
Modular Refinement of Hierarchic Reactive Machines

Rajeev Alur Radu Grosu

Department of Computer and Information Science
University of Pennsylvania

email: alur,grosu@cis.upenn.edu
URL: www.cis.upenn.edu/~alur,grosu

Abstract

Scalable formal analysis of reactive programs demands inte-
gration of modular reasoning techniques with existing anal-
ysis tools. Principles such as abstraction, compositional re-
finement, and assume-guarantee reasoning are well under-
stood for architectural hierarchy that describes the commu-
nication structure between component processes, and have
been shown to be useful. In this paper, we develop the
theory of modular reasoning for behavior hierarchy that de-
scribes control structure using hierarchic modes. From Stat-
echarts to UML, behavior hierarchy has been an integral
component of many software design languages, but only syn-
tactically. We present the hierarchic reactive modules lan-
guage that retains powerful features such as nested modes,
mode reuse, exceptions, group transitions, history, and con-
junctive modes, and yet has a semantic notion of mode hi-
erarchy. We present an observational trace semantics for
modes that provides the basis for mode refinement. We
show the refinement to be compositional with respect to the
mode constructors, and develop an assume-guarantee rea-
soning principle.

1 Introduction

The complexity and subtlety of programming reactive sys-
tems, such as telecommunications and avionics software, de-
mands increased design automation and effective debugging
tools. Recent advances in formal verification have led to
powerful design tools for hardware (see [CK96] for a sur-
vey), and subsequently, have brought a lot of hope of their
application to reactive programming. The most successful
verification technique has been model checking [CE81]. In
model checking, the system is described by a state-machine
model, and is analyzed by an algorithm that explores the
reachable state-space of the model. The state-of-the-art
model checkers (e.g. Spin [Hol97] and Smv [McM93]) em-
ploy a variety of heuristics for efficient search, but are typ-
ically unable to analyze models with more than hundred
state variables. Consequently, application of formal veri-
fication requires augmenting model checking with modular

reasoning that allows decomposition of the analysis problem
into smaller subproblems, or abstracting a component into
a simpler one. Typically, such simplification is done man-
ually, and requires considerable expertise. Much of today’s
research in formal verification aims to develop techniques to
automate such modular reasoning.
To be able to exploit the design structure effectively for

modular reasoning, the modeling language must support
syntactically as well as semantically modular constructs.
While modern programming languages offer a rich set of
modular constructs (e.g. procedures, objects), the standard
model checkers assume the model to be a state-transition
graph (or a Kripke structure) with no structure. Our first
attempt to enrich the modeling language resulted in the
definition of reactive modules [AH99]. In this language,
an atomic module is a state-machine whose variables are
explicitly partitioned into input, output, and private vari-
ables. The operations of parallel composition, instantiation,
and variable hiding allow building complex modules from
atomic ones. The denotational semantics of each module
consists of its input and output variables, together with the
set of its traces, which captures the observable interaction
of a module with its environment. The notion of refine-
ment between two modules is based on inclusion of traces,
and provides the basis for abstraction. The refinement rela-
tion is compositional with respect to the module operations.
Thus, to show that the composite module P1‖P2 refines the
module Q1‖Q2, it suffices to establish that P1 refines Q1

and P2 refines Q2. While the compositional proof rule de-
composes the verification task of proving implementation
between compound modules into subtasks, it may not al-
ways be applicable. In particular, P1 may not implement
Q1 for all environments, but only if the environment be-
haves like P2, and vice versa. For such cases, we must em-
ploy the assume-guarantee proof rule which asserts that in
order to prove that P1‖P2 implements Q1‖Q2, it suffices
to prove (1) P1‖Q2 implements Q1, and (2) Q1‖P2 imple-
ments Q2. The language of reactive modules, along with
the assume-guarantee refinement checker, is supported by
the model checker Mocha [AHM+98], and the utility of
the assume-guarantee reasoning has been demonstrated in
analysis of a video-graphics image processor [HQR98]. The
notion of compositional refinement based on observable be-
haviors is central to many concurrency formalisms such as
CCS [Mil80], I/O automata [LT87], TLA [Lam91], but the
circular assume-guarantee reasoning [Sta85, GL94, AL95,
AH99, McM97] is valid only when the interaction of a mod-
ule with its environment is non-blocking.
While the reactive modules language supports architec-

tural hierarchy, it offers little structure to express the be-
havior of individual modules. In this paper, we present the
language of hierarchic reactive modules that supports both
architectural and behavioral hierarchy, along with its com-
positional semantics and assume-guarantee proof calculus.
The notion of behavior hierarchy was popularized by the in-
troduction of Statecharts [Har87], and exists in many re-
lated modeling formalisms such asModecharts [JM87] and
Rsml [LHHR94]. It is a central component of various object-
oriented software development methodologies developed in
recent years, such as Room [SGW94], and the Unified Mod-
eling Language (Uml [BJR97]). Such hierarchic specifica-
tions have many powerful primitives such as exceptions,
group transitions, and history, which lead to complex seman-
tics [HPSS87, PS91, HN96, GSB98]. There have been sev-
eral attempts to define a rigorous semantics of Statecharts
alone. Typically the semantics is defined operationally by
considering the global state of the system. In fact, multi-
ple papers offer a compositional semantics that is congruent
with the language constructs [US94]. However, the notion
of semantic equivalence used in all these papers is structural
isomorphism of underlying state-transition graphs (or bisim-
ilarity but with most of the structure visible), rather than
conventional observational equivalences. Also there have
been attempts to exploit the hierarchic states for efficient
reachability analysis [CAB+98, AY98, BLA+99]. However,
there is no observational semantics that allows defining a
refinement preorder on hierarchic states. Thus, we believe
that the notion of hierarchy in behavior descriptions has
been only syntactic so far, and our main contribution is to
make it semantic with a supporting refinement calculus.
The central component of the behavioral description in

our language is a mode. A mode consists of global variables
used to share data with its environment, local variables,
well-defined entry and exit points, and submodes that are
connected with each other by transitions. The transitions
are labeled with guarded commands that access the vari-
ables according to the the natural scoping rules. Note that
the transitions can connect to a mode only at its entry/exit
points, as in Room, but unlike Statecharts. This choice is
important in viewing the mode as a black box whose internal
structure is not visible from outside. The mode has a default
exit point, and transitions leaving the default exit are appli-
cable at all control points within the mode and its submodes.
The default exit retains the history, and the state upon exit
is automatically restored by transitions entering the default
entry point. Thus, a transition from default exit to entry
models a group transition applicable to all control points
inside. While defining the operational semantics of modes,
we follow the standard paradigm in which transitions are
executed repeatedly until there are no more enabled transi-
tions. Since the control can be simultaneously in multiple
nested modes, the order in which the transitions are tried
for execution is important. Unlike Statecharts, but as in
Room, the operational semantics tries the transitions inside
out, that is, we give priority to the internal transitions over
the group transitions of the enclosing mode. This choice is
also crucial for the clean denotational semantics. Our lan-
guage allows mode instantiation and thus, reuse.
Our denotational semantics of a mode consists of its

global variables, entry/exit points, and traces over global
variables that capture a mode’s behavior. The key step
leading to such semantics involves a closure construction
that adds transitions connecting the default points. This
construction makes the transfer of control between a mode
and its environment explicit. Consequently, the behavior of

a mode can be viewed as a game in which the environment
transfers control to the mode at one of its entry points, and
the mode transfers the control back to the environment at
one of its exit points. The macro-transition from an entry
point to an exit point, thus, consists of multiple transitions,
and can be constructed from the macro-transitions of the
submodes together with the transition relation of the mode.
The macro-transitions are then used to associate a set of
executions and a corresponding set of traces with a mode.
We show that the traces of a mode can be constructed from
the traces of its submodes.
The denotational trace semantics naturally leads to a no-

tion of refinement among modes based on inclusion of traces,
and provides the basis for mode abstraction and substitu-
tion. We show that the constructors are compositional with
respect to this refinement relation, and this leads to compo-
sitional proof rules for refinement. In particular, to establish
that a mode M with a submode N refines a mode M ′ with
submode N ′, it suffices to prove that (1) mode N refines
N ′, and (2) mode M with N substituted by a “free” mode
that allows most general update, refines mode M ′ with N ′

made free. Thus, compositional rule allows us to decouple
the reasoning about a submode from the reasoning about its
context. We also present a circular assume-guarantee proof
rule in which the specification context M ′ can be assumed
while establishing the first sub-goal, and the specification
submode N ′ can be used while establishing the second sub-
goal. For the validity of the rule, the refinement relation
needs to be strengthened to make the points of transfer of
control between a mode and the relevant submode visible.
Hierarchic languages such as Statecharts allow the no-

tion of conjunctive (parallel) states. We argue that conjunc-
tion can be defined cleanly as a constructor over submodes
such that a step of the constructed mode consists of a se-
quence of micro steps, one micro step for each submode.
We establish that such a conjunctive constructor is compo-
sitional with respect to refinement and that its trace seman-
tics is essentially the same as the trace semantics of the par-
allel composition constructor over modules. This suggests
a schme for mixing modes and modules interchangeably in
system descriptions.
The rest of the paper is organized as follows. In Section

2 we review reactive modules: their syntax, semantics and
refinement rules. In Section 3 we follow a similar pattern for
modes. We first introduce their syntax and then we define
their semantics and refinement rules. Section 4 is devoted
to conjunctive modes. First we define conjunction as a par-
ticular mode constructor. Then we show that conjunction
is compositional with respect to refinement and relate it to
module composition. Finally in Section 5 we draw some con-
clusions. During the entire paper, we use the specification of
a small village telephone system, inspired from [BGG+98],
as a working example to illustrate definitions.

Notation. Given a set V of typed variables, a state over
V is a function mapping variables to their values. The set of
states over V is denoted QV . Given a state s over V and a
subset W of V , s[W] denotes the state over W obtained by
restricting s to the variables in W . The projection operator
extends to sequences of states also. Given two sets V and
W of variables, an action from V to W is a binary relation
between the states over V and the states over W . An action
α from V to W is said to be enabled at a state s over V
if (s, t) ∈ α for some state t. An action α from V to W is
said to be non-blocking if it is enabled at every state over
V . The domain and range of an action can be expanded

c4

h4...
UserSpec

SystemSpec

h1 SelPartn

c1 ...

..

Conn4Conn1

..

h4h1

.. ..

..

..

..

..

..

c1c4

..

SystemSpec

p

Figure 1: Architecture diagrams for the VTS

implicitly in a natural way: if α is an action from V to W ,
s is a state over V ′ ⊇ V and t is a state over W ′ ⊇ W ,
then define (s, t) ∈ α if (s[V], t[W]) ∈ α and t[v] = s[v] for
v ∈ (V ′ ∩W ′) \W . This implicit coercion is quite common
and allows one to assume that the variables not explicitly
occuring in a transition remain unchanged.

2 Modules

A module is defined by the set of its variables, rules for ini-
tializing the variables, and rules for updating the variables.

Variables. The variables of a module P are partitioned
into three classes: private variables that cannot be read or
written by other modules, interface variables that are writ-
ten only by P , but can be read by other modules, and ex-
ternal variables that can only be read by P , and are written
by other modules. Thus, interface and external variables
are used for communication, and are called observable vari-
ables. The private and interface variables are written by the
module, and are called controlled variables.

Initialization and update. The initialization specifies
initial controlled states. The transition relation specifies
how to change the controlled state as a function of the cur-
rent state.

Definition 1 (Modules) A module P consists of

Variables. A finite set V of typed variables that is parti-
tioned into private variables Vp, interface variables Vi

and external variables Ve. The variables in Vc = Vp∪Vi

are called controlled variables, and the variables in
Vo = Vi ∪ Ve are called observable variables.

Initial states. A non-empty subset I of states over Vc.

Update relation. A non-blocking action U from V to Vc.

✷

Example 1 (Village telephone system) Consider a sim-
ple village telephone system that is able to establish a point-
to-point connection between any two telephone lines that are
disconnected and off hook. For simplicity, assume that the
system has only four lines. The block (architecture) diagram
for the system and and the users is shown in Figure 1, left.

To define and analyze the behavior of the village tele-
phone system, we associate each block in the diagram to a
reactive module with the interface shown in the diagram. A
high level definition of the environment is the UserSpec mod-
ule given below.

type hookType is {on, off}
lazy module UserSpec is

interface h1, h2, h3, h4 : hookType;

init
[] true -> h1 := on; h2 := on;

h3 := on; h4 := on;
update
[] h1 = on -> h1 := off;
[] h1 = off -> h1 := on;

[] h2 = on -> h2 := off;
[] h2 = off -> h2 := on;

[] h3 = on -> h3 := off;
[] h3 = off -> h3 := on;

[] h4 = on -> h4 := off;
[] h4 = off -> h4 := on;

In each update round it may toggle one of the four lines
between on and off. The choice is nondeterministic. By
making the module lazy it is also allowed to idle in a round,
i.e., to arbitrarily delay toggling. ✷

Semantics. For a module P , we use the notation P.Vp

to refer to the private variables of P , P.U to refer to the
transitions of P , etc. The semantics of a module is captured
by defining its executions and traces:

Definition 2 (Traces) An execution of a module P is a se-
quence s0s1 · · · sn of states over P.V such that s0[P.Vc] ∈ P.I
and (si, si+1[P.Vc]) ∈ P.U for 0 ≤ i < n. If σ is an execu-
tion of P , then the corresponding sequence σ[Vo] of observ-
able states is called a trace of P . The set of all traces of P
is called the trace-language of P , and is denoted LP . ✷

The denotational semantics of the module P is captured
by its interface variables, external variables, and trace lan-
guage. The requirement that I is non-empty and U is non-
blocking ensures that the module can always take a step,
and the trace-set LP is infinite.

Remark 1 (Awaits dependencies and sub-rounds) In
our definition, the initial values of the controlled variables
cannot depend on each other and in each update step, the
new values of the controlled variables cannot depend on the
new values of the external and controlled variables. Thus,
modules are like Moore machines. The definition of reac-
tive modules [AH99] allows specification of a partial order
— called awaits dependencies, over variables such that if a
variable x is greater than a variable y in this ordering, then
the initial value of x can refer to the initial value of y and the
update rule for x can refer to the updated value of y. This
allows more complex forms of interaction between a module
and its environment by splitting each update round into a

fixed number of sub-rounds. In this paper, we have chosen
a simpler model with no awaits dependencies for the sake of
clarity of presentation. ✷

Hierarchy. Operators on modules include instantiation,
hiding of interface variables, and parallel composition. Here,
we discuss the parallel composition operator that allows to
combine two modules into a single one.

Definition 3 (Parallel Composition)The modules P and
Q are composable if P.Vc ∩Q.Vc is empty. The composition
R of composable modules P and Q, denoted P‖Q, is the
module with:

Variables. The sets

R.Vi = P.Vi ∪Q.Vi

R.Ve = (P.Ve ∪Q.Ve) \R.Vi

R.Vp = P.Vp ∪Q.Vp

of interface, external and private variables.

Initial states. The set R.I = P.I ×Q.I.

Update relation. The relation R.U such that:

(s, t) ∈ R.U iff
(s[P.V], t[P.Vc]) ∈ P.U ∧
(s[Q.V], t[Q.Vc]) ∈ Q.U

✷

Note that the denotational semantics of P‖Q can be com-
pletely constructed from the denotational semantics of P
and Q. This is because a sequence σ belongs to the trace
language LP‖Q iff its corresponding projections belong to
the trace languages LP and LQ.

Example 2 (Village telephone system) A possible hier-
archic decomposition of the module SystemSpec is obtained
by introducing for each telephone line i a connection mod-
ule Conni. An additional module SelPartn is used to guide
the selection of the communication partner. This defines the
architecture shown by the block diagram in Figure 1, right.
The blocks marked with a thick arrow represent registers.
They separate the current state from the next state. The
specification of the module SelPartn is trivial. It nondeter-
ministically chooses one of the selection modes.

type matchingType is
{"1-2/3-4","1-3/2-4","1-4/2-3"}

module SelPartn is

interface p : matchingType;

init update

true -> p := nondet;

The specification of the connection module Conn1 is as fol-
lows. If the module is disconnected and its line is off hook,
then it chooses a partner connection module as specified by
the value of p, provided this partner module is also discon-
nected and its line is off hook. In this case it becomes con-
nected. If the current communication partner goes on hook
then the module goes in the drooping state. Finally, if its
own line goes on hook, then it becomes disconnected.

type connectionType is
{disconnected, 1, 2, 3, 4, drooping}

module Conn1 is

interface c1 : connType;

external c2,c3,c4 : connType;
external h1,h2,h3,h4 : hookType;
external p : matchingType;

init
[] true -> c1 := disconnected;

update
[] h1 = on -> c1 := disconnected;

[] c1 = 2 & h2 = on -> c1 := drooping;
[] c1 = 3 & h3 = on -> c1 := drooping;
[] c1 = 4 & h4 = on -> c1 := drooping;

[] c1 = disconnected & h1 = off &
c2 = disconnected & h2 = off &
p = "1-2/3-4" -> c1 := 2;

[] c1 = disconnected & h1 = off &
c3 = disconnected & h3 = off &
p = "1-3/2-4" -> c1 := 3;

[] c1 = disconnected & h1 = off &
c4 = disconnected & h4 = off &
p = "1-4/2-3" -> c1 := 4;

The other connection modules are specified in a similar way.
Composing the above modules gives the specification of the
entire system, as shown below.

module SystemSpec is
hide p in (Conn1 ‖..‖ Conn4 ‖ SelPartn)

module Spec is UserSpec ‖ SystemSpec
✷

Refinement. The notion of refinement between successive
levels of abstraction is formalized by the definition of the
implementation preorder:

Definition 4 (Implementation) A module P implements
a module Q, written P Q, if P and Q have identical in-
terface variables, identical external variables, and LP ⊆LQ.

✷

The above notion of implementation can be generalized in
a straightforward way to allow the implementation to have
more interface variables than the specification.
A key property of the implementation relation is com-

positionality which ensures that the refinement preorder is
congruent with respect to the module operations.

Proposition 1 (Compositionality)If P Q then P‖R
Q‖R.
By applying the compositionality rule twice and using the
transitivity of refinement it follows that, in order to prove
that a complex compound module P1‖P2 (with a large state
space) implements a simpler compound module Q1‖Q2 (with
a small state space), it suffices to prove (1) P1 implementsQ1

and (2) P2 implements Q2. We call this the compositional
proof rule for reactive modules. It is valid, because par-
allel composition and implementation behave like language
intersection and language containment, respectively.
While the compositional proof rule decomposes the veri-

fication task of proving implementation between compound
modules into subtasks, it may not always be applicable. In
particular, P1 may not implement Q1 for all environments,
but only if the environment behaves like P2, and vice versa.
For such cases, an assume-guarantee proof rule is needed
[Sta85, GL94, AL95, AH99]. The assume-guarantee proof
rule for reactive modules asserts that in order to prove that

M N

r
ea

q

cc

jk

read x, write y, local z

i h

d

p

f

g

dx

de

e

df

e1

e2

x1 x2

e2

e1

e3

e1

a
b

x3x2x1

m : N n : N

read-write z, local u

b

de

dx

Figure 2: Scoping rules and transition types

P1‖P2 implements Q1‖Q2, it suffices to prove (1) P1‖Q2

implements Q1, and (2) Q1‖P2 implements Q2. Both proof
obligations (1) and (2) typically involve smaller state spaces
than the original proof obligation, because the complex com-
pound module P1‖P2 usually has the largest state space in-
volved. The assume-guarantee proof rule is circular; unlike
the compositional proof rule, it does not simply follow from
the fact that parallel composition and implementation be-
have like language intersection and language containment.
Rather the proof of the validity of the assume-guarantee
proof rule proceeds by induction on the length of traces.
For this, it is crucial that every trace of a module can be
extended.

Proposition 2 (Assume-Guarantee) If P1‖Q2 Q1 and
Q1‖P2 Q2, then P1‖P2 Q1‖Q2.

The right hand sides of the refinement relation in the above
assume guarantee rule may be strengthen by using a small
variation of the rule: if P1‖Q2 Q1‖Q2 and Q1‖P2
Q1‖Q2, then P1‖P2 Q1‖Q2.

3 Modes

3.1 Syntax

Hierarchy. A mode has a refined control structure given
by a hierarchical state machine. It basically consists of a set
of submode instances connected by transitions such that at
each moment of time only one of the submode instances is
active. A submode instance has an associated mode and we
require that the modes form an acyclic graph with respect
to this association. For example, the mode M in Figure 2
contains two submode instances, m and n pointing to the
mode N.
By distinguishing between modes and instances we may

control the degree of sharing of submodes. Sharing is highly
desirable because submode instances (on the same hierarchy
level) are never simultaneously active in a mode. For exam-
ple, the submode instances m and n in Figure 2 share the
same mode N. Note that a mode resembles an or state in
Statecharts but it has more powerful structuring mecha-
nisms.

Variables. A mode may have global as well as local vari-
ables. The set of global variables Vg is used to share data
with the mode’s environment. The variables in Vg are clas-
sified into a set Vr of read variables and a set Vw of write
variables. Hence, Vg = Vr ∪Vw. The set of local variables Vl

of a mode is accessible only by its transitions and submodes.
Thus, the scoping rules for variables are as in standard

structured programming languages. For example, the mode
M in Figure 2 has the global read variable x, the global write
variable y and the local read-write variable z. Similarly, the

mode N has the global read-write variable z and the local
read-write variable u.
The transitions of a mode may refer only to the declared

global and local variables of that mode and only according
to the declared read/write permission. For example, the
transitions a,b,c,d,e,f,g,h,i,j and k of the mode M may
refer only to the variables x, y and z. Moreover, they may
read only x and z and write y and z.
The global and local variables of a mode may be shared

between submode instances if the associated submodes de-
clare them as global (the set of global variables of a submode
has to be included in the set of global and local variables of
its parent mode). For example, the value of the variable z
in Figure 2 is shared between the submode instances m and
n. However, the value of the local variable u is not shared
between m and n.

Entry/exit points. To obtain a modular language, we
require the modes to have well defined control points clas-
sified into entry points (marked as white bullets) and exit
points (marked as black bullets). For example, the mode
M in Figure 2 has the entry points e1,e2, e3 and the exit
points x1,x2,x3. Similarly, the mode N has the entry points
e1,e2 and the exit points x1,x2.
The transitions connect the control points of a mode and

of its submode instances to each other. For example, in
Figure 2 the transition a connects the entry point e2 of the
mode M with the entry point e1 of the submode instance
m. The entry and exit points of a transition are attributes
that a drawing tool may optionally show or hide to avoid
cluttering. For example, the endpoints of the transition c
are not shown explicitly in Figure 2.
According to the points they connect, the transitions of

a mode may be classified into entry, internal and exit tran-
sitions. For example, in Figure 2, a,d are entry transitions,
h,i,k are exit transitions, b is an entry/exit transition and
c,e,f,g,j are internal transitions. Between these transi-
tions there is a subtle difference. Entry transitions initialize
the local variables by reading only the global variables. Exit
transitions forget the values of the local variables and write
only the global variables. The internal transitions only may
both read and write the local variables.

Preemption. To model preemption each mode (instance)
has a special, default exit point dx. A transition starting at
dx is called a preempting or group transition of the corre-
sponding mode. It may be taken whenever the control is
inside the mode and no internal transition is enabled. For
example, in Figure 2, the transition f is a group transition
for the submode n.
To achieve the preempting behavior we add for each in-

ternal exit point a default exit transition (from this point
to dx) that is enabled when all other transitions starting in

drooping

connected

read h1, h2, h3, h4
read c2, c3, c4
read-write c1

Conn1

read p disconnected off3
off4

connected

on

off2

ini

ron3

ron2

ron4

off2 2

3off3

4off4

dx

write c1
read h2, h3, h4

Figure 3: The mode Conn1

this point are disabled. These transitions are not explicitly
drawn. They are implicit in the semantics of a mode.
For example, if the current control point is q inside the

submode instance n and neither the transition b nor the
transition f is enabled, then the control is transferred to the
default exit point dx. If one of e or f is enabled and taken
then it acts as a preemption for n.
Hence, inner transitions have a higher priority than the

group transitions, i.e., we use weak preemption (like the weak
kill in Unix, versus the strong kill -9). This priority
scheme facilitates a modular semantics.

History. To allow history retention, we use a special de-
fault entry point de. A transition entering the default entry
point of a mode restores the values of all local variables along
with the position of the control (a transition may enter a de-
fault entry of a mode only if the mode was most recently left
along its default exit).
For example, both transitions e and g in Figure 2, enter

the default entry point de of n. The transition e is called
a self group transition. A self group transition like e or
more generally a self loop like f,p,g may be understood as
an interrupt handling routine. While a self loop may be
arbitrarily complex, a self transition may do simple things
like counting the number of occurrences of an event (e.g.,
clock events).
Similarly to preemption, to achieve the above behavior

we semantically add default entry transitions from the de-
fault entry point de of a mode m to its internal points. The
default exit transitions save the current point in a local, his-
tory variable m.h and the default entry transitions restore
the current control point from this variable. A mode en-
riched with default entry and exit transitions is said to be
closed .

Remark 2 (Mode instantiation) A mode can be viewed
as an encapsulation operator over its submodes, and thus,
modes are constructed from leaf-modes using encapsulation
repeatedly in a non-recursive manner. Mode instantiation
allows reuse and sharing by permitting both to refer to the
same mode and to rename a (subset of) entry points, exit
points, read variables, and write variables. With mode in-
stantiation, the mode structure is a directed acyclic graph
and it can be exploited in an efficient way for model checking
[AY98]. To simplify the formal definitions in the following
we assume a tree like structure obtained by replacing each
instance by its corresponding mode. Moreover, we assume
that there are no name conflicts regarding local variables and
entry/exit points across modes. ✷

Now we are ready to present a formal definition of modes.

Definition 5 (Mode) A mode consists of

Control points. A finite set E of entry points, and a
finite set X of exit points. We also assume an addi-
tional default entry point de, and a default exit point
dx, and define dE = E ∪ {de}, and dX = X ∪ {dx}.

Variables. A finite set Vr of read variables, a finite set
Vw of write variables, and a finite set Vl of local vari-
ables. The variables Vg = Vr ∪ Vw are called global
variables. We assume that the sets Vg and Vl are dis-
joint (but the sets Vr and Vw need not be).

Submodes. A finite set SM of submodes. If N is a
submode in SM , then it is required that N.Vr ⊆ Vr∪Vl

and N.Vw ⊆ Vw ∪ Vl.

Transitions. A finite set T of transitions of the form
(e, α, x), where e is in E ∪ SM.X, x is in X ∪ SM.E,
and α is an action from Vr to Vr ∪ Vl if e ∈ E and
from Vr ∪ Vl to Vw ∪ Vl otherwise. We require that for
each e ∈ E, the union ∪α such that (e, α, x) ∈ T for
some x, is non-blocking.

✷

A leaf mode is a mode with no submodes and no local vari-
ables.

Example 3 (Village telephone system) By using modes,
the specification of the module UserSpec may be given as
shown in Figure 4. The modes toggle1,. . .,toggle4 are

UserSpec

...

toggle4
de dx

ini

read-write h1,...,h4

toggle1

allOn

toggle

read-write h

dxde

on2off

off2on

Figure 4: UserSpec for VTS

obtained from the mode toggle by renaming the variable h
with h1,. . .,h4 respectively. The unmarked transition con-
necting de to dx is the identity transition expressing idling.
The other transitions are defined as follows.

on2off
def
= h = on -> h := off

off2on
def
= h = off -> h := on

allOn
def
= h1 := on; h2 := on; h3 := on; h4 := on

The connection module Conn1 may be restated as a hierar-
chic mode as shown in Figure 3. Note that the default exit
point dx of the mode connected is the source point of the
transition on. The transitions are defined as follows.

on
def
= h1 = on -> c1 := disconnected

off2
def
= h1 = off &

h2 = off & c2 = disconnected &
p = "1-2/3-4" -> c1 := 2

off3
def
= h1 = off &

h3 = off & c3 = disconnected &
p = "1-3/2-4" -> c1 := 3

off4
def
= h1 = off &

h4 = off & c4 = disconnected &
p = "1-4/2-3" -> c1 := 4

ron2
def
= h2 = on -> c1 := drooping

ron3
def
= h3 = on -> c1 := drooping

ron4
def
= h4 = on -> c1 := drooping

✷

Note that by distinguishing between control and data, mode
diagrams are often more comprehensible than module speci-
fications. This may have an important impact if the control
structure is quite involved and this is the reason why hier-
archic state transition diagrams are so popular in software
engineering methods.
We use C to denote the set dE ∪ dX ∪SM.dE ∪SM.dX

of all control points. Pairs of the form (c, s), where c is a
control point and s is a state are called configurations. For
notational convenience, we view the set T of transitions also
as a binary relation over configurations: if (e, α, x) ∈ T and
(s, t) ∈ α, we write ((e, s), (x, t)) ∈ T .

3.2 Operational Semantics

The priority among transitions. In Figure 5, the exe-
cution of a mode, say n, starts when the environment trans-
fers the control to one of its entry points e1 or e2. The
execution of n terminates either by transferring the control
back to the environment along the exit points x1 or x2 or
by “getting stuck” in q or r as all transitions starting from
these leaf modes are disabled.
In this case the control is implicitly transferred to M along

the default exit point n.dx. Then, if the transitions e and f
are enabled, one of them is nondeterministically chosen and
the execution continues with n and respectively with p. If
both transitions are disabled the execution of M terminates
by passing the control implicitly to its environment at the
default exit M.dx. Thus, the transitions within a mode have
a higher priority compared to the group transitions of the
enclosing modes.

Default exit transitions. In any mode, some transition
leaving an entry point is guaranteed to be enabled, so ex-
ecution can get stuck only at an exit point of a submode.
In Figure 5 these points are explicitly drawn as black bul-
lets. To make the transfer of control explicit, we add default
exit transitions as follows. From an exit point x of a sub-
mode of M , we add a transition to the default exit point
dx that is enabled if and only if, all the explicit outgoing
transitions from x are disabled. If the actions are given by
guarded commands, and if g1, . . . ,gn are the guards of the

explicit transitions, the guard of the default transition is
¬(g1∨ . . .∨gn). For example, in Figure 5, the default exit
transitions starting in q and r have the guards ¬(gb∨gf) and
¬(ge ∨ gd) respectively, where gb, gd, ge, gf are the guards of
the transitions b,d,e,f, respectively. Similarly, the default
exit transition starting in n.dx has the guard ¬(ge ∨gf) and
the default exit transition starting in p has the guard ¬gg.
The other default exit transitions are not drawn to avoid
cluttering. Each default exit transition saves the local state
which is restored upon the subsequent entry to the default
entry point. To remember the location of control, we add
a new local variable h to a mode M and an action body to
each default exit transition (from an exit point x to dx) that
saves x in this history variable h.

Default entry transitions. The transitions entering the
default entry point of a mode M restore the local state.
Again, we introduce explicit default entry transitions to re-
store the location of control. For each default exit transition
from an exit x of a submode of M , there is a default entry
transition from de to x that is taken when the value of the
local history variable h coincides with x. If x was a default
exit point n.dx of a submode n then, as shown in Figure 5,
the default entry transition is directed to n.de. The reason
is that in this case, the control was blocked somewhere in-
side of n and default entry transitions originating in n.de
will restore this control.
Part of the closure of the mode M of Figure 2 is shown

in Figure 5. The closure construction is defined formally
below.

Definition 6 (Closure) LetM = (E,X, Vr, Vw, Vl, SM, T)
be a mode. The closure c(M) of M is defined to be M if SM
is empty, and is defined to be the mode (E,X, Vr, Vw, Vl ∪
{h}, c(SM), dT) containing a set of closed submodes c(SM)
where c(SM) = {c(m) | m ∈ SM} and a closed set dT of
transitions obtained by adding, for each exit x ∈ SM.dX,
the transitions (x,αx, dx) and (de, βx ,̃ x), where

• for x ∈ SM.X,˜x = x, and for x = N.dx,˜x = N.de,

• for states s and t, (s, t) ∈ αx iff t[h] = x, t[y] = s[y]
for y �= h, and for every transition (x, α, x′) in T , α is
disabled at s,

• for states s, (s, s) ∈ βx iff s[h] = x.
✷

Now we proceed to define the operational semantics. Intu-
itively, a round of the machine associated to a mode starts
when the environment passes the updated state along a
mode’s entry point and ends when the state is passed to
the environment along a mode’s exit point. All the internal
steps (the micro steps) are hidden. We call a round also a
macro step. Note that the macro step of a mode is obtained
by alternating its closed transitions and the macro steps of
the submodes.

Definition 7 (Operational semantics) For a modeM =
(E,X, Vr, Vw, Vl, SM, T), the set Vp of private variables is
defined to be the set Vl ∪ SM.Vp.

The set mT of macro-transitions consists of transitions
of the form (e, α, x) with e ∈ dE, x ∈ dX, and α is the
action from Vr to Vw ∪ Vp if e ∈ E and from Vr ∪ Vp to
Vw ∪ Vp otherwise, defined as follows.

Given the macro-transitions of the submodes of M , a
micro-execution of M is a sequence of the form

(e0, s0)→ (e1, s1)→ · · · → (en, sn)

of control points ei ∈ C and states si over Vg ∪ Vp such that

NM

r
ea

q

c

j i h

d

pe

d

e1e2

e1

e3

e1

a
b

m : N n : N b e2c

f

dx

de

dx

x1 x2 x3 de x1

de

dx x2

g

fdx

k de

Figure 5: Closed behavior diagrams

• for even i, the transition ((ei, si), (ei+1, si+1)) is in dT ,
and

• for odd i, the transition ((ei, si), (ei+1, si+1)) is in
SM.mT .

Given such an execution for an entry point e0 and an exit
point en of M , the macro-transition relation mT contains
((e0, s0), (en, sn)). ✷

In the above definition of micro-executions of a mode, the
states si are valuations to the variables Vg ∪ Vp, but only a
subset of these influence each step.
The operational semantics of a mode M consists of is

its control points, global variables, private variables, and its
macro-transitions.

Remark 3 (Consistency of modes) There are two well-
formedness requirements to ensure consistency. First, the
control should reach the default entry point of a submode only
when the submode was previously visited and exited along
its default exit point. Second, the number of micro-steps
constituting a macro-step should be bounded. The second
assumption is needed to ensure that there are no infinite
loops within a mode, so the control always is passed back
to the environment. These requirements can be enforced by
syntactic restrictions that can be checked by static analysis.

✷

A top-level mode is a mode M with a single entry point e
and no exit points. Such a mode can be viewed as a module
with private variables Vp, interface variables Vw, external
variables Vr\Vw, initialization specified by macro-transitions
from e to dx, and update specified by macro-transitions from
de to dx. For example, the mode Conn1 is a top-level mode.

3.3 Trace Semantics

The execution of a mode may be best understood as a game,
i.e., as an alternation of moves, between the mode and its
environment. In a mode move, the mode gets the state from
the environment along its entry points. It then keeps exe-
cuting until it gives the state back to the environment along
one of its exit points. In an environment move, the envi-
ronment gets the state along one of the mode’s exit points.
Then it may update any variable except the mode’s private
ones. Finally, it gives the state back to the mode along one
of its entry points.

Definition 8 (Denotational semantics) An execution of
a mode M is a sequence

(e0, s0)→ (x0, t0)→ (e1, s1)→ (x1, t1)→ · · · → (xn, tn)

of control points ei ∈ dE, xi ∈ dX with e0 in E and states
si and ti over Vg ∪ Vp such that for all i, ((ei, si), (xi, ti)) ∈
mT and si+1[Vp] = ti[Vp]. Given such an execution, the

corresponding trace ofM is obtained by projecting each state
to the set Vg of global variables. The set of traces of M
is denoted LM . The denotational semantics of a mode M
consists of its control points, global variables, and the set
LM of traces. ✷

Note that, for a top level mode, the environment is another
reactive module. For a lower level mode, the environment
may be a regular or a group transition.
In order to show that our trace semantics is composi-

tional, we need to be able to define the semantics of a mode
only in terms of the trace semantics of its submodes. Re-
call that an execution of a mode is obtained by alternating
between its macro-transitions and environment transitions.
A macro-transition of a mode is obtained by compressing a
micro-execution which in turn is obtained by alternating the
transitions of M with the macro-transitions of its submodes
(see Figure 6).

Definition 9 (Trace extraction) Given a sequence σ =
(e0, s0)(e1, s1) . . . (en, sn) of control points and states, and
a mode N , the restriction σ ⇑ N is the sequence obtained
from σ replacing each si by si[N.Vg], and by deleting pairs
(ei, si) if ei �∈ N.dE ∪N.dX. ✷

Lemma 1 (Trace construction) For a mode M , a se-
quence

(e0, s0)→ (x0, t0)→ (e1, s1)→ (x1, t1)→ · · · → (xn, tn)

of control points ei ∈ dE, xi ∈ dX with e0 in E and states si

and ti over Vg, is a trace iff for all i, there exits a sequence
(ei,0, si,0)(ei,1, si,1), . . . (ei,ni , si,ni) of states si,j over Vg∪Vp

and control points ei,j in C such that

1. ei,0 = ei, si,0[Vg] = si,

2. ei,ni = xi, si,ni [Vg] = ti,

3. si+1,0[Vp] = si,ni [Vp],

4. for all j, ((ei,2j , si,2j), (ei,2j+1, si,2j+1)) ∈ dT , and

5. for all submodes N , the restriction of the concatenated
sequence

(e0,0, s0,0)(e0,1, s0,1) . . . (e0,n0 , s0,n0)
(e1,0, s1,0)(e1,1, s1,1) . . . (e1,n1 , s1,n1)
· · ·

to N is a trace of N .

The above lemma is used to prove the following theorem:

Theorem 1 The set of traces of a modeM can be computed
from the set of traces of its submodes and its closed transition
relation dT .

env env

mTk mTl mTj...

... mT

...

mT

dT dT

mT

...dT dT dT dTdT dT dTdT SM

SM.X SM.E

dE

dX

SM.XSM.EmT

Figure 6: The traces of M

3.4 Refinement

The trace semantics leads to a natural notion of refinement
between modes: a mode M refines N if it has the same
global variables and control points, and every trace of M is
a possible trace of N .

Definition 10 (Refinement) A mode M and a mode N
are said to be compatible if M.Vr = N.Vr, M.Vw = N.Vw,
M.E = N.E and M.X = N.X. Given two compatible modes
M and N , M refines N , denoted M N , if LM ⊆ LN . ✷

For a finite index set I , we write {Mi | i ∈ I} {Ni | i ∈ I}
if Mi Ni for each i ∈ I . The refinement operator is
compositional with respect to the encapsulation:

Theorem 2 (Submode Compositionality)Given a mode
M = (E,X, Vr, Vw, Vl, SM, T) and suppose SM SN . Then
for N = (E,X, Vr, Vw, Vl, SN, T), M N .

The refinement rule is shown in a visual way in Figure 7,
left.

Example 4 (Village telephone system) A refinement
of the mode toggle is the mode ctoggle shown in Figure 8,
left. While in toggle, the switch to on is enabled whenever
h is off, in ctoggle the switch to on is enabled whenever
c is disconnected. The transitions of ctoggle are given

read-write h
read c

dxde

on2off

coff2on

...
de

ini
allOn

read c1,...,c4
read-write h1,...,h4

ctoggle UserImp

ctoggle1

ctoggle4
dx

Figure 8: An implementation of UserSpec
below.

on2off
def
= h = on -> h := off

coff2on
def
= c != disconnected -> h := on

To prove refinement, the additional read variable c may be
added to the mode toggle without any harm because it is not
read by this mode. In a more general setting, the refinement
rules would take additional variables into account.

Since ctoggle toggle we obtain by compositionality
and the fact that renaming does not change refinement that
UserImp UserSpec. ✷

If we consider a submodeN within a modeM , the remaining
submodes of M and the transitions of M can be viewed as

an environment for N . If we replace N by another submode
N ′, let the resulting mode be denoted M [N ′]. To show
that M [N ′] refines M [N], by the above theorem, it suffices
to establish that N ′ refines N . A dual question concerns
replacing the context M of N by some other context M ′

with possibly different transitions and/or other submodes.
To establish that M ′[N] refines M [N], we can replace N by
any submode that it refines,

Theorem 3 (Context Compositionality) LetM andM ′

be compatible modes with a common submode N . If M [N]
M ′[N] and N ′ N , then M [N ′] M ′[N ′].

This suggests the following compositional proof method. To
establish that M [N] refines M ′[N ′], we first show that N
refines N ′. Then, we can choose the most general mode with
the interface of N , namely, the one that puts no constraints
on the update of write-variables.

Definition 11 (Most General Submodes)Given the glo-
bal variables Vg = (Vr, Vw), entry points E, and exit points
X, the mode G(Vr, Vw, E,X) is defined to be the mode with
no private variables, and whose transitions contain all pairs
of the form ((e, s), (x, t)) for e ∈ dE, x ∈ dX, s is any state
over Vr and t is any state over Vw. ✷

Note that the mode G(Vr, Vw, E,X) is the most general
mode with the given data and control: verify that every
mode mode M refines G(M.Vr,M.Vw ,M.E,M.X). Thus, if
M [G] refines M ′[G], for G = G(N.Vr, N.Vw, N.E,N.X), we
can conclude that M [N] refines M ′[N]. A visual represen-
tation of this rule is shown in Figure 7, middle.
The compositionality rules allow us to decompose the

proof obligation into refinement of submodes in the most
general context, and refinement of context under the most
general submodes. Can we allow circular assume-guarantee
reasoning in the style of Proposition 2. Unfortunately, if
M [N ′] M ′[N ′] and M ′[N] M ′[N ′], we cannot conclude
thatM [N] M ′[N ′]. This is because in the trace-semantics
of the mode M [N], the interaction between the context M
and submode N is not observable. A modified definition of
refinement preserves interactions with a specified submode.

Definition 12 (Submode sensitive refinement) Let M
be a mode with a submode N . The trace-language LN

M is
defined so that for every trace

(e0, s0)(x0, t0)(e1, s1)(x1, t1) . . . (xn, tn)

of M , and for all micro-executions ρi of M from (ei, si) to
(xi, ti), the sequence

(e0, s0)(ρ0 ⇑N)(x0, t0)(e1, s1)(ρ1 ⇑N)(x1, t1). . .(xn, tn)

is in LN
M . Let M and M ′ be compatible modes, and let N

and N ′ be submodes of M and M ′, respectively, compatible
with each other. Then, M N M ′ iff LN

M ⊆ LN′
M′ . ✷

N’N

N’N <

M M
<

N’ N’<N’ N <N’ N’

N N’<N’

M M’

M M’ M’M’

N N

M M’
<

M M’
<G G

Figure 7: Compositional and assume/guarantee rules

Observe that if M N M ′, then M M ′. This stronger
refinement preorder supports circular assume-guarantee rea-
soning:

Theorem 4 (Assume Guarantee) LetM andM ′ be com-
patible modes, and let N and N ′ be submodes of M and M ′,
respectively, compatible with each other. Then, ifM [N ′] N′

M ′[N ′] and M ′[N] N′
M ′[N ′], then M [N] N′

M ′[N ′].

A visual representation of this rule is shown in Figure 7,
right.

4 Conjunctive Modes

The closure semantics of modes presented in the previous
sections is a very expressive setting in which we can de-
fine all the interesting parallel composition operators found
in the literature. Moreover, the user may define himself the
desired composition and can even mix different ways of com-
positions in the same setting. The main characteristics of
the semantics that allow us to do this are hierarchy, control
interfaces and the fact that closed modes never get “stuck”
and take “no time” to execute. In this setting, a module is
a top-like mode (with ini as the only regular control point)
that communicates with its environment via shared vari-
ables. In the following subsection we discuss the lock-step
parallel composition.

Lock-step parallel composition. In the lock-step com-
position, a round (macro step) of a composed mode consists
of a sequence of rounds of the submodes, one round for each
submode. The order of execution of the submodes is arbi-
trary and has no consequence on the trace semantics of the
composed mode. As a consequence, each linearization of the
submodes is a valid translation of the corresponding com-
posed module. A linearization that gives priority to the left
mode is shown in Figure 9, right. The associated module
diagram is given in Figure 9, left. Note that the module
diagram explicitly shows the communication variables. To

M N M’ N’

uR

read i1, i2

local o1’,o2’
write f1, f2
write o1, o2

local f1’,f2’, i

iSf1

f2

uS
iT

ini de

dx
o1

i1 i2

o2

f1

f2

uT

Figure 9: lock-step parallel composition

make sure that each mode in the sequence accesses the same
values of the variables, namely the values at the beginning
of the round, we have to latch the write variables. This is
easily accomplished as follows.

First, we add for each write variable of a submode a local
primed variable to the composed mode. The primed variable
is used to keep the current value, i.e., the value computed by
the submode in the current round. The entry transition uS
of the composed mode initializes the primed variables with
the value of the corresponding unprimed variables. The exit
transition uR assigns the value of the primed variable back
to the unprimed one.
Second, since the submodes were defined in terms of un-

primed variables, they have to be renamed such that each
occurrence of an unprimed write variable (even in read dec-
larations) is replaced by a primed variable. Note that only
one submode is renamed with respect to a write variable
because composability assures that the two submodes write
to disjoint sets of variables. In Figure 9 the renamed modes
are marked as primed.
To be able to distinguish between the initialization and

update rounds we also add a local variable i that is true
in the initialization rounds and false otherwise. This is
achieved by setting i to true and false in iS and uS respec-
tively and by guarding iT and uT by this value. Formally,
this is defined as follows.

Definition 13 (Lock-step composition) Given two top-
level modes M and N such that M.Vw∩N.Vw = ∅. The lock-
step composition M‖N of the modes M and N is defined as
follows.

Control points. The sets of entry and exit points dE =
{ini, de} and dX = {dx}.

Variables. The sets of Vw, Vr and Vl of write, read and
local variables defined as below.

Vw = M.Vw ∪N.Vw,
Vr = (M.Vr ∪N.Vr) \ Vw,
Vl = M.V ′

w ∪N.V ′
w ∪ {i}

Submodes. The set {M ′, N ′} where:
M ′ =M [M.V ′

w/M.Vw]
N ′ = N [N.V ′

w/N.Vw]

That is, M ′ is obtained from M by replacing, for each
variable x in M.Vw, every reference to x in M by x′.

Transitions. The set T of entry, internal and exit tran-
sitions:

T = {(ini, iS,M ′.ini), (de, uS,M ′.de)} ∪
{(M ′.dx, iT, N ′.ini), (M ′.dx, uT,N ′.de)} ∪
{(N ′.dx, uR, dx)}

where iS, uS, iT, uT and uR are defined as follows.

..

dx
de

dx

ini

SystemSpec

dx

SystemSpec

UserSpec

....

SelPartn

....

Conn1 SelPartnConn4..

ini de

dx

uS

uR

iT

uT

iT

uTuT

iT
iS

iS uS

iT uT

uR

..

Conn4Conn1

..

h4h1

.. ..

..

..

..

..

c1c4

..

ini de

p

UserSpec

ini de

h4h1 ..

c1 c4

Figure 10: Recursive translation of modules to modes

iT
def
= i = true -> skip

uT
def
= i = false -> skip

iS
def
= true -> i := true

uS
def
= true -> i := false; x

,
1 := x1;..; x

,
n := xn

uR
def
= true -> i := false; x1 := x

,
1;..; xn := x,

n

where x1..xn are the variables in Vw.

✷

From the above definition it follows easily that M M‖N
and that parallel composition is compositional with respect
to refinement.

Theorem 5 If M1 N1 and M2 N2 are top-like modes,
then M1‖M2 N1‖N2.

Remark 4 (Await dependencies) In the above theorem
we considered only Moore-like modules and their translation
to Moore-like modes. In general, reactive modules inMocha
allow to define a partial order (await dependencies) between
atomic modules called atoms such that the values computed
by an atom in a round may influence the values computed
by any atom greater in the partial order in the same round.
We can easily handle this in our setting by considering that
each submode in the composition has both an unprimed and a
primed copy of each variable. Similarly to the transitions of
a parallel mode, the submodes may then use both primed and
unprimed variables in their transitions. The partial order,
is nothing but a constraint that has to be satisfied by the
linearization of modes. Note that in this setting, one may
define events analogously to reactive modules. For example,
testing for the occurrence of an event e? is translated to e′ �=
e. Similarly, issuing an event e! is translated to e′ := ¬e. ✷

The lock-step composition of two top-level modes is essen-
tially the same as the parallel composition of the modules de-
fined by these modes. The only difference is of technical na-
ture: the modules assume that the environment is not writ-
ing on their interface variables while the modes do not make
this assumption for their write variables. This mismatch can
be easily handled by defining two operators: mode2module

and module2mode that convert top-level modes to modules
and reciprocally modules to modes.
The mode2module operation only adds the environment

assumption. Themodule2mode operation works recursively.
First it replaces each submodule by a submode that does not
impose the environment assumption. Then it replaces the
parallel composition of modules by the lock-step composi-
tion of modes. Since any atom in reactive modules is also
a mode, this gives an algorithm to completely convert any
module to a mode.

Example 5 (Village telephone system) The recursive
conversion of the village telephone system module (architec-
ture diagram) to a mode is shown in Figure 10. ✷

Hence, a module diagram may be regarded as a convenient
shorthand for a particular mode diagram. However, since
a module diagram shows the observable variables and their
sharing among modes, a module diagram is more convenient
for the representation of parallel modes. The fact that a
module diagram represents a mode allows us to integrate
module diagrams inside of mode diagrams and the other
way around. As a consequence, we can construct arbitrary
and/or hierarchies of mixed synchronous or asynchronous
components.
The construction of such hierarchies is an important step

towards modeling modern concepts like dynamical network
reconfiguration or mobility. For example, creating a new
process can be easily accomplished by a transition that takes
a module diagram into another module diagram that has an
additional module. To model mobility we also need to dis-
tinguish between location of computation modules and soft-
ware modules. It is important to note that this expressive
power comes together with a clean semantics that can be
used successfully in analysis.

Example 6 (Hot-lines) A possible implementation of the
module SystemSpec is by hot lines, as shown in Figure 11,
right. The mode definition of the module Line1 is shown in
Figure 11, left. The associated transitions are given below.
The definition of the module Line2 is similar.

all0
def
= true ->

c1 := disconnected; c2 := disconnected;

c3 c4h3 h4

h1 h2 c1 c2

Line1

Line2

SystemImp

0

Line1

3

6

4

h1off?

de

h2off? dx

h2on?

ini

h1on?

diDr2

5

7

2

1

c1disc

c2disc

all0

h1on?

conn1

c2disc

c1disc

h1off?

h2off?

h2on?

conn2 diDr1

Figure 11: Hot lines implementation

h1off?
def
= h1 = off -> skip;

h2off?
def
= h2 = off -> skip;

h1on?
def
= h1 = on -> skip;

h2on?
def
= h2 = on -> skip;

conn2
def
= h2 = off -> c1 := 2; c2 := 1;

conn1
def
= h1 = off -> c1 := 2; c2 := 1;

diDr1
def
= h1 = on ->

c1 := disconnected; c2 := drooping;

diDr2
def
= h2 = on ->

c2 := disconnected; c1 := drooping;

c2disc
def
= h2 = on -> c2 := disconnected;

c1disc
def
= h1 = on -> c1 := disconnected;

We would like now to prove by assume/guarantee reason-
ing that UserImp ‖ SystemImp UserSpec ‖ SystemSpec.
This can be done in a mixed module/modes setting or solely
in a modes setting by converting the above modules to modes.
In this case, we can use the assume/guarantee rule for modes.

Let SystemImpPar be the top level mode for the paral-
lel composition together with the mode for SystemImp and
SystemSpecPar be the top level mode for the parallel com-
position together with the mode for SystemSpec. Then we
have to prove that

SystemImpPar[UserSpec] SystemSpecPar[UserSpec]

SystemSpecPar[UserImp] SystemSpecPar[UserSpec]

It is easy to see that in this case the assume/guarantee rule
for modes is the same as the one for modules. ✷

5 Conclusions

The notion of hierarchy is useful for structuring architecture
of component connections as well as for describing behavior
of individual components. While architectural hierarchy has
been well understood in context of modular reasoning, there
has been no basis for modular reasoning about behavior hier-
archy. Existing languages for hierarchic state-machines have
complex operational semantics and no notion of observa-
tional refinement. We show that hierarchy can be preserved
in observational trace semantics even in presence of powerful
features such as mode hierarchy, exceptions, history reten-
tion, conjunctive modes, and mode reuse. Our language has

powerful rules for refinement of modes, and should provide
a basis for systematic development and formal analysis of
hierarchic descriptions.
The current proposal builds on our previous work on the

language of reactive modules and the toolkit Mocha that
supports assume-guarantee refinement checks. The opera-
tions of building a mode by connecting submodes, scoping of
local variables, and mode instantiation, are direct analogs of
parallel composition of modules, variable hiding, and mod-
ule instantiation, respectively. Indeed, the same graphical-
user-interface can be used for both the module diagrams and
mode diagrams. We have already started work on building
the GUI and a model checker for the hierarchic modules.
In the reactive modules language behavior is described

using the so-called atoms which roughly correspond to logic-
gates, and is already quite satisfactory for hardware appli-
cations. The hierarchic reactive modules extensions makes
it well suited for software applications as well. In fact, our
framework provides a coherent integration of the two types
of specifications, making it suitable for hardware/software
codesign.

Acknowledgments

We thank Manfred Broy, Carl Gunter, Tom Henzinger, Mi-
chael McDougall, Amir Pnueli, Bran Selic, Gheorghe Ste-
fanescu and Mihalis Yannakakis for fruitful discussions and
suggestions. Rajeev Alur is supported by DARPA/NASA
grant NAG2-1214, NSF CARRER award CCR-9734115, SRC
award 99-688, Sloan Faculty Fellowship, and Bell Laborato-
ries. Radu Grosu is supported by DARPA/NASA grant
NAG2-1214.

References

[AH99] R. Alur and T.A. Henzinger. Reactive modules. Formal
Methods in System Design, 15(1):7–48, 1999. Invited
submission to FLoC’96 special isuue. A preliminary ver-
sion appears in Proc. 11th LICS, 1996.

[AHM+98] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Raja-
mani, and S. Tasiran. MOCHA: Modularity in model
checking. In Proceedings of the 10th International Con-
ference on Computer Aided Verification, LNCS 1427,
pages 516–520. Springer-Verlag, 1998.

[AL95] M. Abadi and L. Lamport. Conjoining specifications.
ACM TOPLAS, 17:507–534, 1995.

[AY98] R. Alur and M. Yannakakis. Model checking of hierar-
chical state machines. In Proceedings of the Sixth ACM

Symposium on Foundations of Software Engineering,
pages 175–188. 1998.

[BGG+98] K. Bhargavan, C.A. Gunter, E.L. Gunter, M. Jackson,
D. Obradovic, and Pamela Zave. The village telephone
system: A case study in formal software engineering. In
Proceedings of 11th International Conference on Theo-
rem Proving in Higher-Order Logics TPHOLs98, 1998.

[BJR97] G. Booch, I. Jacobson, and J. Rumbaugh. Unified Mod-
eling Language User Guide. Addison Wesley, 1997.

[BLA+99] G. Behrmann, K. Larsen, H. Andersen, H. Hul-
gaard, and J. Lind-Nielsen. Verification of hierarchi-
cal state/event systems using reusability and composi-
tionality. In TACAS ’99: Fifth International Confer-
ence on Tools and Algorithms for the Construction and
Analysis of Software, 1999.

[CAB+98] W. Chan, R. Anderson, P. Beame, S. Burns, F. Mod-
ugno, D. Notkin, and J. Reese. Model checking large
software specifications. IEEE Transactions on Software
Engineering, 24(7):498–519, 1998.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis
of synchronization skeletons using branching time tem-
poral logic. In Proc. Workshop on Logic of Programs,
LNCS 131, pages 52–71. Springer-Verlag, 1981.

[CK96] E.M. Clarke and R.P. Kurshan. Computer-aided veri-
fication. IEEE Spectrum, 33(6):61–67, 1996.

[GL94] O. Grümberg and D.E. Long. Model checking and mod-
ular verification. ACM Transactions on Programming
Languages and Systems, 16(3):843–871, 1994.

[GSB98] R. Grosu, T. Stauner, and M. Broy. A modular visual
model for hybrid systems. In Formal Techniques in
Real Time and Fault Tolerant Systems (FTRTFT’98),
LNCS 1486. Springer-Verlag, 1998.

[Har87] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8:231–
274, 1987.

[HN96] D. Harel and A. Naamad. The statemate semantics
of statecharts. ACM Trans. Software Engin. Methods,
5(4):293–333, 1996.

[Hol97] G.J. Holzmann. The model checker SPIN. IEEE Trans.
on Software Engineering, 23(5):279–295, 1997.

[HPSS87] D. Harel, A. Pnueli, J. Schmidt, and R. Sherman. On
the formal semantics of statecharts. In Proc. 2nd IEEE
Symposium on Logic in Computer Science, pages 54–
64, 1987.

[HQR98] T.A. Henzinger, S. Qadeer, and S. Rajamani. You as-
sume, we guarantee: Methodology and case studies.
In CAV 98: Computer-aided Verification, LNCS 1427,
pages 521–525, 1998.

[JM87] F. Jahanian and A.K. Mok. A graph-theoretic approach
for timing analysis and its implementation. IEEE
Transactions on Computers, C-36(8):961–975, 1987.

[Lam91] L. Lamport. The temporal logic of actions. Techni-
cal report, DEC Systems Research Center, Palo Alto,
California, 1991.

[LHHR94] N.G. Leveson, M. Heimdahl, H. Hildreth, and J.D.
Reese. Requirements specification for process control
systems. IEEE Transactions on Software Engineerings,
20(9), 1994.

[LT87] N.A. Lynch and M. Tuttle. Hierarchical correctness
proofs for distributed algorithms. In Proceedings of the
Seventh ACM Symposium on Principles of Distributed
Computing, pages 137–151, 1987.

[McM93] K. McMillan. Symbolic model checking: an approach
to the state explosion problem. Kluwer Academic Pub-
lishers, 1993.

[McM97] K.L. McMillan. A compositional rule for hardware
design refinement. In Computer-Aided Verification
CAV’97, pages 24–35, 1997.

[Mil80] R. Milner. A Calculus of Communicating Systems.
LNCS 92. Springer-Verlag, 1980.

[PS91] A. Pnueli and M. Shalev. What is in a step: On the
semantics of statecharts. In Proc. Symposium on Theo-
retical Aspects of Computer Software, LNCS 526, pages
244–264, 1991.

[SGW94] B. Selic, G. Gullekson, and P.T. Ward. Real-time object
oriented modeling and design. J. Wiley, 1994.

[Sta85] E.W. Stark. A proof technique for rely-guarantee prop-
erties. In FST & TCS 85: Foundations of Software
Technology and Theoretical Computer Science, LNCS
206, pages 369–391, 1985.

[US94] A. Uselton and S. Smolka. A compositional semantics
for statecharts using labeled transition systems. pages
2–17, 1994.

