etc. [23, 33]. Generally,
optimal use of energy-saving techniques requires ac-
3) curate models of system energy consumption with re-
spect to appropriate parameters; the work described in

where Iy, is the sub-threshold leakage curreh, is  this paper is a step towards the development of such
the body bias voltage, arg,, andI, are the drain and models.
source to body junction leakage current, respectively. _ _
Processors with Dynamic Voltage and Frequency 42 Energy Consumption of Data Compression
Scaling (DVFS) are capable of operating at multiple Our prior work, conducted by Kothiyal et al., evaluated
frequency and voltage levels. Dynamic power is con- energy consumption and performance of data compres-
sidered to be the dominant portion of the processor’s sion on servers [23] and demonstrated that compression
energy consumption. As seen from Equation 2, the reduces energy consumption in some situations but not
Piynamic depends linearly on frequency and quadrati- all. A careful application of compression can save en-
cally on voltage. However, operating at a lower voltage ergy in some cases by a factor ofx10but a careless
and frequency does not necessarily result in overall en-application of compression can easily waste energy and
ergy savings, as we see later in Section 6.3. The mainslow performance by 200. In contrast to the work de-
reason is that when running at a lower frequency, it usu- scribed in this paper, our past study did not focus on
ally takes longer to accomplish the same work, which accurate modeling of energy consumption and hence
can increase the total energy consumption. did not discuss system identification or analyze the be-
The energy consumed by a Hard Disk Drive (HDD) havioral characteristics of energy consumption and per-
follows the following equation: formance that make accurate modeling difficult.

Pstatic =V x [th + %s X (Ijn + [bn)



5. Methodology Format FC | SC| NA A

This section details our experimental setup and bench-| Resetlogging L | W | 3 1,0,1
marks. Choose fields C | W | 18 | 1,0,0,1,0,0,0,...

Table 1. Data Formats for the meter FC, SC, NA
and IA stands for the first command, the second com-
mand, number of arguments and individual arguments
We conducted our experiments on a Dell PowerEdge separately. The first line of data format will reset the
R710 server consisting of one quad-core i@e&Xeon™  meter to internal logging every second. The second line

Nehalem CPU with a maximum frequency of 2.395GHz of data format will choose only power and energy log-
with dynamic frequency and voltage scaling (DVFS) ging of the meter.

support: 7 different frequencies at a difference of
133MHz each without the Turbo Mode, and 8 differ-
ent frequencies at a difference of 1IMHZ each for the
top two frequencies and at a difference of 133MHZ for
the last 7 different frequencies with the Turbo Mode
on. The machine has 24GB RAM, out of which we
only used 2GB to force I/O to take place. The server
has two 146GB Seagate SAS disks with 15,000RPM
rotation speed and a 16MB cache, two 250GB inter-
nal Fujitsu SATA disks with 7,200 RPM rotation speed
and 16MB cache, and one 80GB Intel SSD disk model
SSDSA2MHO080G1C5. We ran all of our benchmarks
on all of these three different kinds of disk drives. The
server was running the Linux 2.6.18 kernel with the
acpi cpufreq module installed to enable the soft- ©-2 Benchmarks
ware control of the CPU frequency. The workload for each test is to compress 20 identical
The server was connected to a WattsUP Pro ES [12]files with 20 threads concurrently, and write the com-
in-line power meter, which measures the energy drawnpressed files to disk. Each file is 65MB. Several factors
by a device plugged into the meter’s receptacle. Theinfluence energy consumption for data compression, as
power meter uses non-volatile memory to store mea-we will discuss in Section 6.3. In order to fully explore
surements every second. Its resolution is 0.1 Watt-these factors and their interactions, we conducted ex-
hours (1 Watt-hours = 3,600 Joules). The accuracy isperiments for each combination. Specifically, we con-
+1.5% of the measured value plus a constant error siders the following factors: persistent storage media
of +£0.3 Watt-hours. Its resolution for power measure- (SAS disk, SATA disk, and SSD disk), I/0O schedulers

5.1 Experimental Setup

this large data set and drawing figures were made sim-
pler thanks to the automation tools we built.

To automate the measurements, we developed a tool
called auto-ebench, written in Perl and Bash that helps
us benchmark the energy and power consumption un-
der different scenarios while launchingnstat to
record the number of block reads and block writes.
Except we measured the total number of block reads
and writes in the whole system level. This saved us
significant time and effort.

ments is 0.1 Watts. We used thattsup Linux util- (anticipatory, CFQ, deadline and NOOP), compression
ity to download the recorded data from the meter over algorithm (gzip, bzip2, and Izop) and compression level
a USB interface to the test machine. Thattsup (1-9), and file type (text, binary, and random). We

utility has its own data format for various control com- ran the above workload for each combination of these
mands. We used two of them to reset the logging andfactors. Between each compression level, we inserted
to request the desired data fields as shown in Table 1. some sleeping intervals, so that each experiment for
We conducted 216 combinations of experiments (re- each compression level started at the same exact time.
peated for five times each), and collected a large dataThe elapsed time for compression plus the sleeping in-
set: 4,810,320 data points in total for a single run. Run- terval was the same and fixed during each compression
ning the whole benchmark only once took about 15 cal- level, in order to align the graphs for each compres-
endar days to complete. We ran and reran experimentssion level. Auto-ebench is responsible for repeatedly
many times over a period of more than a year, as welaunching the experiments and recording the results for
kept refining our experimentation methodology and de- multiple time and under multiple scenarios. Our exper-
veloped automation tools. Retrieving information from iments follow this pattern unless otherwise noted.



We ran all the tests for five times and computed the File Type

95% confidence intervals using the Student-t distribu- Tool Text | Binary | Rand
tion. The error bars shown in our graphs are the half gz-1 361| 2.14 1.00
widths of the 95% confidence intervals. gz-2 377 218 1.00

We use version 1.3.5 of gzip, version 1.0.3 of bzip2, 9z-3 390 221 1.00
and version v1.02rc1 of Izop. gz-4 4181 226 | 1.00

The 1/0 spheduler can be set per device and is 9z-5 435 230 | 1.00
easy to configure. In_ order to s_et the I/O scheduler, 92-6 443 232 1.00
we only need to write the desired scheduler name 9z-7 445 233 1.00
to /sys/block/ _ $dev/queue/scheduler and 92-8 246| 233 1.00
launch the experiments after that. 92-9 246| 233 1.00

We ran the tests on the specified disk drive, format-
ted with Ext3 file system and mounted using the default
options. To avoid caching effects, we unmounted the
file system after each test iteration to flush the data in
memory to disk. Our measurements include this flush-
ing time.

bz-1 4.72| 2.38 0.99
bz-2 5.02| 245 0.99
bz-3 5.18| 2.53 0.99
bz-4 5.28| 2.57 0.99
bz-5 5.36| 2.60 0.99
bz-6 540| 2.64 | 0.99
bz-7 544 2.65 1.00
bz-8 549 | 2.67 1.00

6. Evaluation

In this section, we evaluate and analyze the energy con- bz-9 550 2.69 1.00
sumption pattern for our file-compression workload. Iz0-(1~6) | 2.82| 1.77 1.00
Sections 6.1, 6.2, and 6.3 focus on non-linearity, insta- z0-7 3801 2.15 1.00

bility, and multi-dimensionality, respectively. 20-8 384 216 1.00

Izo-9 3.84| 217 1.00

6.1 Nonlinearity

For compression algorithms, a higher compression Table 2. Compression ratios achieved by various com-
level usually means a better compression ratio (CR). Pression utilities and levels
Table 2 shows the CR for all algorithms and levels.

Although it is true that a higher compression level
generally commits fewer blocks to disk for the same  As we can see from Figure 2(a), in the case of gzip,
workload and hence might save energy due to reducedthe energy consumption goes up non-linearly and then
I/O activity, the overall energy consumption might not goes down slightly as the compression level increases.
follow the same pattern. One possible reason is that theFigure 2(b), shows that the elapsed time follows the
CPU may have to perform a lot more work in order same trend. In the case of bzip2 as shown in Fig-
to achieve a better CR, which takes longer time and ure 2(c), the energy consumption is relatively stable,
consumes more energy. The actual energy consumedncreasing only slightly across all 9 compression lev-
under certain workloads is in fact a trade-off between els, which suggests that a balance between the CPU
these factors. Therefore, as we can see from Figure 2energy consumption and disk energy consumption has
which presents measurements for gzip, bzip2, and Izop,been achieved. The elapsed time, shown in Figure 2(d),
the energy consumption is not a linear function of the follows the same pattern with Izop. As shown in Fig-
compression level. Moreover, it is also not monotoni- ure 2(e), the energy consumption is the same for the
cally increasing with the compression level. For exam- first six identical compression levels and then increases
ple, in Figure 2(b), energy consumption peaks at level monotonically but non-linearly. This reflects that for
7, then unexpectedly drops for levels 8-9. the last three compression levels, due to the longer

Comparing the graphs in the left and right columns elapsed time, the entire system (including the disk
of Figure 2, we also observe that the energy consump-drive, even when it is just spinning, not reading or writ-
tion for the whole system depends heavily on the total ing) is consuming more power at higher compression
elapsed time during the compression period [9, 31].  levels even though slightly fewer blocks are written
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Figure 2. An example combined graph for illustrating nonlinearity. Experiments compressing text files using

the highest CPU frequency, SAS disks, and the CFQ I/O schedul 2(a), the x axis denotes the compression
level and the y axis denotes Watt-hours (equals to 3,60@dpuh 2(b), the unit for Elapsed Time is seconds. This
representation is kept the same for 2(c), 2(d), 2(e), and 2(f

to disk. Figure 2(f) show that the elapsed time strictly cases, the instantaneous power response is unstable and
follows the same pattern. fluctuates significantly, as we can see from Figures 3,
In summary, it is clear that the energy consump- 5 and 6. This should be taken into consideration when
tion and elapsed time relate non-linearly and in some designing power-aware systems.
cases non-monotonically with the compression level. Our experiments revealed that the cause of those
Consequently, controlling the system’s energy usagefluctuations lies in the interleavings between disk reads
by adjusting the compression level is complex: tra- and writes when the CPU frequency is maintained at
ditional controllers which assume linearity would not the same level. We discuss these in more detail below.

work well. In Figure 3(a), the instantaneous power response is
relatively stable from level 1 to level 7. However, it
6.2 Instability becomes unstable in levels 8 and 9. Furthermore, Fig-

ure 3(b) reveals that rate at which blocks are read ex-

This section examines how the instantaneous power . " y :
hibits the same pattern of stability and fluctuation at

response varies during each run. We found in some
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Figure 3. Relationship between the rates of block reads/wies and power consumption of gzipThe y axis is
in units of thousands of reads/writes. The CPU frequencegtisosthe highest frequency in the above experiments.
One can see that there are fluctuations in levels 8 and 9.

levels 8 and 9. Looking at Figure 3(b) in detail, espe- scenarios. We can see from Figure 5(b) that for the first
cially in levels 8 and level 9, it also reveals more fre- six levels, the I/O rate is much higher than in the re-
guent interleavings between block reads and writes. Formaining levels. However, the run is shorter in terms of
levels 1 through 4, there are just small fluctuations in elapsed time, as we can see from the width of the ac-
power consumption towards the end of the compres-tive intervals, and the interleavings between the rates of
sion job. A similar pattern appears in the interleavings block reads and writes are in some degree not equally
between block reads and writes for level 1 to 4. More- distributed across the compression level, resulting in
over, the stable response in levels 5, 6, and 7 suggesta few fluctuations towards the end of each compres-
an equally distributed interleavings between the ratession level. For levels 8 and 9, since the interleavings
of blocks reads and writes. We believe that when block are equally distributed, the power response is relatively
reads and writes are interleaved beyond a certain levelstable. The fluctuations in level 7 suggest there exists
I/O scheduler algorithms (and possibly algorithms in- unequally distributed interleavings between the rates of
side the disk) begin to break down and their efficiency disk reads and writes.
goes down considerably. An even more complicated example appears in Fig-
In Figure 4(a), the instantaneous power response isure 6(a). In this scenario, random files are being com-
relatively stable. In Figure 4(b), we can see clearly that pressed and SATA is the persistent storage media. The
the rate of disk block reads is maintained at a stable power response is extremely unstable in each compres-
level, and the rate at which disk blocks are written is sion level. The interleavings between the rates of block
equally distributed throughout the compression period. reads and writes are ill regulated, as we can see from
This leads the instantaneous power response to be staFigure 6(b). This suggests that the harder the file to
ble. compress is (e.g., high entropy), the less predictable
In Figure 5(a), the instantaneous power response fol-performance and energy consumption would be. There
lows a different pattern compared with the previous two
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each compression level.
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Figure 6. An even more complex exampleThe CPU frequency is set to the highest frequency in the @bov
experiments. One can see large fluctuations during everypiassion level.

is no simple way to model systems exhibiting such sion, which generally results in a higher total energy
complex and diverse behavior. consumption. We can also see from Figure 7 that for
We conclude that the power response exhibits insta-both the highest frequency and the lowest frequency,
bility in many cases. This contributes to the complexity the consumed energy increases as a function of com-
of the energy usage of the system and makes control-pression level. However, there is also a possibility that

ling a serious challenge. when the CPU frequency is lower, the rate at which the
o _ _ CPU compresses data in the blocks will be closer to
6.3 Multi-Dimensionality the rate at which the disk drive produces blocks. If this

In this subsection, we illustrate the dependence of en-happens, it can save energy at the end since there is no
ergy consumption on several factors, such as CPU fre-wasted energy existed.
quency, compression algorithm and level, file type, per- ~ The disk I/O scheduler influences the order of disk
sistent storage media, and disk I/O scheduler. writes and hence may affect the energy consumption.
The compression algorithm is clearly an important ~ Figure 8 shows the energy consumption with 4 dif-
factor of energy consumption here, as we have a|readyferent I/0 schedulers. We can see that anticipatory and
seen in Figure 2. For example, bzip takes much longer CFQ have largely the same effect, while deadline and
time to compress than Izop does. Thus, bzip usually NOOP also have similar effect to each other but differ-

takes more energy to compress than |Zop does. ent from anticipatory or CFQ. As the unit for the Yy axis
One may assume that a lower CPU frequency will is Watt-hours, which is equal to 3,600 Joules, the differ-
result in lower energy consumption. However, as we €nce in energy consumption between anticipatory and
can see from Figures 7(a) and 7(b), that is not neces-CFQ is actually significant, especially for larger work-
sarily true. With lower CPU frequency, the energy con- loads.
sumption is actually increased for all the compression  The file affects different compression strategies for
levels. The reason behind is that when the CPU fre- €ach compression algorithm and hence plays a role
quency is lower, it takes longer to finish the compres- in energy consumption. The left column of Figure 9
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Figure 8. Energy consumption under 4 different 1/0O schedules

shows the energy consumption of the compressionenergy consumption response in a way that is not easy
workload for different file types. We see that the work- to predict.

load with binary files consumes more energy than the Different disk types usually have different elec-
workload with text files when other parameters are the tronics and firmware, different physical features, and
same; this makes sense because text files have mordifferent storage strategies. Therefore, this should af-
common patterns that can be compressed (e.g., lowefect for energy consumption. The right column of Fig-
entropy). Also for text and binary files, more energy ure 9 shows the energy consumption of the compres-
is consumed with compression level 9 than with other sion workload for different persistent storage media.
compression levels. Surprisingly, for random files, level As expected, SAS is generally faster than SATA, so
8 turns out to be the most energy-consuming one, in-the workload runs faster and consumes less energy, ap-
stead of level 9. We conclude that file type affects the proximately 5% less. SSD is the fastest storage media
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Figure 9. Energy consumption for different File types and dsk types

among the three, consuming the least energy, approx-e to use knowledge-based machine-learning methods
imately 5% less than SAS and 10% less than SATA. in the development of such models to guide the design
This is because an SSD contains no energy-consumingf energy-aware systems.

moving parts by Equation 4, and stores data on non-
volatile flash memory chips using a Flash Translation
Layer (FTL) that allows the linear device to look like a .
traditional disk. These results also show that the work- ~~ COMClUSIons |

load is not completely CPU bound, even though it is Accurate models of energy consumption and perfor-
CPU intensive. mance are vital for the design and implementation of
Sumption of Computer Systems fO”OWS a Complicated Su|tS ShOW that the behaViOI’ of these quantities iS far
pattern, because the energy consumption for each submore complicated than one might expect, even for rel-
system will contribute to it. This suggests that instead atively simple workload such as data compression. The
of trying to develop system-level energy models purely complexity is reflected in nonlinearity, instability, and

ina bottom_up fashion’ a more practical approach may multi'dimenSiona“ty. These factors must be considered
in the design of energy-efficient systems.



Although we have measured and analyzed the ef-marking, similar to what auto-pilot [36] does to auto-
fects of several factors, there may be other important mate file system benchmarking. We plan to enhance
factors to consider, depending on the system, such asauto-ebench to support additional features such as con-
the workload itself, and even the server- and machine-fidence intervals, automatic detection of memory leaks,
room temperatures. and intelligent results analysis.
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