
APC 2005

Monte Carlo Methods for Process
Algebra

Radu Grosu and Scott A. Smolka

Dept. of Computer Science, Stony Brook Univ., Stony Brook, NY, 11794, USA
E-mail: {grosu,smolka}@cs.sunysb.edu

Abstract

We review the recently developed technique of Monte Carlo model checking and
show how it can be applied to the implementation problem for I/O Automata. We
then consider some open problems in applying Monte Carlo techniques to other
process-algebraic problems, such as simulation and bisimulation.

1 Introduction

Monte Carlo methods are often used in engineering and computer-science ap-
plications to compute an approximation of a solution whose exact computation
proves intractable. Example applications include belief updating in Bayesian
networks,computing the volume of convex bodies,and approximating the num-
ber of solutions of a DNF formula.

Recently, model-checking researchers have turned to Monte Carlo meth-
ods in order to cope with the problem of state explosion; see, for example,
[3,6,8,1]. In this paper, we review the Monte Carlo model-checking algorithm
of [1] and show how it can be applied to the implementation problem for
I/O Automata [4]. We then consider some open problems in applying Monte
Carlo techniques to other process-algebraic problems, such as simulation and
bisimulation.

2 Monte Carlo Model Checking

Monte Carlo model checking, introduced in [1], is a novel technique that uses
random sampling of lassos in a discrete Büchi automaton (BA) to realize a
one-sided error, randomized algorithm for LTL model checking. Our approach
makes use of the following idea from the automata-theoretic technique of Vardi
and Wolper [7] for LTL model checking: given a specification S of a finite-
state system and an LTL formula ϕ, S |= ϕ (S models ϕ) if and only if the
language of the Büchi automaton B = BS × B¬ϕ is empty. Here BS is the

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Grosu and Smolka

Büchi automaton representing S’s state transition graph, and B¬ϕ is the Büchi
automaton for the negation of ϕ. Call a cycle reachable from an initial state
of B a lasso, and say that a lasso is accepting if the cycle portion of the lasso
contains a final state of B. The presence in B of an accepting lasso means
that S is not a model of ϕ. Moreover, such an accepting lasso can be viewed
as a counter-example to S |= ϕ.

The LTL model-checking problem is thus naturally defined in terms of the
BA emptiness problem for B = BS ×B¬ϕ, which reduces to finding accepting
lassos in B. Instead of searching the entire state space of B for accepting
lassos, we successively generate up to M lassos of B on the fly, by performing
uniform random walks in B. If the currently generated lasso is accepting, we
have found a counterexample for emptiness, and we stop. The number M of
lassos we need to generate depends on to two parameters: the error margin ε
and the confidence ratio δ.

To determine M for given ε and δ we aim to answer, with confidence 1−δ
and within error ε, to the following question: how many independent lassos do

we need to generate until one of them is accepting? The answer is based on a
geometric random variable X and statistical hypothesis testing. The geometric
random variable is parameterized by a Bernoulli random variable Z (defined
later in this section) that takes value 1 with probability pZ and value 0 with
probability qZ = 1 − pZ . Intuitively, pZ is the probability that an arbitrary
lasso of B is accepting.

The cumulative distribution function of X for N independent trials of Z
is: F (N) = P[X ≤ N ] = 1 − (1 − pZ)N . Requiring that F (N) = 1 − δ yields:
N = ln(δ)/ ln(1 − pZ). Because pZ is what we want to determine, we assume
for the moment that pZ ≥ ε. Replacing pZ with ε yields M = ln(δ)/ ln(1 − ε)
which is greater than N and therefore P[X ≤ M ] ≥ P[X ≤ N ] = 1 − δ.
Summarizing:

pZ ≥ ε ⇒ P[X ≤ M ] ≥ 1 − δ where M = ln(δ)/ ln(1 − ε) (1)

Inequation 1 gives us the minimal number of attempts M needed to achieve
success with confidence ratio δ, under the assumption that pZ ≥ ε. The
standard way of discharging such an assumption is to use statistical hypothesis

testing.Define the null hypothesis H0 as the assumption that pZ ≥ ε. Rewriting
inequation 1 with respect to H0 we obtain:

P[X ≤ M |H0] ≥ 1 − δ (2)

We now perform M trials. If no counterexample is found, i.e., if X > M , we
reject H0. This may introduce a type-I error: H0 may be true even though we
did not find a counter-example. However, the probability of making this error
is bounded by δ; this is shown in inequation 3 which is obtained by taking the
complement of X ≤ M in inequation 2:

P[X > M |H0] < δ (3)

2



Grosu and Smolka

The Bernoulli random variable Z is associated with a uniform random
walk probability space (P(L),P). The sample space L is the set of all lassos
of B; La and Ln are the sets of all accepting and non-accepting lassos of B,
respectively.

The probability P[σ] of a lasso σ = S0e0 . . . Sn−1en−1Sn is defined induc-
tively as follows: P[S0] = k−1 if |S0| = k and P[S0e0 . . . Sn−1en−1Sn] =
P[S0e0 . . . Sn−1] · π[Sn−1en−1Sn] where π[S e S ′] = m−1 if (S, e, S ′) ∈ E and
|E(S)| = m.

Example2.1[Probability of lassos] Consider the Büchi automaton B of Fig-
ure 1. It contains four lassos, 11, 1244, 1231 and 12344, having probabilities
1/2, 1/4, 1/8 and 1/8, respectively. Lasso 1231 is accepting.

2 3 41

Fig. 1. Example lasso probability space.

Definition2.2[Lasso Bernoulli variable] The random variable Z associated
with the probability space (P(L),P) of a Büchi automaton B is defined as
follows: pZ = P[Z = 1] =

∑
λa∈La

P[λa] and qZ = P[Z = 0] =
∑

λn∈Ln

P[λn].

Example2.3[Lassos Bernoulli variable] For the Büchi automaton B of Fig-
ure 1, the lassos Bernoulli variable has associated probabilities pZ = 1/8 and
qZ = 7/8.

Having defined Z, X and H0, we are now ready to presentMC2, our Monte
Carlo decision procedure for emptiness checking of BA. Its pseudo-code is
given below, where rInit(B)=random(S0), rNext(B,S)=random(E(S)) and
acc(S,B)=(S∈ F).

MC2 algorithm

input: B = (S,S0, E, F); 0 < ε < 1; 0 < δ < 1.
output: Either (false, accepting lasso l) or (true, "P[X > M |H0] < δ")

(1) M := ln δ / ln(1 − ε);
(2) for (i := 1; i≤ M; i++) if (RL(B)==(1,l)) return (false,l);

(3) return (true,"P[X > M |H0] < δ");

The main routine consists of three statements, the first of which uses inequa-
tion 1 to determine the value for M , given parameters ε and δ. The second
statement is a for-loop that successively samples up to M lassos by calling the
random lasso (RL) routine. If an accepting lasso l is found, MC2 decides false
and returns l as a counter-example. If no accepting lasso is found within M
trials, MC2 decides true, and reports that with probability less than δ, pZ > ε.

3



Grosu and Smolka

The RL routine generates a random lasso by using the randomized init

(rInit) and randomized next (rNext) routines. To determine if the generated
lasso is accepting, it stores the index i of each encountered state s in HashTbl

and records the index of the most recently encountered accepting state in
variable f. Upon detecting a cycle, i.e., the state s := rNext(B,s) is in HashTbl,
it checks if HashTbl(s)≤ f; the cycle is an accepting cycle if and only if this
is the case. The function lasso() extracts a lasso from the states stored in
HashTbl.

Given a succinct representation S of a Büchi automaton B, one can avoid
the explicit construction of B, by generating random states rInit(B) and
rNext(B,s) on demand and performing the test for acceptance acc(B,s) sym-
bolically.

MC2 is very efficient. It runs in time O(MD) and uses O(D) space, where M
is optimal and D is B’s recurrence diameter (longest loop-free path starting
from an initial state).

3 The Implementation Problem for I/O Automata

An I/O Automaton (IOA) is a finite-state automaton whose transitions are as-
sociated with named actions, which are classified as input, output, or internal.
Input and output actions are used for communication with the automaton’s
environment, whereas internal actions are visible only to the automaton it-
self. The input actions are assumed not to be under the automaton’s control
(IOA are input-enabled, whereas the automaton itself controls which output
and internal actions should be performed. See [4] for the formal definition.

The implementation problem for I/O Automata (IOA) is the following.
Given IOA A and B, representing the implementation and specification of the
system under investigation, does A implement B (A ≤ B)? Now, A ≤ B
holds if L(A) ⊆ L(B); that is, the traces of A are a subset of the traces of B.
This in turn is equivalent to L(A×B) = ∅, where B is the complement of B.
Intuitively, if every observable behavior of A is an observable behavior of B
then no observable behavior of A is an observable behavior of B.

Specification IOA B can be viewed as a (input-enabled) Büchi automa-
ton by treating a subset of its states as accepting. IOA A can similarly be
viewed as a BA (all of whose states are accepting). Consequently, the IOA
implementation problem can be reduced to the language emptiness problem
for BA, and the MC2 Monte Carlo algorithm can be directly applied. A recent
paper [2] suggests how this can all be extended to the case of Timed I/O
Automata.

4 Open Problems

It would be interesting to extend our Monte Carlo approach to the model-
checking problem for branching-time temporal logics, such as CTL, the modal

4



Grosu and Smolka

mu-calculus, and Hennessy-Milner logic. This extension appears to be non-
trivial since the idea of sampling accepting lassos in the product graph will no
longer suffice. For the similar reasons, the problem of applying Monte Carlo
methods in deciding simulation [5] and bisimulation remains open.

References

[1] R. Grosu and S. A. Smolka. Monte Carlo model checking. In Proceedings of
TACAS 2005. Springer-Verlag, 2005.

[2] R. Grosu, S. A. Smolka, W. Tan, A. Bouajjani, M. D. Bozga, and S. Tripakis.
Monte Carlo model checking of timed automata, 2005. Submitted for
publication.

[3] T Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate
probabilistic model checking. In Proc. Fifth International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI 2004), 2004.

[4] N. Lynch and M. Tuttle. An introduction to input/output automata. CWI
Quarterly, 2(3):219–246, 1989.

[5] N. Lynch and F. Vaandrager. Forward and backward simulations I: untimed
systems. Inf. Comput., 121(2):214–233, 1995.

[6] K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of
stochastic systems. In K. Etessami and S. Rajamani, editors, Proc, of the 17th
International Conference on Computer Aided Verification, volume 3576 of LNCS.
Springer, 2005.

[7] M. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. IEEE Symposium on Logic in Computer Science, pages
332–344, 1986.

[8] H.L.S. Younes. Probabilistic verification for black-box systems. In K. Etessami
and S. Rajamani, editors, Proc. of the 17th International Conference on
Computer Aided Verification, volume 3576 of LNCS, pages 253–265. Springer,
2005.

5


	Introduction
	Monte Carlo Model Checking
	The Implementation Problem for I/O Automata
	Open Problems
	References

