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Abstract

Models of energy consumption and performance are
necessary to understand and identify system behavior,
prior to designing advanced controls that can balance
out performance and energy use. This paper consid-
ers the energy consumption and performance of servers
running a relatively simple file-compression workload.
We found that standard techniques for system identi-
fication do not produce acceptable models of energy
consumption and performance, due to the intricate in-
terplay between the discrete nature of software and the
continuous nature of energy and performance. This mo-
tivated us to perform a detailed empirical study of the
energy consumption and performance of this system
with varying compression algorithms and compression
levels, file types, persistent storage media, CPU DVFS
levels, and disk I/O schedulers. Our results identify and
illustrate factors that complicate the system’s energy
consumption and performance, including nonlinearity,
instability, and multi-dimensionality. Our results pro-
vide a basis for future work on modeling energy con-
sumption and performance to support principled design
of controllable energy-aware systems.

Categories and Subject Descriptors C.4 [Perfor-
mance of Systems]: Modeling techniques; H.3.4 [In-
formation Storage and Retrieval]: Systems and Software—
Performance evaluation (efficiency and effectiveness);

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SYSTOR ’11, May 30 - June 1, Haifa, Israel
Copyright c© 2011 ACM [to be supplied]. . . $10.00

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Control theory

General Terms Measurement, Performance

Keywords Energy efficiency, System identification,
Data compression

1. Introduction

The carbon footprint of the IT industry, though only 2%
of the world economy, is estimated to be equal to that
of the entire aviation industry [7]. Energy consumption
is emerging as a critical issue in the design of com-
puting systems [5, 14, 20, 21, 28, 32, 41]. The goals
of energy-aware system design include saving energy
without sacrificing performance, and supporting flex-
ible, dynamic trade-offs between energy consumption
and performance. Accurate models of energy consump-
tion and performance provide a foundation for the de-
sign of energy-aware systems.

A large portion of the energy consumed by IT in-
frastructure is due to desktop machines and commer-
cial servers [8]. Moreover, the total amount of elec-
tronic data stored world-wide is rising exponentially.
By 2020, that figure is expected to reach 35 Zetta
Bytes [16]; energy consumption is expected to grow
just as rapidly. Thus, it is desirable to develop highly
scalable solutions that are significantly better than to-
day’s solutions.

In prior work, we analyzed the energy and per-
formance profiles of server workloads, such as Web
servers, email servers, database servers, and file com-
pression [23, 33]. We discovered large deviations for
both performance and energy consumption—as much
as 10 times—suggesting that there are significant op-
portunities to save energy and improve performance.
Our past work considered those systems only as black-



boxes and reported their performance and energy con-
sumption without a deeper understanding of the exact
reasons for those deviations.

Seeking a better understanding of the system inter-
nals of these workloads, we tried to identify their inter-
nal behavior, so we could build advanced controllers to
better manage both energy and performance. Unfortu-
nately, our initial attempts to identify these systems us-
ing traditional linear-systems identification techniques
resulted in poor models with low prediction accuracy
(under 50%).

In this paper, we shed considerable light on the
complexities underlying systems-software energy con-
sumption and performance. In particular, we present
an in-depth experimental evaluation of the energy con-
sumption and performance of a relatively simple yet
familiar file-compression workload as a representa-
tive workload involving both substantial CPU usage
and disk I/O. We also analyze the effects of several
input parameters, including choice of compression al-
gorithm, compression level, file type, persistent storage
media (e.g., SATA, SAS, and SSD), CPU Dynamic
Voltage and Frequency Scaling (DVFS) level, and disk
I/O scheduler—all under the Linux operating system.

Our experimental results show that energy con-
sumption and performance are unexpectedly complex
and cannot be easily modeled using standard system-
identification techniques. We identify several factors
that contribute to this complexity, in terms of nonlin-
earity, instability, and multi-dimensionality. Our results
suggest that hybrid discrete-continuous models [1, 18]
may provide a suitable foundation for modeling and
control of energy consumption and performance in
energy-aware systems software.

The rest of the paper is organized as follows. Sec-
tion 2 provides the motivation for this work, while
Section 3 provides the requisite background. Section 4
considers related work. Section 5 presents our experi-
mental setup and benchmarks, while Section 6 contains
our experimental results. We conclude in Section 7 and
describe future work in Section 8.

2. Motivation

Section 2.1 gives background on system identification.
Section 2.2 describes the problems we encountered try-
ing to apply system identification techniques to model
the energy consumption of our workload.

2.1 System Identification

Compression Algorithm

CPU Frequency

Performance

Energy

(Compressor)

Plant
Compression Level

File Type

Figure 1. Plant: Compressor

System identification is the first step of control en-
gineering that uses statistical methods to build models
from observed behavior.

As is shown in Figure 1, our system consists of three
inputs: compression algorithm, compression level, and
CPU frequency—and two outputs: energy and perfor-
mance. Applying off-the-shelf technology for system
identification, such as MATLAB’s system identifica-
tion tool-box [24] has considerable appeal, since one
needs to know only the inputs and outputs. It does not
require a detailed understanding of the system’s behav-
ior. By applying statistical techniques to data collected
from the target system, system identification attempts
to construct a mathematical model of the relationships
between inputs and outputs.

A typical workflow for system identification follows
these four steps: (1) Specify the model in the form of
inputs and outputs, and design experiments to collect
data; (2) Apply the system-identification algorithm to
estimate the values of the coefficients of the model;
(3) Verify the accuracy of the resulting model by eval-
uating it against additional measured data; (4) Check
whether the model is OK or not. If the prediction accu-
racy is low, one or more steps in the workflow need to
be revisited.

We used a traditional linear state space model of the
following form:

x(n + 1) = Ax(n) + Bu(n) + Kw(n) (1a)

y(n) = Cx(n) + Du(n) + w(n) (1b)

whereu(n) are the inputs,y(n) are the outputs,x(n)
the internal states of the plant, andw(n) is a white
Gaussian noise representing uncontrollable inputs and
output measurement errors (e.g., errors introduced by
the power meter while sampling the energy consumed
by the device) at timen. MatricesA, B, C, D, andK

denote the significance or weight that each element in



the input, output, and Gaussian noise have in determin-
ing the next state or output of the system.

2.2 Problems Encountered

Our system is a simple file compressor. System in-
puts x can be file type (ZERO, TEXT, BINARY , RAN-
DOM), compression level (1 to 9) compression al-
gorithm (GZIP, BZIP2, LZOP, or NONE for no com-
pression), and CPU frequency/voltage (eight available
choices). We considered energy consumption and per-
formance as the outputsy.

The system inputs and outputs must be quantified
in order to apply system identification. Energy is mea-
sured in Watt-hours. Performance is measured as the
number of files compressed per second. The CPU fre-
quency is measured in Hertz. However, it is difficult to
choose appropriate numerical values to represent file
types, compression levels and compression algorithms.

The compression level is numerical, but the level
number is actually just a label (in other words, a name);
the numerical value has no direct significance other
than ordering. Similarly, file types and compression
algorithms are naturally identified by discrete, non-
numerical labels but must be represented numerically
to apply the system identification algorithm. The num-
bers chosen are significant because they must be related
to the next states and outputs by Equation 1 for system
identification to succeed and should not impose arbi-
trary quantitative relationships. However, we have no
a-priori way of deciding what values to use.

We tried a simple linear approach using consecutive
integers (e.g., 0 forNONE, 1 for GZIP, 2 for BZIP2 and
3 for LZOP), as well as other numbers. We also tried
a non-linear approach, assigning each compression al-
gorithm a number corresponding to its compression ra-
tio; but the compression ratio varies with file type and
hence is not a fixed value associated solely with the
compression algorithm.

In conclusion, labels are similar to the discrete states
of a finite automaton. In our case, they represent differ-
ent modes of system behavior, that is, they represent
the modes of a hybrid automaton. Any attempt to give
them a numerical meaning, is doomed to fail.

We prepared two data sets of the same size to iden-
tify the system. One data set is used to estimate the pa-
rameters of the model using least-squares techniques;
the other is used to evaluate the quality of the model
fit. Accuracy is the percentage of model fit. We applied

the MATLAB’s system identification tool-box to learn
Single-Input-Single-Output (SISO) and other system
models. However, we achieved only limited accuracy,
less than 50% in overall. This was clearly insufficient
as a basis to design a controller.

In order to better understand the causes of the prob-
lem, and to find ways of splitting the nonlinear behavior
into segments that can be more accurately modeled as
linear systems, we decided to study the system’s energy
consumption and performance in more detail.

3. Background

In this section, we describe background work in terms
of compression algorithms (Section 3.1), I/O sched-
ulers (Section 3.2), and power and energy consumption
(Section 3.3).

3.1 Compression Algorithms

In Linux, there are three main compression utilities:
gzip , bzip2 , andlzop , each of which has compres-
sion levels ranging from level 1 to level 9. A higher
level tries to achieve a better compression ratio at the
expense of additional CPU cycles.

Gzip [15] is based on theDEFLATE algorithm, which
is a combination of LZ77 and Huffman coding. Bzip2
uses the Burrows-Wheeler transform to convert fre-
quently recurring character sequences into strings of
identical letters and then applies a move-to-front trans-
form and Huffman coding [6]. Lzop [29] uses the LZO
library and produces files a bit larger than gzip’s but
with a lower CPU use. Moreover, inlzop , compres-
sion levels 1 to 6 are identical.

3.2 I/O schedulers

I/O scheduling has been studied aggressively [2, 4,
19, 22, 37] especially since the speed of disk lags far
behind the CPU and RAM speeds.

Normally, a disk scheduler tries to maintain a bal-
ance between fairness, performance, and latency (or,
real time guarantees). Fairness guarantees that every
process has fair share of the access to disk on a multi-
user system. Performance requires the scheduler to
serve requests predictably to save both time and energy.
Latency means that any request must be served within
a given time limit. There are four main I/O schedulers
in Linux systems: (1)CFQ (the default) which empha-
sizes fairness; (2)ANTICIPATORY which emphasizes
performance; (3)DEADLINE which is design for low



latency and real time access; and (4)NOOP, which is a
simple first-come-first-served scheduler.

3.3 Power and Energy Consumption

In this subsection, we introduce the power and energy
consumption patterns for both CPU and disk since our
workload is both CPU-intensive and disk-intensive.

The power consumed in a processor consists of
three portions: dynamic powerPdynamic, static power
Pstatic, and short-circuit power [25]. For Comple-
mentary Metal Oxide Semiconductor (CMOS) chips,
dynamic power refers to the energy consumption in
switching transistors, while static power refers to the
flowing leakage current when a transistor if off. Short-
circuit power is consumed only during signal transi-
tions and is insignificant. The dynamic power is calcu-
lated as follows:

Pdynamic = C × V 2 × f (2)

whereC is the capacitance per cycle,V is the supply
voltage andf is processor clock frequency.

Although dynamic power is the primary source
of power dissipation in CMOS-based systems, static
power is becoming an important issue. Static power is
computed as follows:

Pstatic = V × Ith + Vbs × (Ijn + Ibn) (3)

whereIth is the sub-threshold leakage current,Vbs is
the body bias voltage, andIjn andIbs are the drain and
source to body junction leakage current, respectively.

Processors with Dynamic Voltage and Frequency
Scaling (DVFS) are capable of operating at multiple
frequency and voltage levels. Dynamic power is con-
sidered to be the dominant portion of the processor’s
energy consumption. As seen from Equation 2, the
Pdynamic depends linearly on frequency and quadrati-
cally on voltage. However, operating at a lower voltage
and frequency does not necessarily result in overall en-
ergy savings, as we see later in Section 6.3. The main
reason is that when running at a lower frequency, it usu-
ally takes longer to accomplish the same work, which
can increase the total energy consumption.

The energy consumed by a Hard Disk Drive (HDD)
follows the following equation:

Edisk = Espin + Ehead (4)

whereEspin refers to the energy consumed by the spin-
ning platter andEhead refers to the energy consumption
incurred by disk head movement.

4. Related Work

This section places our work in the context of past
work.

4.1 Energy Efficiency

Many energy-saving techniques have been developed
at the hardware and software levels. For example, vir-
tualization allows multiple Operating Systems (OS)
to run on one server, sharing most of the resources,
thereby reducing energy consumption. Moreover, there
are energy-aware cache replacement algorithms [39],
energy-aware task and interrupt management tech-
niques [35], online-learning-based power management [10],
predictive data grouping and replication [14], and
energy-aware file systems configuration pruning tech-
niques [33]. Some of our own past studies show sig-
nificant energy savings possible in commodity Linux
servers running common workloads such as Web,
email, database, compression, etc. [23, 33]. Generally,
optimal use of energy-saving techniques requires ac-
curate models of system energy consumption with re-
spect to appropriate parameters; the work described in
this paper is a step towards the development of such
models.

4.2 Energy Consumption of Data Compression

Our prior work, conducted by Kothiyal et al., evaluated
energy consumption and performance of data compres-
sion on servers [23] and demonstrated that compression
reduces energy consumption in some situations but not
all. A careful application of compression can save en-
ergy in some cases by a factor of 10×, but a careless
application of compression can easily waste energy and
slow performance by 200×. In contrast to the work de-
scribed in this paper, our past study did not focus on
accurate modeling of energy consumption and hence
did not discuss system identification or analyze the be-
havioral characteristics of energy consumption and per-
formance that make accurate modeling difficult.



5. Methodology

This section details our experimental setup and bench-
marks.

5.1 Experimental Setup

We conducted our experiments on a Dell PowerEdge
R710 server consisting of one quad-core IntelR© XeonTM

Nehalem CPU with a maximum frequency of 2.395GHz
with dynamic frequency and voltage scaling (DVFS)
support: 7 different frequencies at a difference of
133MHz each without the Turbo Mode, and 8 differ-
ent frequencies at a difference of 1MHZ each for the
top two frequencies and at a difference of 133MHZ for
the last 7 different frequencies with the Turbo Mode
on. The machine has 24GB RAM, out of which we
only used 2GB to force I/O to take place. The server
has two 146GB Seagate SAS disks with 15,000RPM
rotation speed and a 16MB cache, two 250GB inter-
nal Fujitsu SATA disks with 7,200 RPM rotation speed
and 16MB cache, and one 80GB Intel SSD disk model
SSDSA2MH080G1C5. We ran all of our benchmarks
on all of these three different kinds of disk drives. The
server was running the Linux 2.6.18 kernel with the
acpi cpufreq module installed to enable the soft-
ware control of the CPU frequency.

The server was connected to a WattsUP Pro ES [12]
in-line power meter, which measures the energy drawn
by a device plugged into the meter’s receptacle. The
power meter uses non-volatile memory to store mea-
surements every second. Its resolution is 0.1 Watt-
hours (1 Watt-hours = 3,600 Joules). The accuracy is
±1.5% of the measured value plus a constant error
of ±0.3 Watt-hours. Its resolution for power measure-
ments is 0.1 Watts. We used thewattsup Linux util-
ity to download the recorded data from the meter over
a USB interface to the test machine. Thewattsup
utility has its own data format for various control com-
mands. We used two of them to reset the logging and
to request the desired data fields as shown in Table 1.

We conducted 216 combinations of experiments (re-
peated for five times each), and collected a large data
set: 4,810,320 data points in total for a single run. Run-
ning the whole benchmark only once took about 15 cal-
endar days to complete. We ran and reran experiments
many times over a period of more than a year, as we
kept refining our experimentation methodology and de-
veloped automation tools. Retrieving information from

Format FC SC NA IA
Reset logging L W 3 I,0,1
Choose fields C W 18 1,0,0,1,0,0,0,. . .

Table 1. Data Formats for the meter. FC, SC, NA
and IA stands for the first command, the second com-
mand, number of arguments and individual arguments
separately. The first line of data format will reset the
meter to internal logging every second. The second line
of data format will choose only power and energy log-
ging of the meter.

this large data set and drawing figures were made sim-
pler thanks to the automation tools we built.

To automate the measurements, we developed a tool
called auto-ebench, written in Perl and Bash that helps
us benchmark the energy and power consumption un-
der different scenarios while launchingvmstat to
record the number of block reads and block writes.
Except we measured the total number of block reads
and writes in the whole system level. This saved us
significant time and effort.

5.2 Benchmarks

The workload for each test is to compress 20 identical
files with 20 threads concurrently, and write the com-
pressed files to disk. Each file is 65MB. Several factors
influence energy consumption for data compression, as
we will discuss in Section 6.3. In order to fully explore
these factors and their interactions, we conducted ex-
periments for each combination. Specifically, we con-
siders the following factors: persistent storage media
(SAS disk, SATA disk, and SSD disk), I/O schedulers
(anticipatory, CFQ, deadline and NOOP), compression
algorithm (gzip, bzip2, and lzop) and compression level
(1–9), and file type (text, binary, and random). We
ran the above workload for each combination of these
factors. Between each compression level, we inserted
some sleeping intervals, so that each experiment for
each compression level started at the same exact time.
The elapsed time for compression plus the sleeping in-
terval was the same and fixed during each compression
level, in order to align the graphs for each compres-
sion level. Auto-ebench is responsible for repeatedly
launching the experiments and recording the results for
multiple time and under multiple scenarios. Our exper-
iments follow this pattern unless otherwise noted.



We ran all the tests for five times and computed the
95% confidence intervals using the Student-t distribu-
tion. The error bars shown in our graphs are the half
widths of the 95% confidence intervals.

We use version 1.3.5 of gzip, version 1.0.3 of bzip2,
and version v1.02rc1 of lzop.

The I/O scheduler can be set per device and is
easy to configure. In order to set the I/O scheduler,
we only need to write the desired scheduler name
to /sys/block/ $dev/queue/scheduler and
launch the experiments after that.

We ran the tests on the specified disk drive, format-
ted with Ext3 file system and mounted using the default
options. To avoid caching effects, we unmounted the
file system after each test iteration to flush the data in
memory to disk. Our measurements include this flush-
ing time.

6. Evaluation

In this section, we evaluate and analyze the energy con-
sumption pattern for our file-compression workload.
Sections 6.1, 6.2, and 6.3 focus on non-linearity, insta-
bility, and multi-dimensionality, respectively.

6.1 Nonlinearity

For compression algorithms, a higher compression
level usually means a better compression ratio (CR).
Table 2 shows the CR for all algorithms and levels.

Although it is true that a higher compression level
generally commits fewer blocks to disk for the same
workload and hence might save energy due to reduced
I/O activity, the overall energy consumption might not
follow the same pattern. One possible reason is that the
CPU may have to perform a lot more work in order
to achieve a better CR, which takes longer time and
consumes more energy. The actual energy consumed
under certain workloads is in fact a trade-off between
these factors. Therefore, as we can see from Figure 2,
which presents measurements for gzip, bzip2, and lzop,
the energy consumption is not a linear function of the
compression level. Moreover, it is also not monotoni-
cally increasing with the compression level. For exam-
ple, in Figure 2(b), energy consumption peaks at level
7, then unexpectedly drops for levels 8–9.

Comparing the graphs in the left and right columns
of Figure 2, we also observe that the energy consump-
tion for the whole system depends heavily on the total
elapsed time during the compression period [9, 31].

Tool
File Type

Text Binary Rand
gz-1 3.61 2.14 1.00
gz-2 3.77 2.18 1.00
gz-3 3.90 2.21 1.00
gz-4 4.18 2.26 1.00
gz-5 4.35 2.30 1.00
gz-6 4.43 2.32 1.00
gz-7 4.45 2.33 1.00
gz-8 4.46 2.33 1.00
gz-9 4.46 2.33 1.00
bz-1 4.72 2.38 0.99
bz-2 5.02 2.45 0.99
bz-3 5.18 2.53 0.99
bz-4 5.28 2.57 0.99
bz-5 5.36 2.60 0.99
bz-6 5.40 2.64 0.99
bz-7 5.44 2.65 1.00
bz-8 5.49 2.67 1.00
bz-9 5.50 2.69 1.00

lzo-(1∼6) 2.82 1.77 1.00
lzo-7 3.80 2.15 1.00
lzo-8 3.84 2.16 1.00
lzo-9 3.84 2.17 1.00

Table 2. Compression ratios achieved by various com-
pression utilities and levels

As we can see from Figure 2(a), in the case of gzip,
the energy consumption goes up non-linearly and then
goes down slightly as the compression level increases.
Figure 2(b), shows that the elapsed time follows the
same trend. In the case of bzip2 as shown in Fig-
ure 2(c), the energy consumption is relatively stable,
increasing only slightly across all 9 compression lev-
els, which suggests that a balance between the CPU
energy consumption and disk energy consumption has
been achieved. The elapsed time, shown in Figure 2(d),
follows the same pattern with lzop. As shown in Fig-
ure 2(e), the energy consumption is the same for the
first six identical compression levels and then increases
monotonically but non-linearly. This reflects that for
the last three compression levels, due to the longer
elapsed time, the entire system (including the disk
drive, even when it is just spinning, not reading or writ-
ing) is consuming more power at higher compression
levels even though slightly fewer blocks are written
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Figure 2. An example combined graph for illustrating nonlinearity. Experiments compressing text files using
the highest CPU frequency, SAS disks, and the CFQ I/O scheduler. In 2(a), the x axis denotes the compression
level and the y axis denotes Watt-hours (equals to 3,600 Joules). In 2(b), the unit for Elapsed Time is seconds. This
representation is kept the same for 2(c), 2(d), 2(e), and 2(f).

to disk. Figure 2(f) show that the elapsed time strictly
follows the same pattern.

In summary, it is clear that the energy consump-
tion and elapsed time relate non-linearly and in some
cases non-monotonically with the compression level.
Consequently, controlling the system’s energy usage
by adjusting the compression level is complex: tra-
ditional controllers which assume linearity would not
work well.

6.2 Instability

This section examines how the instantaneous power
response varies during each run. We found in some

cases, the instantaneous power response is unstable and
fluctuates significantly, as we can see from Figures 3,
5 and 6. This should be taken into consideration when
designing power-aware systems.

Our experiments revealed that the cause of those
fluctuations lies in the interleavings between disk reads
and writes when the CPU frequency is maintained at
the same level. We discuss these in more detail below.

In Figure 3(a), the instantaneous power response is
relatively stable from level 1 to level 7. However, it
becomes unstable in levels 8 and 9. Furthermore, Fig-
ure 3(b) reveals that rate at which blocks are read ex-
hibits the same pattern of stability and fluctuation at
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One can see that there are fluctuations in levels 8 and 9.

levels 8 and 9. Looking at Figure 3(b) in detail, espe-
cially in levels 8 and level 9, it also reveals more fre-
quent interleavings between block reads and writes. For
levels 1 through 4, there are just small fluctuations in
power consumption towards the end of the compres-
sion job. A similar pattern appears in the interleavings
between block reads and writes for level 1 to 4. More-
over, the stable response in levels 5, 6, and 7 suggests
an equally distributed interleavings between the rates
of blocks reads and writes. We believe that when block
reads and writes are interleaved beyond a certain level,
I/O scheduler algorithms (and possibly algorithms in-
side the disk) begin to break down and their efficiency
goes down considerably.

In Figure 4(a), the instantaneous power response is
relatively stable. In Figure 4(b), we can see clearly that
the rate of disk block reads is maintained at a stable
level, and the rate at which disk blocks are written is
equally distributed throughout the compression period.
This leads the instantaneous power response to be sta-
ble.

In Figure 5(a), the instantaneous power response fol-
lows a different pattern compared with the previous two

scenarios. We can see from Figure 5(b) that for the first
six levels, the I/O rate is much higher than in the re-
maining levels. However, the run is shorter in terms of
elapsed time, as we can see from the width of the ac-
tive intervals, and the interleavings between the rates of
block reads and writes are in some degree not equally
distributed across the compression level, resulting in
a few fluctuations towards the end of each compres-
sion level. For levels 8 and 9, since the interleavings
are equally distributed, the power response is relatively
stable. The fluctuations in level 7 suggest there exists
unequally distributed interleavings between the rates of
disk reads and writes.

An even more complicated example appears in Fig-
ure 6(a). In this scenario, random files are being com-
pressed and SATA is the persistent storage media. The
power response is extremely unstable in each compres-
sion level. The interleavings between the rates of block
reads and writes are ill regulated, as we can see from
Figure 6(b). This suggests that the harder the file to
compress is (e.g., high entropy), the less predictable
performance and energy consumption would be. There



 0

 50

 100

 150

 200

 0  200  400  600  800  1000  1200

P
ow

er
 (

W
at

ts
)

Time (s)

Bzip2, Text, H-Freq, SAS, CFQ

level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9

level 1 to 9

(a) Power consumption response for each level of compression of bzip2

 0

 50

 100

 150

 200

 0  200  400  600  800  1000  1200

N
um

be
rs

 o
f b

lo
ck

s 
pe

r 
se

c 
(1

00
0x

)

Time (s)

Bzip2, Text, H-Freq, SAS, CFQ

level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9

Block in
Block out

(b) Rate of block reads and writes for each level of compression of bzip2

Figure 4. Relationship between the rates of block reads/writes and power consumption of bzip2. The CPU
frequency is set to the highest frequency in the above experiments. One can see that the power response is stable for
each compression level.

 0

 50

 100

 150

 200

 0  200  400  600  800  1000  1200

P
ow

er
 (

W
at

ts
)

Time (s)

Lzop, Text, H-Freq, SAS, CFQ

level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9

level 1 to 9

(a) Power consumption response for each level of compression of lzop

 0

 50

 100

 150

 200

 0  200  400  600  800  1000  1200

N
um

be
r 

of
 b

lo
ck

s 
pe

r 
se

c 
(1

00
0x

)

Time (s)

Lzop, Text, H-Freq, SAS, CFQ

level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9

Block in
Block out

(b) Rate of block reads and writes for each level of compression of lzop

Figure 5. Relationship between the rates of block reads/writes and power consumption of lzop. The CPU
frequency is set to the highest frequency in the above experiments. One can see fluctuations from levels 1 to 7.



 0

 50

 100

 150

 200

 0  200  400  600  800  1000  1200

P
ow

er
 (

W
at

ts
)

Time (s)

Bzip2, Random, H-Freq, SATA, CFQ

level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9

level 1 to 9

(a) Power consumption response for each level of compression of bzip2 with SATA and random files

 0

 50

 100

 150

 200

 0  200  400  600  800  1000  1200

N
um

be
r 

of
 b

lo
ck

s 
pe

r 
se

c 
(1

00
0x

)

Time (s)

Bzip2, Random, H-Freq, SATA, CFQ

level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9

Block in
Block out

(b) Rate of block reads and writes for each level of compression of bzip2 with SATA and random files

Figure 6. An even more complex example. The CPU frequency is set to the highest frequency in the above
experiments. One can see large fluctuations during every compression level.

is no simple way to model systems exhibiting such
complex and diverse behavior.

We conclude that the power response exhibits insta-
bility in many cases. This contributes to the complexity
of the energy usage of the system and makes control-
ling a serious challenge.

6.3 Multi-Dimensionality

In this subsection, we illustrate the dependence of en-
ergy consumption on several factors, such as CPU fre-
quency, compression algorithm and level, file type, per-
sistent storage media, and disk I/O scheduler.

The compression algorithm is clearly an important
factor of energy consumption here, as we have already
seen in Figure 2. For example, bzip takes much longer
time to compress than lzop does. Thus, bzip usually
takes more energy to compress than lzop does.

One may assume that a lower CPU frequency will
result in lower energy consumption. However, as we
can see from Figures 7(a) and 7(b), that is not neces-
sarily true. With lower CPU frequency, the energy con-
sumption is actually increased for all the compression
levels. The reason behind is that when the CPU fre-
quency is lower, it takes longer to finish the compres-

sion, which generally results in a higher total energy
consumption. We can also see from Figure 7 that for
both the highest frequency and the lowest frequency,
the consumed energy increases as a function of com-
pression level. However, there is also a possibility that
when the CPU frequency is lower, the rate at which the
CPU compresses data in the blocks will be closer to
the rate at which the disk drive produces blocks. If this
happens, it can save energy at the end since there is no
wasted energy existed.

The disk I/O scheduler influences the order of disk
writes and hence may affect the energy consumption.

Figure 8 shows the energy consumption with 4 dif-
ferent I/O schedulers. We can see that anticipatory and
CFQ have largely the same effect, while deadline and
NOOP also have similar effect to each other but differ-
ent from anticipatory or CFQ. As the unit for the y axis
is Watt-hours, which is equal to 3,600 Joules, the differ-
ence in energy consumption between anticipatory and
CFQ is actually significant, especially for larger work-
loads.

The file affects different compression strategies for
each compression algorithm and hence plays a role
in energy consumption. The left column of Figure 9
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Figure 7. Energy consumption at the highest and lowest CPU frequencies
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Figure 8. Energy consumption under 4 different I/O schedulers

shows the energy consumption of the compression
workload for different file types. We see that the work-
load with binary files consumes more energy than the
workload with text files when other parameters are the
same; this makes sense because text files have more
common patterns that can be compressed (e.g., lower
entropy). Also for text and binary files, more energy
is consumed with compression level 9 than with other
compression levels. Surprisingly, for random files, level
8 turns out to be the most energy-consuming one, in-
stead of level 9. We conclude that file type affects the

energy consumption response in a way that is not easy
to predict.

Different disk types usually have different elec-
tronics and firmware, different physical features, and
different storage strategies. Therefore, this should af-
fect for energy consumption. The right column of Fig-
ure 9 shows the energy consumption of the compres-
sion workload for different persistent storage media.
As expected, SAS is generally faster than SATA, so
the workload runs faster and consumes less energy, ap-
proximately 5% less. SSD is the fastest storage media
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(f) Energy consumption of SSD

Figure 9. Energy consumption for different File types and disk types

among the three, consuming the least energy, approx-
imately 5% less than SAS and 10% less than SATA.
This is because an SSD contains no energy-consuming
moving parts by Equation 4, and stores data on non-
volatile flash memory chips using a Flash Translation
Layer (FTL) that allows the linear device to look like a
traditional disk. These results also show that the work-
load is not completely CPU bound, even though it is
CPU intensive.

In summary, we observe that the total energy con-
sumption of computer systems follows a complicated
pattern, because the energy consumption for each sub-
system will contribute to it. This suggests that instead
of trying to develop system-level energy models purely
in a bottom-up fashion, a more practical approach may

be to use knowledge-based machine-learning methods
in the development of such models to guide the design
of energy-aware systems.

7. Conclusions

Accurate models of energy consumption and perfor-
mance are vital for the design and implementation of
energy-efficient systems. Our detailed experimental re-
sults show that the behavior of these quantities is far
more complicated than one might expect, even for rel-
atively simple workload such as data compression. The
complexity is reflected in nonlinearity, instability, and
multi-dimensionality. These factors must be considered
in the design of energy-efficient systems.



Although we have measured and analyzed the ef-
fects of several factors, there may be other important
factors to consider, depending on the system, such as
the workload itself, and even the server- and machine-
room temperatures.

8. Future Work

Software systems often perform poorly because of poor
handling of dynamic changes in workloads and re-
sources (e.g., due to failures). The problem of dynamic
changes exists in many engineering disciplines, such as
aeronautic, electrical and mechanical engineering [17].
Feedback control theory [10, 26, 30, 34, 42, 43] has
been proven effective in the design of some energy-
efficient computer systems. We plan to apply control
theory to complex software systems that can balance
performance and energy consumption given user pref-
erences.

In order to achieve that goal, we first need to build
our knowledge of the energy and performance of the
complex systems. Our critical measurements and anal-
ysis of energy and performance patterns will in the
end help building better energy-aware software sys-
tems, better schedulers [3, 27, 38], better operating sys-
tems and even better controllers [11]. We plan to in-
vestigate techniques to overcome the non-linearity of
systems, by exploring linearization techniques such as
segmenting a behavior into groups where each group
can be modeled linearly, and combining the groups us-
ing a state machine. We have already begun to explore
the design of controllers that can handle multiple in-
puts, multiple outputs, and multiple internal states (e.g.,
MIMO).

There are several directions for future work on mea-
surement and modeling of energy consumption. Cur-
rently, we can only measure the energy consumption
of the entire system. However, in some situations, it
may be desirable to measure, model, and control en-
ergy consumption of individual components, such as
the CPU, the disk drive [40] and so on.

To better understand the dependence of the energy
consumption of file compression on the file contents,
we plan to generate and use files of the same type but
with different specified entropy levels [13].

Moreover, since it is so tedious to measure the en-
ergy consumption under so many different scenarios,
we plan to continue developing the auto-ebench tool-
set mentioned in Section 5 to automate energy bench-

marking, similar to what auto-pilot [36] does to auto-
mate file system benchmarking. We plan to enhance
auto-ebench to support additional features such as con-
fidence intervals, automatic detection of memory leaks,
and intelligent results analysis.
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