Aspect-Oriented Instrumentation with GCC*

Justin Seyster!, Ketan Dixit!, Xiaowan Huang', Radu Grosu',
Klaus Havelund?, Scott A. Smolka!, Scott D. Stoller!, and Erez Zadok!

! Department of Computer Science, Stony Brook University
2 Jet Propulsion Laboratory, California Institute of Technology

Abstract. The addition of plug-in support in the latest release of GCC
makes it an attractive platform for runtime instrumentation, as GCC
plug-ins can directly add instrumentation by transforming the compiler’s
intermediate representation. Such transformations, however, require ex-
pert knowledge of GCC internals. To address this situation, we present
the INTERASPECT program-instrumentation framework, which allows in-
strumentation plug-ins to be developed using the familiar vocabulary of
Aspect-Oriented Programming pointcuts, join points, and advice func-
tions. INTERASPECT also supports powerful customized instrumentation,
where specific information about each join point in a pointcut, as well
as the results of static analysis, can be used to customize the inserted
instrumentation. We introduce the INTERASPECT API and present sev-
eral examples that illustrate how it can be applied to useful runtime
verification problems.

1 Introduction

GCC is a widely used compiler infrastructure that supports a variety of input
languages, e.g., C, C++, Fortran, Java, and Ada, and over 30 different tar-
get machine architectures. GCC translates each of its front-end languages into
a language-independent intermediate representation, called GIMPLE, which then
gets translated to machine code for one of GCC’s many target architectures.
GCC is a very large software system with over 100 developers contributing over
the years and a steering committee consisting of 13 experts who strive to main-
tain its architectural integrity.

In earlier work [5], we extended GCC to support plug-ins, allowing users to
add their own custom passes to GCC in a modular way without patching and
recompiling the GCC source code. Released in April 2010, GCC 4.5 [12] includes
plug-in support that is largely based on our design.

GCC’s support for plug-ins presents an exciting opportunity for the devel-
opment of practical, widely-applicable program transformation tools, including
program instrumentation tools for runtime verification. Because plug-ins operate

* Research supported in part by AFOSR Grant FA9550-09-1-0481. Part of the re-
search described herein was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space
Administration.

2 Justin Seyster et al.

at the level of GIMPLE, a plug-in is applicable to all of GCC’s front-end languages.
Transformation systems that manipulate machine code may also work for mul-
tiple programming languages, but low-level machine code is harder to analyze
and lacks the detailed type information that is available in GIMPLE.

Implementing instrumentation tools as GCC plug-ins provides significant
benefits but also presents a significant challenge: despite the fact that it is an
intermediate representation, GIMPLE is in fact a low-level language, requiring the
writing of low-level GIMPLE Abstract Syntax Tree (AST) traversal functions in
order to transform one GIMPLE expression into another. Therefore, as GCC is
currently configured, the writing of plug-ins is not for everyone but rather only
for those intimately familiar with GIMPLE’s peculiarities.

To address this challenge, we developed the INTERASPECT program instru-
mentation framework, which allows instrumentation plug-ins to be developed
using the familiar vocabulary of Aspect-Oriented Programming (AOP). IN-
TERASPECT is itself implemented using the GCC plug-in API for manipulating
GIMPLE, but it hides the complexity of this API from its users, presenting instead
an aspect-oriented API in which instrumentation is accomplished by defining
pointcuts. A pointcut denotes a set of program points, called join points, where
calls to advice functions can be inserted by a process called weaving.

INTERASPECT’s API allows users to customize the weaving process by defin-
ing callback functions that get invoked for each join point. Callback functions
have access to specific information about each join point; the callbacks can use
this to customize the inserted instrumentation, and to leverage static-analysis
results for their customization.

In summary, INTERASPECT offers the following novel features when com-
pared to existing AOP and program instrumentation frameworks:

— INTERASPECT builds on top of GCC, a compiler infrastructure having a
large and dedicated following.

— INTERASPECT exposes an API, which encourages and simplifies open-source
collaboration.

— INTERASPECT has access to GCC internals, which allows one to exploit static
analysis and meta-programming during the weaving process.

To illustrate the practical utility of the INTERASPECT framework, we have
developed a number of program-instrumentation plug-ins that use INTERASPECT
for custom instrumentation. These include a heap visualization plug-in for antic-
ipated use by the JPL Mars Science Laboratory software development team; an
integer range analysis plug-in that finds bugs by tracking the range of values for
each integer variable; and a code coverage plug-in that, given a pointcut and test
suite, measures the percentage of join points in the pointcut that are executed
by the test suite.

The rest of the paper is structured as follows. Section 2 provides an overview
of GCC and the INTERASPECT framework architecture. Section 3 introduces the
INTERASPECT API. Section 4 presents the three applications: heap visualization,
integer range analysis, and code coverage. Section 5 summarizes related work,
and Section 6 concludes the paper.

Aspect-Oriented Instrumentation with GCC 3

2 Overview of GCC and the INTERASPECT Architecture

cco, L
GIMPLE | [RTL | iassemby
i | Passes |:

C++ Code' iGIMPLE :

:: _ GIMPLE GIMPLE
] : ;| Pass Pass

Java Codeé
: Front-end ’ Middle-end Back-end
Plug-in Plug-in
Pass Pass

+ Java Parser
Fig. 1. A simplified view of the GCC compilation process.

)

As Fig. 1 illustrates, GCC translates all of its front-end languages into the
GIMPLE intermediate representation for analysis and optimization. The resulting
GIMPLE code then gets compiled to assembly. Each transformation on GIMPLE
code is split into its own pass. As shown in Fig. 1, these passes, including those
provided by GCC plug-ins, are part of GCC’s middle-end.

GIMPLE is a C-like three-address (34) code. Complex expressions (possibly
with side effects) are broken into simple 3A statements by introducing new, tem-
porary variables. Similarly, complex control statements are broken into simple
3A (conditional) gotos by introducing new labels. Type information is preserved
for every operand in each GIMPLE statement.

Fig. 2 shows a C program and its corresponding GIMPLE code, which preserves
source-level information such as data types and procedure calls. Although not
shown in the example, GIMPLE types also include pointers and structures.

int main() { 1. int main {
int a, b, c; 2. int a, b, c;
a = b5; 3. int T1, T2, T3, T4;
b =a+ 10; 4. a = b5;
c =b + foo(a, b); => 5. b =a+ 10;
if (a > b + ¢) 6. T1 = foo(a, b);
c=b++ / a+ (b *x a); 7. c=b+ Ti;
bar(a, b, c); } 8. T2 = b + c;
9. if (a <= T2) goto fij;
10. T3 =b / a;
11. T4 = b * a;
12. c =T3 + T4;
13. b=D>b+1;

14. fi: bar (a, b, c); }

Fig. 2. Sample C program and corresponding GIMPLE representation.

INTERASPECT architecture. INTERASPECT works by inserting a pass that first
traverses the GIMPLE code to identify program points that are join points in a
specified pointcut. For each such join point, it then calls a user provided weaving
callback function, which can insert calls to advice functions. Advice functions
can be written in any language that will link with the target program.

4 Justin Seyster et al.

Unlike traditional AOP systems which implement a special AOP language to
define pointcuts, INTERASPECT provides a C API for this purpose. We believe
that this approach is well suited to open collaboration. Extending INTERASPECT
with new features, such as new kinds of pointcuts, does not require agreement
on new language syntax or modification to parser code. Most of the time, col-
laborators will only need to add new API functions.

As Fig. 3 illustrates, INTERASPECT can further serve as the instrumenta-
tion backend for a traditional AOP specification language. The specification
compiler’s job is to split an AOP specification into pointcut definitions, as-
sociated weaving instructions, and advice code. The first two are sent to an
INTERASPECT-based weave module for evaluation during the instrumentation
plug-in pass, whereas the advice code is sent to GCC for compilation.

i GCC i

Middle-end

Front-end Back-end

AOP Spec Source File

Plug-in

InterAspect Weave
Framework Module

Specification
Compiler

Weaving Instructions —

Fig. 3. Architecture of the INTERASPECT instrumentation framework for GCC.

3 The INTERASPECT API

This section describes the functions in the INTERASPECT API, most of which
fall naturally into one of two categories: (1) functions for creating and filtering
pointcuts and (2) functions for examining and instrumenting join points. Note
that users of our framework can write plug-ins solely with calls to these API
functions; it is not necessary to include any GCC header files or manipulate any
GCC data structures directly.

Creating and filtering pointcuts. The first step for adding instrumentation
in INTERASPECT is to create a pointcut using a match function. Our current
implementation supports the four match functions given in Table 1, allowing one
to create four kinds of pointcuts.

Aspect-Oriented Instrumentation with GCC 5

struct aop_pointcut *aopmatch_function_entry();
Creates pointcut denoting every function entry point.
struct aop_pointcut *aopmatch_function_exit();
Creates pointcut denoting every function return point.
struct aop.pointcut *aopmatch_function.call();
Creates pointcut denoting every function call.
struct aop_pointcut *aopmatch_assignment_by_type(struct aop_type *type);

Creates pointcut denoting every assignment to a variable or memory location that matches a type.

Table 1. Match functions for creating pointcuts.

Using a function entry or exit pointcut makes it possible to add instrumen-
tation that runs with every execution of a function. These pointcuts provide a
natural way to put instrumentation at the beginning and end of a function the
way one would with before-execution and an after-returning advices in a tradi-
tional AOP language. A call pointcut can instead target calls to a function. Call
pointcuts can instrument calls to library functions without recompiling them. For
example, in Section 4.1, a call pointcut is used to intercept all calls to malloc.

The assignment pointcut is useful for monitoring changes to program values.
For example, we use it in Section 4.1 to track pointer values so that we can
construct the heap graph. We plan to add several new pointcut types, including
pointcuts for conditionals and loops. These new pointcuts will make it possible
to trace the complete path of execution as a program runs, which is potentially
useful for profiling and symbolic execution.

After creating a match function, a plug-in can refine it using filter functions.
Filter functions add additional constraints to a pointcut, removing join points
that do not satisfy those constraints. For example, it is possible to filter a call
pointcut to include only calls that return a specific type or only calls to a certain
function. Table 2 summarizes filter functions for call pointcuts.

void aop_filter_call_pc_by name(struct aop_pointcut *pc, const char *name);
Filter to calls of functions with a given name.

void aop_filter_call_pc_by_param_type(struct aop_pointcut *pc, int n, struct aop_type *type);
Filter to calls of functions that have an nth parameter that matches a type.

void aop_filter_call_pc_by return_type(struct aop_pointcut *pc, struct aop_type *type);

Filter to calls of functions with a matching return type.

Table 2. Filter functions for refining function call pointcuts.

Instrumenting join points. INTERASPECT plug-ins iterate over the join
points of a pointcut by providing an iterator callback to the join function, shown
in Table 3. INTERASPECT then calls the iterator callback for each join point so
that it can examine the join point and instrument it with a call to an advice
function.

void aop_join_on(struct aop_pointcut *pc, join_callback callback, void *callback_param);

Supplied callback function with any data structure as callback_param.

Table 3. Join function for iterating over a pointcut.

6 Justin Seyster et al.

Callback functions use capture functions to examine values associated with a
join point. Capture functions expose two kinds of values: static values that are
known at compile time and runtime values that will not be known until program
execution time. Static values, such as the name of the variable assigned by an
assignment statement, are directly readable in the callback itself. The callback
cannot access runtime values, such as the values assigned by an assignment state-
ment, but it can pass them as parameters to advice functions, so that they are
available to instrumentation code at runtime. These runtime values are repre-
sented in the callback function as special aop_dynval objects. Capture functions
are specific to the kinds of join points they operate on. Tables 4 and 5 summa-
rize the capture functions for function-call join points and the assignment join
points, respectively.

const char *aop_capture_function_name(aop_joinpoint *jp);
Captures the name of the function called in the given join point.
struct aop.dynval *aop_capture_param(aop_joinpoint *jp, int n);
Captures the value of the n'" parameter passed in the given function join point.
struct aop_dynval *aop_capture_return.value(aop_joinpoint *jp);
Captures the value returned by the function in a given call join point.
Table 4. Capture functions for function call join points.

const char *aop_capture_lhs_name(aop_joinpoint *jp);
Captures the name of a variable assigned to in a given assignment join point, or returns NULL if
the join point does not assign to a named variable.
enum aop_scope aop-capture_lhs_var_scope(aop_joinpoint *jp);
Captures the scope of a variable assigned to in a given assignment join point. Variables can have
global, file local, and function local scope. If the join point does not assign to a variable, this
function returns AOP_MEMORY_SCOPE.
struct aop_dynval *aop_capture_lhs_addr(aop_joinpoint *jp);
Captures the memory address assigned to in a given assignment join point.
struct aop_dynval *aop_capture_assigned_value(aop_joinpoint *jp);
Captures the assigned value in a given assignment join point.
Table 5. Capture functions for assignment join points.

AOQOP tools like AspectJ [14] provide Boolean operators, such as and and or, to
refine pointcuts. The INTERASPECT API could be extended with corresponding
operations. Even without them, a similar result can be achieved in INTERASPECT
by including the appropriate logic in the callback. For example, a plug-in can
instrument calls to malloc and calls to free by joining on a pointcut with all
function calls and using the aop_capture_function_name facility to add advice calls
only to malloc and free. Simple cases like this can furthermore be handled by
using regular expressions to match function names, which will be added to the
framework

After capturing, a callback can add an advice function call before or after the
join point using the insert function of Table 6. The aop_insert_advice function
takes any number of parameters to be passed to the advice function at run-
time, including values captured from the join point and values computed during
instrumentation by the plug-in itself.

Aspect-Oriented Instrumentation with GCC 7

void aop.insert_advice(struct aop_joinpoint *jp, const char *advice_func_name,
enum aop_insert_location location, ...);
Insert an advice call, before or after a join point (depending on the value of location), passing any

number of parameters. A plug-in obtains a join point by iterating over a pointcut with aop_join_on.

Table 6. Insert function for instrumenting a join point with a call to an advice function.

Using a callback to iterate over individual join points makes it possible to
customize instrumentation at each instrumentation site. A plug-in can capture
values about the join point to decide which advice function to call, which pa-
rameters to pass to it, or even whether to add advice at all. In Section 4.2, this
feature is exploited to uniquely index named variables during compilation. Cus-
tom instrumentation code in Section 4.3 separately records each instrumented
join point in order to track coverage information.

Function duplication. INTERASPECT provides a function duplication facility
that makes it possible to toggle instrumentation at the function level. Although
inserting advice at the GIMPLE level creates very efficient instrumentation, users
may still wish to switch between instrumented and uninstrumented code for high-
performance applications. Duplication creates two or more copies of a function
body (which can later be instrumented differently) and redefines the function to
call a special advice function that runs at function entry and decides which copy
of the function body to execute.

When joining on a pointcut for a function with a duplicated body, the caller
specifies to which copy the join should apply. By only adding instrumentation to
one copy of the function body, the plug-in can create a function whose instrumen-
tation can be turned on and off at runtime. Alternatively, a plug-in can create a
function that can toggle between different kinds of instrumentation. Section 4.2
presents an example of using duplication to reduce overhead by sampling.

4 Applications

To demonstrate INTERASPECT’s flexibility, we present several example applica-
tions of the API. The plug-ins we designed for these examples provide instru-
mentation that is tailored to specific problems (memory visualization, integer
range analysis, code coverage). Though custom-made, the plug-ins themselves
are simple to write, requiring only a small amount of code.

4.1 Heap Visualization

The heap visualizer uses the INTERASPECT API to expose memory events that
can be used to generate a graphical representation of the heap in real time dur-
ing program execution. Allocated objects are represented by rectangular nodes,
pointer variables and fields by oval nodes, and edges show where pointer variables
and fields point.

8 Justin Seyster et al.

In order to draw the graph, the heap visualizer needs to intercept object
allocations and deallocations and pointer assignments that change edges in the
graph. Fig. 4 shows a prototype of the visualizer using Graphviz [2], an open-
source graph layout tool, to draw its output. The graph shows three nodes in a
linked list during a bubble-sort operation. Each node is labeled with its size, its
address in memory, and the addresses of its fields. Variables that point to NULL
or to an invalid memory location are drawn with a dashed border. Edges are
labeled with the line number of the assignment that created the edge, as well as
the number of assignments to the source variable that have occurred so far.

next
0X7FFF1675ACAO] Struct node
SOM.C:46 | 1392050 [16]

updates:5

next struct node* _
sort.c:55 0x1392038 sort.c:50 0x1392010 [16] L7 T~
updates:5 updates:3 (-next)
« 0x1392058
S °
sort.c:52 T
*pn .next .
OX7FFF1675ACBO sort.c:45 ox1392018)| updatesz
updates:5

curr
0x7FFF1675ACA8

Fig. 4. A visualization of the heap during a bubble sort operation on a linked list.

struct node*

ist
OX7FFF1675ACD8 sort.c:50 0x1392030 [16]
updates:3

._U .

The INTERASPECT code for the heap visualizer instruments each allocation
(call to malloc) with a call to the heap_allocation advice function, and it instru-
ments each pointer assignment with a call to the pointer_assign advice function.
These advice functions update the graph. Instrumentation of other allocation
and deallocation functions, such as calloc and free, is handled similarly.

The INTERASPECT code in Fig. 5 instruments calls to malloc. The func-
tion instrument_malloc_calls works by constructing a pointcut for all calls to
malloc and then calling aop_join_on to iterate over all the calls in the pointcut.
Only a short main function (not shown) is needed to configure GCC to invoke
instrument_malloc_calls during compilation.

The aop-match_function_call function constructs an initial pointcut that in-
cludes every function call. Additional filter functions narrow down the pointcut
so it includes only calls to malloc. First, aop_filter_call_pc_by_name filters out
calls to functions that are not named malloc. Then, aop_filter_pc_by_param_type
and aop_filter_pc_by_return_type filter out any calls to functions that do not
match the standard malloc prototype that takes an unsigned integer as the
zeroth parameter and returns a pointer value. This filtering step is necessary
because a program could define its own function with the name malloc but a
different prototype.

For each join point in the pointcut (in this case, a statement that calls
malloc), aop_join on calls malloc_callback. The two capture calls in the call-
back function return aop_dynval objects for the call’s first parameter and re-

Aspect-Oriented Instrumentation with GCC 9

static void instrument_malloc_calls()

{
/* Construct a pointcut that matches calls to: void *malloc(unsigned int). */
struct aop_pointcut *pc = aop_match_function_call();
aop_filter_call_pc_by_name(pc, "malloc");
aop_filter_call_pc_by_param_type(pc, O, aop_t_all_unsigned());
aop_filter_call_pc_by_return_type(pc, aop_t_all_pointer());

/* Visit every statement in the pointcut. */
aop_join_on(pc, malloc_callback, NULL);
}

/* The malloc_callback() function executes once for each call to malloc() in the target
program. It instruments each call it sees with a call to heap_allocation(). */
static void malloc_callback(struct aop_joinpoint *jp, void *arg)
{
struct aop_dynval *object_size;
struct aop_dynval *object_addr;

/* Capture the size of the allocated object and the address it is allocated to. */
object_size = aop_capture_param(jp, 0);
object_addr = aop_capture_return_value(jp);

/* Add a call to the advice function, passing the size and address as parameters.
(AOP_TERM_ARG is necessary to terminate the list of arguments
because of the way C varargs functions work.) */
aop_insert_advice(jp, "heap_allocation", AOP_INSERT_AFTER,
AOP_DYNVAL (object_size), AOP_DYNVAL(object_addr),
AOP_TERM_ARG) ;

Fig. 5. Instrumenting all memory allocation events.

turn value: the size of the allocated region and its address, respectively. Recall
from Section 3 that an aop_dynval serves as a placeholder during compilation for
a value that will not be known until runtime. Finally, aop_insert_advice adds
the call to the advice function, passing the two captured values. Note that IN-
TERASPECT chooses types for these values based on how they were filtered. The
filters used here restrict object_size to be an unsigned integer and object_addr
to be some kind of pointer, so INTERASPECT assumes that the advice function
heap_allocation has the prototype:

void heap_allocation(unsigned long long, void *);

To support this, INTERASPECT code must generally filter runtime values by type
in order to capture and use them.
The INTERASPECT code in Fig. 6 tracks pointer assignments, such as

list_node->next = new_node;

The aopmatch_assignment_by_type function creates a pointcut that matches as-
signments, which is additionally filtered by the type of assignment. For this
application, we are only interested in assignments to pointer variables.

For each assignment join point, assignment_callback captures address, the
address assigned to, and pointer, the pointer value that was assigned. In the
above examples, these would be the values of &list_node->next and new_node,

10 Justin Seyster et al.

static void instrument_pointer_assignments()
{
/* Construct a pointcut that matches all assignments to a pointer. */
struct aop_pointcut *pc = aop_match_assignment_by_type(aop_t_all_pointer());

/* Visit every statement in the pointcut. */
aop_join_on(pc, assignment_callback, NULL);

}

/* The assignment_callback function executes once for each pointer assignment.
It instruments each assignment it sees with a call to pointer_assign(). */
static void assignment_callback(struct aop_joinpoint *jp, void *arg)
{
struct aop_dynval *address;
struct aop_dynval *pointer;

/* Capture the address the pointer is assigned to, as well as the pointer address itself. */
address = aop_capture_lhs_addr(jp);
pointer = aop_capture_assigned_value(jp);

aop_insert_advice(jp, "pointer_assign", AOP_INSERT_AFTER,
AOP_DYNVAL (address) , AOP_DYNVAL(pointer),
AOP_TERM_ARG) ;

Fig. 6. Instrumenting all pointer assignments.

respectively. The visualizer uses address to determine the source of a new graph
edge and pointer to determine its destination.

The function that captures address, aop_capture_lhs_addr does not require
explicit filtering to restrict the type of the captured value because an address
always has a pointer type.

The value captured by aop_capture_assigned_value and stored in pointer has
a void pointer type because we filtered the pointcut to include only pointer
assignments. As a result, INTERASPECT assumes that the pointer_assign advice
function has the prototype:

void pointer_assign(void *, void *);

4.2 Integer Range Analysis

Integer range analysis is a runtime tool for finding anomalies in program behavior
by tracking the range of values for each integer variable [10]. A range analyzer
can learn normal ranges from training runs over known good inputs. Values that
fall outside of normal ranges in future runs are reported as anomalies, which
can indicate errors. For example, an out-of-range value for a variable used as an
array index may cause an array bounds violation.

Our integer range analyzer uses sampling to reduce runtime overhead. Missed
updates because of sampling can result in underestimating a variable’s range,
but this trade-off is reasonable in many cases. Sampling can be done randomly
or by using a technique like Software Monitoring with Controlled Overhead [18].

INTERASPECT provides function body duplication as a means to add instru-
mentation that can be toggled on and off. Duplicating a function splits its body

Aspect-Oriented Instrumentation with GCC 11

into two copies. A distributor block at the beginning of the function decides which
copy to run. An INTERASPECT plug-in can add advice to just one of the copies,
so that the distributor chooses between enabling or disabling instrumentation.

static void instrument_integer_assignments()
{

struct aop_pointcut *pc;

/* Duplicate the function body so there are 2 copies. */
aop_duplicate(2, "distributor_func", AOP_TERM_ARG);

/* Construct a pointcut that matches all assignments to an integer. */
pc = aop_match_assignment_by_type(aop_t_all_signed_integer());

/* Visit every statement in the pointcut. */
aop_join_on_copy(pc, 1, assignment_callback, NULL);
}

/* The assignment_callback function executes once for each integer assignment.
It instruments each assignment it sees with a call to int_assign(). */

static void assignment_callback(struct aop_joinpoint *jp, void *arg)
{

const char *variable_name;

int variable_index;

struct aop_dynval *value;

enum aop_scope sScope;

variable_name = aop_capture_lhs_name(jp);

if (variable_name != NULL) {
/* Choose an index number for this variable. */
scope = aop_capture_lhs_var_scope(jp);
variable_index = get_index_from_name(variable_name, scope);

aop_insert_advice(jp, "int_assign", AOP_INSERT_AFTER,
AOP_INT_CST(variable_index), AOP_DYNVAL(value),
AOP_TERM_ARG) ;

Fig. 7. Instrumenting integer variable updates.

Fig. 7 shows how we use INTERASPECT to instrument integer variable up-
dates. The call to aop_duplicate makes a copy of each function body. The first
argument specifies that there should be two copies of the function body, and the
second specifies the name of a function that the distributor will call to decide
which copy to execute. When the duplicated function runs, the distributor calls
distributor_func, which must be a function that returns an integer. The dupli-
cated function bodies are indexed from zero, and the distributor_func return
value determines which one the distributor transfers control to.

Using aop_join_on_copy instead of the usual aop_join_on iterates only over
join points in the specified copy of duplicate code. As a result, only one copy is
instrumented; the other copy remains unmodified.

The callback function itself is similar to the callbacks we used in Section 4.1.
The main difference is the call to get_index_from_name that converts the vari-
able name to an integer index. The get_index_from_name function (not shown for

12 Justin Seyster et al.

brevity) also takes the variable’s scope so that it can assign different indices to
local variables in different functions. It would be possible to directly pass the
name itself (as a string) to the advice function, but the advice function would
then incur the cost of looking up the variable by its name at runtime. This opti-
mization illustrates the benefits of INTERASPECT’s callback-based approach to
custom instrumentation.

The aop_capture_lhs name function returns a string instead of an aop_dynval
object because variable names are known at compile time. It is necessary to check
for a NULL return value because not all assignments are to named variables.

4.3 Code Coverage

A straightforward way to measure code coverage is to choose a pointcut and
measure the percentage of its join points that are executed during testing. IN-
TERASPECT’s ability to iterate over each join point makes it simple to label join
points and then track them at runtime.

static void instrument_function_entry_exit()
{

struct aop_pointcut *entry_pc;

struct aop_pointcut *exit_pc;

/* Construct two pointcuts: one for function entry and one for function exit. */
entry_pc = aop_match_function_entry();
exit_pc = aop_match_function_exit();

aop_join_on(entry_pc, entry_exit_callback, NULL);
aop_join_on(exit_pc, entry_exit_callback, NULL) ;
}

/* The entry_exit_callback function assigns and index to every join
point it sees and saves that index to disk. */
static void entry_exit_callback(struct aop_joinpoint *jp, void *arg)
{
int index, line_number;
const char *filename;

index = choose_unique_index();
filename = aop_capture_filename(jp);
line_number = aop_capture_lineno(jp);

save_index_to_disk(index, filename, line_number);

aop_insert_advice(jp, "mark_as_covered", AOP_INSERT_BEFORE,
AOP_INT_CST(index), AOP_TERM_ARG);

Fig. 8. Instrumenting function entry and exit for code coverage.

The example in Fig. 8 adds instrumentation to track coverage of function en-
try and exit points. To reduce runtime overhead, the choose_unique_index func-
tion assigns an integer index to each tracked join point, similar to the indexing of
integer variables in Section 4.2. Each index is saved along with its corresponding

Aspect-Oriented Instrumentation with GCC 13

source filename and line number by the save_index_to_disk function. The run-
time advice needs to output only the set of covered index numbers; an offline
tool uses that output to compute the percentage of join points covered or to list
the filenames and line numbers of covered join points. For brevity we omit the
actual implementations of choose_unique_index and save_index_to_disk.

5 Related Work

Aspect-oriented programming was first introduced for Java with AspectJ [8,14].
There, weaving takes place at the bytecode level. The AspectBench Compiler
(abc) [3] is a more recent extensible research version of Aspect] that makes
it possible to add new language constructs (see for example [4]). Similarly to
INTERASPECT, it manipulates a 3-address intermediate representation (Jimple)
specialized to Java.

AOP for other languages such as C and C++ has had a slower uptake.
AspectC [6] was one of the first AOP systems for C, based on the language
constructs of AspectJ. It does not seem to have been maintained since 2003.
ACC [15] is a more recent AOP system for C, also based on the language con-
structs of AspectJ. It transforms source code and offers its own internal compiler
framework for parsing C. It is a closed system in the sense that one cannot aug-
ment it with new pointcuts or access the internal structure of a C program in
order to perform static analysis.

The XWeaver system [17], with its language AspectX, represents a program
in XML (srcML, to be specific), making it language-independent. It supports
Java and C++ (and C as a subset of C+4). A user, however, has to be XML-
aware.

Aspicere [16], an aspect language for C, exists in two versions, an early ver-
sion operating on source code and a later version based on LLVM [20]. The
later version resembles INTERASPECT to some extent by working on an inter-
nal representation (LLVM bytecode). Its pointcut language is inspired by logic
programming. Adding new pointcuts comes down to defining new logic predi-
cates. The system does not seem to be maintained, and for example offers no
documentation beyond a Ph.D. thesis and papers on applications of the tools.

Arachne [7,9] is a dynamic aspect language for C and uses assembler manip-
ulation techniques to instrument a running system without having to pause it.
It is consequently not platform-independent. The last public release of Arachne
dates back to May 2005.

AspectC++ [19] is targeted towards C++. It can handle C to some extent,
but this does not seem to be a high priority for its developers. For example, it
only handles ANSI C and not other dialects. AspectC++ operates at the source-
code level and generates C++ code, which can be problematic in contexts where
only C code is permitted, such as in certain embedded applications. It is also
not clear what aspect constructs can be used for C, since they are originally
designed to work on C++4. AspectC++ appears to be the most mature and
industrial-strength of the C/C++ systems.

14 Justin Seyster et al.

In addition to AOP tools, various rather low-level but very mature tools ex-
ist for code analysis and instrumentation. These tools include, for example, the
BCEL [1] bytecode instrumentation tool for Java; and Valgrind [21] that works
directly with executables and consequently targets multiple programming lan-
guages. CIL [11] (C Intermediate Language) is an OCaml [13] API for writing
source-code transformations of its own 3-address code representation of C pro-
grams. The framework requires a user to be familiar with the less often used yet
powerful OCaml programming language.

6 Conclusions

We have presented INTERASPECT, a framework for developing powerful, cus-
tomizable runtime instrumentation plug-ins. The framework API simplifies plug-
in development by offering an AOP-based interface. Plug-in developers can easily
specify pointcuts to target specific program join points and then add customized
instrumentation at those join points. INTERASPECT-based plug-ins instrument
programs compiled with GCC, a suite of production compilers for a number of
popular languages, by modifying the GCC intermediate language, GIMPLE. We
presented an overview of the INTERASPECT API and described several example
plug-ins that demonstrate the framework’s ability to customize runtime instru-
mentation for specific applications.

As future work, we intend to add several new kinds of pointcuts to IN-
TERASPECT, allowing for more thorough instrumentation. In particular, we plan
to add pointcuts for all program control flow, including conditionals, loops, and
goto statements. Adding advice at these events would allow instrumentation
to trace a program run’s exact path of execution. Internally, we designed IN-
TERASPECT to be easily extensible; adding a new pointcut consists mostly of
writing a function that can search a function’s GIMPLE representation for state-
ments that belong in the pointcut.

INTERASPECT’s customizability makes it possible to use static-analysis re-
sults when adding instrumentation. Although a plug-in developer can obtain
these results from a separate static analyzer, INTERASPECT can include many
kinds of static-analysis queries directly in its API. For example, we plan to add
functions that can determine which join points are in potentially performance-
critical loops. We also intend to further investigate the use of INTERASPECT as
a platform for runtime verification, in particular, for specification-based moni-
toring.

References

1. BCEL. http://jakarta.apache.org/bcel.

2. AT&T RESEARCH LABS. Graphviz, 2009. http://www.graphviz.org.

3. AvGusTiNOV, P., CHRISTENSEN, A. S., HENDREN, L., KuziNs, S., LHOTAK, J.,
LHOTAK, O., DE MOOR, O., SERENI, D., SITTAMPALAM, G., AND TIBBLE, J. abc:
An extensible AspectJ compiler. In AOSDO05: Proceedings of the fourth interna-
tional conference on aspect-oriented software development (2005), ACM Press.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

Aspect-Oriented Instrumentation with GCC 15

BoODDEN, E., AND HAVELUND, K. Racer: Effective race detection using AspectJ.
In International Symposium on Software Testing and Analysis (ISSTA), Seaitle,
WA (2008), ACM, pp. 155-165.

CALLANAN, S., DEAN, D. J., AND ZADOK, E. Extending GCC with modular
GIMPLE optimizations. In Proceedings of the 2007 GCC Developers’ Summit
(Ottawa, Canada, July 2007).

. Coapy, Y., KiczaLes, G., FEELEY, M., AND SMOLYN, G. Using AspectC to

Improve the Modularity of Path-Specific Customization in Operating System Code.
In Joint 8th European Software Engineering Conference (ESEC) and 9th ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE) (2001),
pp- 88-98.

DOUENCE, R., Fritz, T., LORIANT, N., MENAUD, J.-M., SEGURA-
DEVILLECHAISE, M., AND SUDHOLT, M. An expressive aspect language for system
applications with Arachne. In Proceedings of the 4th international conference on
Aspect-oriented software development (2005), ACM Press.

The AspectJ project. http://wuw.eclipse.org/aspectj.

Arachne home page. http://www.emn.fr/x-info/arachne.

FE1, L., AND MIDKIFF, S. P. Artemis: Practical runtime monitoring of applica-
tions for errors. Tech. Rep. TR-ECE-05-02, Electrical and Computer Engineering,
Purdue University, 2005. docs.1ib.purdue.edu/ecetr/4/.

G. C. NEcULA AND S. MCPEAK AND S. P. RAHUL AND W. WEIMER. CIL: Inter-
mediate Language and Tools for Analysis and Transformation of C Programs. In
Proceedings of the 11th International Conference on Compiler Construction (Lon-
don, England, 2002), Springer-Verlag, pp. 213-228.

GCC 4.5 release series changes, new features, and fixes. http://gcc.gnu.org/
gcc-4.5/changes.html.

Objective Caml. http://caml.inria.fr/index.en.html.

KiczarLgs, G., HiLspaLg, E., Hugunin, J., KERSTEN, M., PALM, J., AND GRIS-
woLD, W. G. An Overview of AspectJ. Lecture Notes in Computer Science 2072
(2001), 327-355.

ACC home page. http://research.msrg.utoronto.ca/ACC.

Aspicere home page. http://sailhome.cs.queensu.ca/~bram/aspicere/index.
html.

RoHLIK, O., PASETTI, A., CECHTICKY, V., AND BIRRER, I. Implementing adapt-
ability in embedded software through aspect oriented programming. IEEFE Mecha-
tronics € Robotics (2004), 8590.

SEYSTER, J., CALLANAN, S., DixiT, K., HuanG, X., GROSU, R., SMOLKA, S. A.,
STOLLER, S. D., AND ZADOK, E. Software monitoring with controllable overhead,
2010. Submitted for publication.

SPINCZYK, O., AND LOHMANN, D. The design and implementation of AspectC++-.
Know.-Based Syst. 20, 7 (2007), 636-651.

The LLVM compiler infrastructure. http://11lvm.org.

Valgrind. http://valgrind.org.

