
Relating Events, Messages and Methods
of Multiple-Threaded Objects

Ruth Breu, Radu Grosu

Institut für Informatik, TU München, D-80290 München
email:breur,grosu@informatik.tu-muenchen.de

Abstract. Events, messages and methods are concepts supported by
most object-oriented analysis and design techniques. The interrelation
between these concepts is however not yet fully understood and guide-
lines and techniques for method specification remain unprecise and in-
complete. In this paper we provide a simple object model which we use
both to clarify the above interrelation and to devise a method for spec-
ifying the dynamic behavior of objects. In a two layered approach, this
method integrates the description of the object’s life-cycles with the spec-
ification of the object’s methods. Our object model is characterized by
two important assumptions, namely that methods are virtual objects
and that messages sent to inexistent objects are returned back as an
error. Both assumptions are supported by practical evidence and allow
us to model internal concurrency, multiple threads and attribute sharing
in a very simple and elegant way. Our ideas are illustrated on a simple
banking example.

Keywords OO analysis, event, message, method, state transition diagram.

1 Introduction

Events, messages and methods are three central concepts for modeling the dy-
namic behavior of objects. Communication between objects by sending messages,
changes of object states caused by incoming events and interface design based
on methods are catchwords of object-oriented analysis and design.

However, in most frameworks like OMT [9], the Booch method [2] and the
forthcoming method UML [3] messages, events and methods are separate con-
cepts used in different parts and phases of system development. The interrelation
between these concepts remains often unclear and is left to the interpretation
of the system designer. In particular, the transition from high level event-based
descriptions to method specification and method implementation is hardly sup-
ported in current object-oriented analysis frameworks.

This lack of preciseness and support can cause severe problems within the
design of sequential systems. In environments where objects coexist and act in
parallel, guidelines and well-founded techniques for specifying methods are even
inevitable and a prerequisite for reliable system design.

The focus of our paper is to provide clear concepts and techniques for the
dynamic modeling of objects in such concurrent environments. The central de-
scription technique we rely on are state transition diagrams. Most object-oriented

analysis techniques offer some kind of state transition diagrams, often based on
Harel’s state charts [7].

State transition diagrams support an event-based design of objects. They
associate each object with a finite set of states and model state changes caused by
incoming events. We use a powerful variant of state transition diagrams in which
state transitions can be associated with outgoing events and state transitions can
be guarded by preconditions and followed by postconditions. The kind of state
transition diagrams we propose are well-founded and provided with a formal
semantics in a concurrent setting of objects [6, 4].

The notion of methods we conceive is more general than to be an equivalent to
procedures in a programming language. In our intuition, methods in the analysis
phase model high-level activities of objects. Examples for such methods are
the transfer of money in a bank or the reservation of a hotel room. In this
view, a general model of concurrently acting objects is inevitable since high-
level activities often are conceived to be parallel while their later realization is
sequential.

Concerning the design steps for developing a system description based on
state transition diagrams, we propose a two-layered technique. In a first stage, a
purely event-based description by state transition diagrams is developed. Events
are conceived as stimuli at a point in time causing reactions of the stimulated
object. The developed state transition diagrams in this stage define for each
object allowable sequences of incoming events.

In a second stage of the design, the reactions of an object initiated by
events are further specified. Roughly, each such kind of reaction corresponds
to a method and the initiating event corresponds to the call of the method. We
promote a specification of methods within the framework of state transition di-
agrams. This has two reasons. First, the use of a uniform framework supports
step-by-step design. Relations between different stages can be established and
checked. Second and even more important, in a general framework of concur-
rently acting objects methods generally cannot be modeled in an isolated way
but the whole object behavior has to be considered.

Our notion of an object is not limited to the view of a sequential machine
reacting to events subsequently. More general, object behavior may comprise
internal parallelism and simultaneous computation of methods. This general no-
tion of objects corresponds to modern object-oriented programming languages
like Java and is a prerequisite for modeling high-level activities of objects.

The structuring of the following sections is as follows. In section 2, we present
some general considerations about the notions of events, messages and methods
and sketch our two-layered technique for specifying the dynamic behavior of
objects. In the subsequent sections, this technique is applied in detail on a banks
and accounts example.

2 Objects, Events, Messages and Methods

Object-oriented techniques offer a variety of notions and concepts that are the
basis for comprehending and structuring the dynamic behavior of objects. These

notions inherently are based on two different views of objects and their commu-
nication with the outside. We call these views the communication view and the
interface view.

The Communication View In the communication view, objects communicate
with each other by sending messages. Messages are typed data values that are
exchanged by objects. The arrival of a message at some object is called an event.
Events are stimuli at some point of time that cause reactions of the stimulated
object.

In the sequel we will use the terms object communication behavior or event-
based specification when referring to specifications of dynamic object behavior
based on messages and events.

The best accepted technique for describing object communication behavior
are state transition diagrams. State transition diagrams are associated with single
objects describing state changes initiated by events. The kind of state transition
diagrams we use in our approach will be presented in the next sections.

The Interface View In the interface view, the communication between objects
is based on the notion of methods. A method is a service offered by an object to
its clients and calling a method is the only way a client can have access to an
object.

In contrast to the notions of message and event which are atomic entities
referring to a single point of time, methods can be rather complex processes
involving communication with other objects (called servers). In particular, each
method needs some period of time to complete. In our general setting of concur-
rent objects, methods do not have to be processed sequentially within an object,
but many methods can be executed in parallel. Moreover, different threads of an
object may involve the same method. For these reasons, we will present a tech-
nique which conceives methods as private virtual objects which act in parallel
with the methods’ owner.

Methods can be classified according to their complexity in three categories.
In the first category, the execution of a method involves only data local to the
object. As a consequence, no additional communication with server objects is
necessary. In the second category, the method initially performs some local com-
putation and subsequently delegates the further processing to some server ob-
ject. Finally, in the third category, the execution of a method involves a complex
interaction with server objects.

Current object-oriented analysis frameworks do not integrate the two views
of object behavior. As a consequence, it remains unclear how method specifica-
tions have to be interpreted within the overall object behavior. The subsequent
sections provide guidelines and techniques how an integration of the two views
can be achieved.

Interrelations between the two views A first simple observation is that
each method call is a message sent from the calling object to the called object
(this is, in fact, the Smalltalk terminology). The arrival of such a message at the

called object is an event and causes reactions. These reactions can be understood
as the execution of the corresponding method.

In a concurrent framework methods are typically accepted subsequently, but
handled in an overlapping, concurrent way. The transfer of money from one ac-
count to another in our banking example will be of this kind. Since the process of
transferring money takes time, the bank should be able to process many transfers
concurrently. As a consequence, methods cannot be specified in an independent
way but have to be integrated within the overall object communication behavior.

We pursue a two-layered technique for dynamic object specification integrat-
ing the event-based and the method-based view. The technique is intended to
give a rough guideline and intuition for the design of concurrently acting objects.

Step 1: For each class of objects a set of methods or input messages is identified.
Additionally, a state transition diagram is developed describing the input
behavior of the objects, i.e. the sequences of input messages the objects can
accept.

Step 2: The object reactions are further specified by refining the state transition
diagram resulting from the first step. Again, we can distinguish two substeps.
Substep 1: Each method is specified separately. Pre- and postconditions

describe the effect the method execution has on the object’s attributes,
and messages are specified which are sent to server objects. In this state,
typically, a set of further messages has to be introduced handling re-
turned values and failure information.

Substep 2: The method specifications are integrated in the state transition
diagram of the first stage giving the whole object behavior. It is in this
stage that the designer has to decide if methods are handled subsequently
or concurrently.

The Object Model A system is represented in our object model as a set of
interacting objects which are grouped into classes. Each class consists of a class
manager and a set of class instances.

One of our main assumptions is that messages sent to inexistent objects are
returned back as an error. This assumption is supported by most standards for
open distributed systems and it is assured by the communication medium. In an
object-oriented setting this responsibility can be spread among the class man-
agers if all the instance objects in a class are restricted to send their messages
through their associated class manager. However, we take a more decentralized
approach which simplifies the communication scheme. The class manager does
not create or destroy the instance objects and does not control their intercom-
munication. The class manager merely activates or deactivates instance objects
from a set of objects which already exist and which are parallely composed with
the class manager. Inactive objects only return an error message to each method
call.

The second assumption is that complex methods which require interaction
with other objects are modeled by private virtual objects which are also called
clerk objects. Similarly to real objects, the clerk objects associated to a method

already exist and act in parallel with the method’s owner which is also called
the organizer object. The organizer receives stimuli from the environment and
delegates their execution to the clerk objects. As a consequence, methods can act
in parallel and different threads for the same method are executed by different
clerks.

As usual, we classify the communication patterns between a client and its
server object in synchronous, asynchronous or delegating. Synchronous method
call means that the client sends the method call and waits for the answer. Asyn-
chronous method call means that the client may accept or send other messages
between the method call and the receiving of the answer. Delegating method call
means that the client sends a method call together with an address to which
the answer should be sent and proceeds. The modeling of these communication
protocols within the framework of state transition diagrams will be exemplified
in the following sections.

Note that our object model is a conceptual model which is very convenient
for the analysis or design phase because it is very simple. However, this model
does not prescribe the way objects and classes should be implemented. While
in the analysis or design phase it is not relevant if all potential objects are al-
ready created or if they are created as required, this is an important concern
for an efficient implementation. Similarly, while in the analysis phase it is less
relevant who returns an error if the addressed object does not exist, in an im-
plementation this is usually the concern of the communication medium. Finally,
a particular implementation could restrict the parallelism implied by the orga-
nizer/clerk paradigm.

The Banks and Accounts Example We illustrate our approach using a
banking system example (see the figure below). This system consists of a set of

Account a1,9999

CBank cb Bank b99Bank b1

Account a99,1 Account 99,9999aa1,1
...Account

concurrently acting banks. Each bank has an owner and a unique bank number
ranging between 1 and 99. Banks can be founded and liquidated, i.e. the banking
system has a dynamic structure.

The main task of a bank is to organize access to an associated set of accounts.
Each account belonging to a bank has an owner, a balance and a unique account
number ranging between 1 and 9999.

Clients can interact with a bank by opening and closing an account, by
crediting money to an account, debiting money to an account and transferring
an amount from one account to another account (possibly belonging to a different
bank). All transactions have to refer to existing banks and existing accounts.

The account and the bank objects will be specified in the following sections,
illustrating the design steps of our design method.

3 The Specification of Accounts

The specification of an account object identified by ac is given below. It consists
of an attribute declaration part and a state transition diagram. Attributes are
defined by their name, their type and (optionally) an initial value. An account
has two attributes: the owner name ow and the current amount am of money.

The state transition diagram has two purposes. First, it defines the interface
of the object as a set of input messages. The messages may have parameters
which can be missing in a first iteration. Second, the state transition diagram
defines the sequences of messages the object can receive. Account objects can be
in two states, the closed , i.e., the inactive state and the opened state, where closed
is the initial state (indicated by the small arrow). Each transition connecting two
states is associated with an input message and, optionally, with a precondition,
a postcondition and one or several output messages. In order to reduce the
complexity of the diagram, the transitions are given in tabular form. Each line
in the table is an annotation of the corresponding transition in the diagram.

attributes

ow = "" : Name
am = 0 : Int

transitions

credit

debit debit

credit
open

closed opened

close

name source dest in pre out post

open closed opened ac?open(o, a, r) r!ok ow′ = o, am′ = a

closed closed r!err
credit

opened opened
ac?credit(a, r)

r!ok am′ = am + r

closed closed r!err
am ≥ a r!ok am′ = am − rdebit opened opened ac?debit(a, r)
am < a r!lowBal

close opened closed ac?close r!ok

For example, if the account object ac is in the state opened and it receives
a debit message debit(a, r), written as ac?debit(a, r), where a is the amount to
be debited and r is the object to which the answer has to be sent, then if the
current balance am is greater than a an ok message is sent to r, written as r!ok,
and the current balance is decremented by a. The new balance is written as
am′ similarly to the Hoare calculus. In the other case, the error message lowBal
is returned. Strictly speaking, this specification corresponds to two (guarded)
transitions in the diagram, one for each precondition.

The reaction to the message credit is specified in a similar way. The message
open activates the account object and sets its initial amount and owner. All
methods on account objects are of the most primitive type involving internal
data solely.

The precondition (the guard) can be an arbitrary predicate over the at-
tributes and the input messages. The postcondition (the effect) can be an arbi-

trary predicate over the unprimed attributes, the primed attributes, the input
and the output. A transition is activated only if the input matches the input
pattern, the output matches the output pattern and both the precondition and
the postcondition are true.

Note that the state transition diagram of accounts is complete w.r.t. its meth-
ods credit and debit, i.e., account objects accept these methods in any state and
in any order. In a concurrent environment of objects completeness is an im-
portant property of state transition diagrams since servers cannot restrict their
clients to send specific message sequences. Completeness w.r.t. the class meth-
ods open and close, in contrast, has not to be required since these methods are
always sent by the class manager.

4 The Specification of Banks

Banks are complex objects whose methods not only require additional commu-
nication with servers but also can act in parallel. A bank is also a class manager
for account objects. Banks handle the transactions of the clients. In particular,
they manage the access to the accounts. Similarly, the central bank is the class
manager for the banks themselves. Since it does not present new aspects, the
specification of the central bank and the activation and deactivation of banks
is not presented in this paper. In the specification of the bank we make the
bookkeeping activity explicit. However, this behavior could be assumed to be
inherited from a predefined general class manager object.

4.1 Define Attributes and Input Messages (Step 1)

A bank has as attributes the bank’s owner ow, the account numbers of its active
accounts aA and the account numbers of the inactive accounts fA. The bank’s
identifier is bi.
attributes

ow = ”” : Name
aA = ∅ : Set Nat
fA = {i | 1≤i≤9999} : Set Nat

transitions

foundedliquidated

found

credit, debit, transferliquidatecredit, debit, transfer

open, close open, close

The attributes aA and fA allow the bank to keep track of its server objects.
The bank can receive the following input messages: found(o) – activate the bank
and set the owner to o, liquidate – perform some closing work and deactivate
the bank, open(o, a) – open an account with owner o and amount a, close(k) –
close the account k, credit(k, a) – credit the amount a to account k, debit(k, a)
– debit the amount a to the account k and transfer(f, b, k, a) – transfer the
amount a from account f to account k at bank b. These messages match exactly
the methods which a bank offers.

Additionally, a (complete) state transition diagram describing the states of
the bank and the input messages the bank can accept is given above. Again, for

brevity, the method arguments are ignored. The specification obtained in this
step is often called life-cycle specification.

4.2 Specify each Method Separately (Step 2.1)

In order to specify the bank reactions for each method we have to define first the
answer messages . Moreover, input messages in most cases have to be enhanced
by an answer address indicating the object a possible answer has to be sent to.
If the method requires no answer or if the return address can be derived from
other information, the return address can be omitted.

For bank objects we introduce the following answer messages: noAcc – a new
account cannot be opened, noAcc(b, k) – there is no account number k at bank b,
tansferOK – transfer has been successfully completed. In complex diagrams, it
is advantageous to keep tables associating the methods with their corresponding
input and output messages.

The behavior of the bank object in its inactive state liquidated is similar to
the behavior of the account object in its inactive state closed. We therefore do
not further describe it. In the state founded the methods open, close, credit and
debit can be specified as simple annotations to the corresponding transition of
the life-cycle diagram developed in the previous step. Their specification is given
in tabular form below, where the source and the destination state founded is
suppressed for brevity. The specification of the methods found and liquidate
can be given in an equivalent way to the open and close methods on accounts.

name in pre out post

fA = ∅ r!noAcc
fA′ = fA \ {k},

fA 	= ∅ ai,k!open(o, a, r),
aA′ = aA ∪ {k},open bi?open(o, a, r)

r!k
k = new(fA)

k 	∈ aA r!noAcc(bi, k)
aA′ = aA \ {k}close bi?close(k, r) k ∈ aA ai,k!close
fA′ = fA ∪ {k}

k 	∈ aA r!noAcc(bi, k)
credit bi?credit(k, a, r)

k ∈ aA ai,k!credit(a, r)

k 	∈ aA r!noAcc(bi, k)
debit bi?debit(k, a, r)

k ∈ aA ai,k!debit(a, r)

The methods open account and close account are class methods for the ac-
count objects. These methods change the active-accounts and the free-accounts
bank attributes and activate, respectively deactivate, the corresponding account
objects. The open method also returns the new account number k; new(fA) is
assumed to choose an element out of the set fA.

Note that the new account number k is not the identifier of the correspond-
ing account, because the accounts are private to the bank, i.e., they cannot be
addressed directly. We use ai,k to denote the identifier of account number k at
bank number i. The mapping a can be imagined as an encryption mechanism

which is private to the bank. Since the maximum number of active accounts is
limited in the problem statement, a call to open an account may also lead to
failure.

The methods credit and debit have a similar structure. If the given account
is not in the set of actual accounts, the message noAcc is returned. In the other
cases, the method is delegated to the corresponding object. Thus, referring to
the communication patterns sketched in section 2, the calls of the methods on
account objects in the above table are delegating method calls.

The methods specified so far did not comprise communication with servers
and thus could be specified as simple annotations to the life-cycle diagram. The
method transfer(f, b, k, a, r), in contrast, requires communication both with
the account f from which the amount a of money should be transferred and
with the bank b to which the money has to be transferred. The transfer method
thus involves a complex process described by a separate state transition diagram
given below.

{} t?ok / B!credit(K,A,t) {}

≠{m ok} t?m / F!credit(A,R), R!m {}

{m ok}≠
t?m / R!m
{}

idle

{(F’,B’,K’,A’,R’) = (f,b,k,a,r)}

{}
{} t?ok / R!transferOk {}

t?transfer(f,b,k,a,r) / f!debit(a,t)

Conceptually, each state transition diagram describes a clerk object with an
own state. This object is identified by an identifier variable which will be later
bound to the state transition diagram describing the whole object behavior. The
state of a clerk object provides the clerk with the data necessary to execute the
method.

In our example, the clerk object describing the transfer method is identified
by the variable t. It is defined by attributes corresponding to the parameters
of the method (denoted in capitals). Informally, for transferring an amount a
first a is withdrawn from the account f . If the withdrawal has been successful,
a message to the target bank b is sent for crediting a to the account k. If this
transaction has been successful, the message TransferOK is sent back to the
object identified by the return address r. In the other case, the money is credited
again to the account f . Moreover, in all failure cases, corresponding messages
are sent back to the return address r.

Note the simple and elegant way we cope with the subtle problem of object
deletion. Before the clerk object starts its execution, it is possible that both the
source and destination bank as well as the source and the destination accounts
have been deleted. In all these cases, the clerk object behaves in the expected,
well behaved way.

4.3 Integrate the Methods (Step 2.2)

Up to now the object input behavior and the reactions to input stimuli have
been specified in an isolated way. It is in this step that the two specifications

are integrated and the overall object behavior is described. We distinguish two
fundamental ways how the integration of methods can be handled.

Sequential execution: The object receives the call of the method and per-
forms the object reactions. After the method execution has been completed,
the object is able to receive the next input event.

Parallel execution: The object receives the call of the method and performs
the object reactions. Concurrently, the object is able to receive the next
input event.

Both kinds of method integration will be discussed below and techniques for the
integration of the respective state transition diagrams will be presented.

Parallel and sequential handling of methods only give a rough guideline for
the integration. Both techniques can be combined in a very flexible way. Since
each method is modeled separately, some methods may be executed concurrently,
while others may be executed sequentially. Moreover, sequential and parallel
execution can be combined within one method in the sense that in parts of the
method other input events may be received, whereas other parts of the method
are executed exclusively.

Parallel Execution Conceptually, state transition diagrams describe objects
as sequential machines. In this framework concurrent behavior is limited to the
view of these sequential machines acting in parallel. As we have discussed ear-
lier, conceiving objects as sequential machines is too constraining and in many
applications objects incorporate internal parallelism.

The transfer method in our banking system is a typical example for internal
parallelism within a single object. Since the communication with the destination
bank takes time (up to several days), the transferring bank of course cannot
be blocked for other transitions during this period. Thus, a bank receiving the
input stimulus to transfer money concurrently executes the transfer and is able
to receive new input stimuli. In order to cope with this kind of internal paral-
lelism, we let the bank be the organizer receiving input stimuli by other objects
and delegating their execution to transfer clerks. The transfer clerks have been
specified in step 2.1. Each transfer clerk t deals with one execution of the trans-
fer method. Thus, in step 2.2, it remains to complete the specification of the
organizing bank. This amounts to specify the delegation of the transfer method
given as an annotated transition of bank objects below.

name in pre out post

fT ′ = fT \ {t}
transfer bi?transfer(f, b, k, a, r) t!transfer(ai,f , b, k, a, r) aT ′ = aT ∪ {t}

t = new(fT)

Note that using the organizer/clerk paradigm many transfer transactions can
be executed in an overlapping way. In other words we can model both internal
concurrency and multiple threads. The bank keeps track of the active and inac-
tive transfer objects by holding the corresponding lists of identifiers aT and fT

as attributes. As a consequence, we have to add the following attribute declara-
tions.

aT = ∅ : Set TransferId
fT = {t | t ∈ TransferId} : Set TransferId

Concurrent behavior within a single object may lead to concurrent access to
the object’s data, i.e. its attributes. In our conviction the early phases of design
should be concerned with behavioral aspects of objects only and questions of
data access should be deferred to later stages of the design. In our approach
concurrent behavior within a single object is modeled by the introduction of
virtual clerk objects having an own state space. That way, attribute sharing is
replaced by message passing between organizers and clerks.

Sequential Execution Sequential execution of some method means that the
object receives the input message and subsequently executes the corresponding
method. After the execution has been finished, a new input message can be
received.

In the organizer and clerk objects paradigm, this amounts to a synchronous
communication between the organizer and the clerk object. The organizer object
delegates the execution of the method to the clerk object, but now waits for
the answer. By this kind of modeling, the modular specification of methods is
maintained.

waitfounded

i

ib ?m / r!m

i,f ib ?transfer(f,b,k,a,r) / t!transfer(a ,b,k,a,b)

The bank object sends a message to the transfer object giving its own identifier
for the return address. The answer is then forwarded to the object r. Note that
in this case, only one transfer object t has to be composed in parallel with the
bank object. Moreover, the identifier t of this object is a constant attribute of
the bank.

Banks as specified above receive the message to transfer money and handle
the whole transfer transaction before a new message can be received. During
the transfer transaction, the bank is blocked for other transactions. This kind
of modeling could be adequate if the banks are related by a fast electronic
connection.

Sequential and concurrent modeling of the transfer method could be com-
bined in such way that the organizing bank could perform the withdrawal from
the source account before it delegates the transaction to the clerk object. In this
sense, the two techniques integrating method specifications and object input be-
havior presented in this section just give a rough guideline how methods can be
combined and the overall object behavior is defined.

5 Conclusion

In the preceding sections we have presented a design method for modeling the
dynamic behavior of objects in the framework of state transition diagrams. The

presented concepts can be applied in various object oriented analysis frame-
works such as OMT or UML. A major focus has been the integration of method
specifications and object life-cycle specifications.

Based on a very simple and intuitive object model, object behavior may
include internal concurrency and multiple threads. Moreover, a technique for
modeling object creation in state transition diagrams has been presented. This
technique is both formally founded and easy to handle. We considered a general
notion of methods covering high-level activities of objects. In our approach these
methods are modeled by own objects.

Similar ideas have been discussed in the context of object-oriented business
process modeling. In [1] and [8], for instance, the modeling of business processes
either by methods or by own objects is compared. Our approach goes further
in the respect that the specification of high-level processes is integrated in the
overall object behavior and the distinction between modeling these processes by
methods or by own objects becomes superfluous.

Concerning the specification of methods, most analysis techniques suggest
the use of pre- and postconditions, e.g. [5] and [9]. Since the specification of
methods by pre- and postconditions requires methods to be atomic units, these
approaches do not consider inter-object communication within methods and thus
are limited to the design of sequential systems. In our approach, the use of pre-
and postconditions for modeling concurrent systems is enabled by associating
them with atomic events instead of complex methods.

Other analysis frameworks suggest the use of techniques describing inter-
object communication for specifying methods. Examples are the use of variants of
message sequence charts, e.g. in [9] or interaction diagrams [2]. These techniques
are aimed to specify exemplary behavior of methods and thus are not powerful
enough to describe the overall object behavior.

Nevertheless, diagrams describing inter-object communication are a valuable
technique since they support the description of chains of message calls. These
chains of message calls are distributed along the state transition diagrams of
the addressed objects and thus are modeled only implicitly in our approach. In
future work, we will therefore combine the two kind of techniques in order to give
the designer more freedom to model explicitly various aspects of object behavior.
Due to their expressive power and their semantic background, our framework of
state transition diagrams can serve as a basis for such an integration.

References

1. M. Bauer, C. Kohl, H.C. Mayr, and J. Wassermann. Enterprise modeling using
OOA techniques. In G. Chroust et al., editor, Proc. CON 94, Workflow Manage-
ment. Oldenbourg, 1994.

2. G. Booch. Object Oriented Design. The Benjamin/Cummings Publishing Company,
1991.

3. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language for
Object-Oriented Development, Version 0.9, 1996.

4. M. Broy, R. Grosu, and C. Klein. Reconciling real-time with asynchronous message
passing. Will appear in FME’97 Proceedings, September 1997.

5. D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremes.
Object-Oriented Development: The Fusion Method. Prentice-Hall International,
Inc., 1994.

6. R. Grosu, C. Klein, B. Rumpe, and M. Broy. State Transition Diagrams. Technical
Report TUM-I9606, Technische Universität München, June 1996.

7. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8:231–274, 1987.

8. G. Müller-Luschnat, W. Hesse, and N. Heydenreich. Objektorientierte Analyse und
Geschäftsvorfallsmodellierung. In H.C. Mayr and R. Wagner, editors, Objektorien-
tierte Methoden für Informationssysteme. Springer, 1993.

9. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object–
Oriented Modeling and Design. Prentice Hall, 1991.

This article was processed using the LATEX macro package with LLNCS style

