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Abstract

In this paper, we develop a theory of modular design and refinement of hierarchical hy-
brid systems. In particular, we present compositional trace-based semantics for the language
Charon that allows modular specification of interacting hybrid systems. For hierarchical de-
scription of the system architecture, Charon supports building complex agents via the op-
erations of instantiation, hiding, and parallel composition. For hierarchical description of the
behavior of atomic components, Charon supports building complex modes via the operations
of instantiation, scoping, and encapsulation. We develop an observational trace semantics for
agents as well as for modes, and define a notion of refinement for both, based on trace inclusion.
We show this semantics to be compositional with respect to the constructs in the language.

1 Introduction

We present an approach for hybrid modeling of complex reactive systems. A hybrid system typi-
cally consists of a collection of digital programs that interact with each other and with an analog
environment. Specifications of hybrid systems integrate state-machine models of discrete behavior
with differential equations for continuous behavior. This paper is about developing a formal and
compositional semantics of hybrid specifications. Formal semantics leads to definitions of semantic
equivalence (or refinement) of specifications based on their observable behaviors, and composition-
ality means that semantics of a component can be constructed from the semantics of its subcom-
ponents. Such formal compositional semantics is a cornerstone of concurrency frameworks such as
CSP [Hoa85] and CCS [Mil89], and is a prerequisite for developing modular reasoning principles
such as compositional model checking and systematic design principles such as stepwise refinement.

The salient aspect of the proposed approach is hierarchy. Modern software design paradigms
promote hierarchy as one of the key constructs for structuring complex specifications. We are con-
cerned with two distinct notions of hierarchy. In architectural hierarchy, a system with a collection
of communicating agents is constructed by parallel composition of atomic agents, and in behavioral
hierarchy , the behavior of an individual agent is described by hierarchical sequential composition.
The former hierarchy is present in almost all concurrency formalisms, and the latter, while present
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in all block-structured programming languages, was introduced for state-machine-based modeling
in Statecharts [Har87], and forms an integral part of modern notations such as UML [BJR97].

The main contribution of the paper is a formal compositional semantics for the language
Charon [AGH+00] with an accompanying compositional refinement calculus. The building block
for describing the system architecture is an agent that communicates with its environment via
shared variables. The language supports the operations of composition of agents to model con-
currency with synchronous interaction between agents, hiding of variables to restrict sharing of
information, and instantiation of agents to support reuse. The building block for describing flow
of control inside an agent is a mode. A mode is basically a hierarchical state machine, that is, a
mode can have submodes and transitions connecting them. We allow sharing of modes so that the
same mode definition can be instantiated in multiple contexts. Variables of a mode can be declared
locally inside any mode with standard scoping rules for visibility. Modes can be connected to each
other only via well-defined entry and exit points. Entry points allow us to distinguish between
different activation contexts and initialize the mode differently in different circumstances. Exit
points allow us to distinguish between normal and exceptional termination of mode executions. To
support interrupts, the language allows group transitions from default exit points that are appli-
cable to all enclosing modes, and to support history retention, the language allows default entry
transitions that restore the local state of a mode from the most recent interrupt. Discrete updates
are specified by guarded actions labeling transitions connecting the modes. Continuous updates
model passage of time. During a continuous update, some of the variables in Charon can evolve
according to constraints of three distinct kinds: differential constraints (e.g. by equations such
as ẋ = f(x, u)), algebraic constraints (e.g. by equations such as y = g(x, u)), and invariants (e.g.
|x−y| ≤ ε) which limit the allowed durations of flows. Such constraints can be declared at different
levels of the mode hierarchy.

To define the modular semantics for modes, with each mode we associate several relations
that collectively define possible steps of a mode. One captures discrete behavior of the mode
and another one captures its continuous behavior. Other relations specify how the mode can be
activated and deactivated. Defining the discrete relation compositionally is tricky in presence of
features such as interrupts, exceptions, and history retention. Our solution relies on the entry and
exit of a mode points as means of careful accounting of distinct activation/deactivation scenarios.
Moreover, interrupts in mode executions and returns from interrupts are treated via special entry
and exit points, providing for a uniform treatment of all scenarios.

When defining continuous steps of a mode in a consistent and modular manner, it is important to
ensure that all applicable constraints are taken into consideration. To allow flexible and hierarchical
specifications, in Charon, flow constraints can be specified at all levels of the hierarchy. We ensure
that all applicable constraints are properly used to define permitted flows by requiring that a mode
can participate in a flow only when the discrete control has reached the bottom of the mode
hierarchy. Then, the set of applicable constraints is taken from the active atomic mode and all its
ancestors in the mode hierarchy.

The discrete and continuous relations of a mode allow us to define executions of a mode, and
corresponding traces are obtained by projecting out the private variables. We show that the set of
traces of a mode can be constructed from the traces of its submodes. This compositionality result
leads to a compositional notion of refinement for modes. A mode M refines a mode N if they have
the same interface in terms of entry/exit points and globally visible variables, and the traces of M
is a subset of traces of N . This notion admits modular reasoning in the following manner. Suppose
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we obtain an implementation design I from a specification design S simply by locally replacing
some submode N in S by a submode M . Then, to show I refines S, it suffices to show that M
refines N .

Once we have the compositionality results for modes, analogous results for agents are relatively
straightforward. We define an observational trace semantics for agents, a resulting notion of re-
finement, and show it to be compositional with respect to the operations of parallel composition,
hiding, and instantiation.

Related work. Early formal models for hybrid systems include phase transition systems [MMP91]
and hybrid automata [ACH+95]. Models such as hybrid I/O automata [LSVW96] and hybrid mod-
ules [AH97] allow compositional treatment of concurrent hybrid behaviors. The notion of hierarchi-
cal state machines was introduced in Statecharts [Har87], and is present in many software design
paradigms such as Uml [BJR97]. Our treatment of hierarchy is closest to hierarchical reactive ma-
chines [AG00], which shows how to define a modular semantics for hierarchical (discrete) modes.
Tools such as Shift [DGV96], Ptolemy [EJL+03], and Stateflow (see www.mathworks.com)
allow hierarchical specifications of hybrid behavior, but formal semantics has not been a concern.
HyCharts [GSB98] presents a hierarchical model with modular operational semantics, but does
not consider refinement. Masaccio [Hen00] is a formal model for hierarchical hybrid systems. While
same in spirit, it differs from our model in many technically significant aspects: it allows nesting
of sequential and parallel composition, and allows a more general form of synchronous communica-
tion, but disallows high-level features of Charon modes such as exceptions, history retention, and
specification of constraints at various levels.

In [AGLS01], we have presented an earlier version of the Charon language, with a purely in-
terleaving semantics for discrete behaviors. In this paper, we have taken an alternative approach.
Both discrete and continuous steps of concurrent agents are synchronous. The synchrony in dis-
crete steps ensures that at every time instance all concurrent agents observe the same value of
every shared variable. There is much work on synchronous languages such as Esterel and Lustre
(see [BCE+03] for an overview). Research in synchronous languages does not consider hybrid as-
pects of behavior, but studies many of the same aspects of the construction of discrete steps that
arise in Charon. Composition of discrete steps in Charon seeks to find a middle ground between
the stringent acyclicity restrictions on component dependency of Lustre and fixed-point semantics
of Esterel.

2 Motivation and informal semantics

2.1 Illustrative example

We present an intuitive description of Charon constructs and its semantics using an example
taken from an on-going case study. We are designing a software controller for quadruped robots
playing soccer, targeting Sony’s Aibo robot dog. Below, we present a simplified controller that
covers some aspects of motion planning and leg motion, but omits the components that deal with
vision, inter-player coordination, etc. Walking is accomplished by moving one leg at a time, while
three others remain on the ground. Legs move in the order right front, then left rear, then left
front and finally right rear.
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Figure 1: Architecture of the model

Agents and architectural hierarchy. The controller is represented as an agent. Agents capture
architectural aspects of a model such as the composition of components and data flows. Figure 1
shows the architecture of the controller as the Dog agent. We distinguish between composite and
atomic agents. A composite agent contains a number of sub-agents that execute concurrently and
communicate by shared variables. In the example, the composite Dog agent contains the high-level
controller Brain that deals with motion planning, and four low-level controllers for the leg joints.
The leg agents are instances of the same agent Leg. Instances of the same agent can differ in the
values of their parameters, and can rename variables to adjust information flows between agents.

Parameter values are specified when the agent is instantiated. Parameters indicate whether
the leg is front or rear and specify joint lengths, step height, etc. Parameters are very useful for
defining reusable definitions for large models. In this paper, however, we do not give semantics
to parameterized specifications. Instead, we consider concrete instantiations of modes and agents,
where each parameter has been replaced by a constant.

Each agent has a well-defined interface that consists of its typed input and output variables, rep-
resented visually as blank and filled squares, respectively. Connections between variables represent
data flows between the agents in the model. The Brain agent reads variables x and y, representing
leg positions, from the Leg agents, renaming them appropriately. That is, the variable x of agent
LegRF is renamed to xRF in the agent Brain, and so on. The agent Brain provides the desired
speed of the dog represented by the variable v, which is read by the Leg agents. Four boolean token
variables (tokenRF, tokenLF, etc.) are shared by pairs of leg agents and are used to ensure that
only one leg is in the air at any time. Each leg agent has an input variable tokenIn and an output
variable tokenOut. The variable tokenOut of a leg agent is renamed to the same name as tokenIn
in the next leg agent in the leg movement order. By convention, the variable tokenOut of the agent
LegRF is renamed to tokenRF, etc. All of these variables, however, are internal to the Dog agent.
The interface variables of the Dog agent are the eight output variables that represent commands
sent to the joint motors in each leg, and four input variables that represent ground contact sensors
in each leg.

The hierarchy of agents may be arbitrarily deep. The Brain agent may have several sub-agents
that are concerned with separate aspects of game planning. We do not, however, show these sub-
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mode UpDown(real dir) {
input real v;
output real x, y;
diff { d(x) == 3*v; d(y) == dir*3*v; }

}

Figure 2: An atomic mode
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                   acos((x*x +y*y+L1*L1-L2*L2 )/(2*L1*sqrt(x*x  + y*y)));
          j2 == acos((x*x  + y*y - L1*L1 - L2*L2 )/(2*L1*L2));  }

Stop

fail

local    real y_lift       input bool ground, tokenIn
output real x,y          input real  v
output bool tokenOut

input   real v
input   bool ground, tokenIn
output bool tokenOut
output real x, y, j1, j2

Figure 3: Behavioral description of a leg

agents in detail here. An atomic agent such as Leg represents a single-threaded component and its
behavior is given by a mode, described later.

Modes and behavioral hierarchy. Modes represent behavioral hierarchy in the system design.
Each mode possesses a set of typed variables and describes continuous trajectories in the variable
space and a single thread of discrete control. A mode can be active or inactive during an execution,
depending on whether the position of discrete control is within the mode or not.

At the lowest level of the behavioral hierarchy are atomic modes. They describe purely continu-
ous behaviors. For example, Figure 2 illustrates the behavior prescribed by the mode UpDown, which
specifies the desired trajectory for the paw moving diagonally up or down by means of a differential
constraint that asserts the relationship between the horizontal and vertical velocities of the paw,
represented as the first time derivatives of the paw coordinates x and y, and the input variable v,
representing the desired speed. Parameter dir is given a value when the mode is instantiated.

Additional constraints may be present on any level of the behavioral hierarchy. Besides differ-
ential constraints, modes can also have algebraic constraints and invariants. Invariants are boolean
predicates that must be satisfied throughout an execution. Constraints on different levels are log-
ically conjoined: any continuous trajectory has to satisfy the constraints of the currently active
atomic mode and all of its super-modes.

Composite modes are hybrid state machines with sub-modes as control locations and transitions
between locations that represent transfers of discrete control. Transitions have guards that specify
when a transition can be taken, and actions that modify variables of the mode when the transition
is taken.

Consider the mode LegMode, the top-level mode of the agent Leg, and its sub-mode Walk. The
visual representations are shown in Figure 3. Sub-modes are shown as states labeled with the mode
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mode OnGround() {
input real v;
output real x, y;
diff { d(x) == -1.0*v; d(y) == 0; }
alge { tokenOut == false; }
inv { tokenIn == false }

}

Figure 4: Constraints of a mode

name. Transitions are labeled by guards and actions. To make it easier to visually distinguish
between guards and actions, actions are boxed. Invariants as well as the complicated expression for
the guard g stop, are omitted to avoid cluttering the picture. The mode GetUp is entered during
initialization and ensures that the dog is standing before walking begins. It has its own internal
structure, which we do not discuss here. The mode Walk contains four sub-modes that correspond
to the four segments of the leg trajectory. Note that the two sub-modes that move the leg up and
down are instances of the same mode with different parameter values.

In order to specify precisely how control enters and exits a mode, we utilize the notion of control
points. By entering a mode via different entry points, we can initialize the variables of the mode
differently. Using different exit points to leave the mode, we can distinguish the normal outcome of
the mode computation and different kinds of exceptions. In particular, the outcome of the GetUp
mode may be normal, in which case it transfers control to the exit point done, which then proceeds
to the walking mode. Alternatively, an exceptional situation may arise when the dog cannot get
up by itself (for example, on an uneven surface). In that case, the execution of GetUp is aborted
via the control point fail and control is transferred to the emergency mode. In addition to this
voluntary release of control, a mode can be interrupted by a group transition, which is attached
to the default exit point that every mode has. When an execution is interrupted, the location
of discrete control is stored in the mode state so that the interrupted execution can be resumed
later by entering the mode via the default entry point. In the pictorial representations, entry and
exit points are denoted as blank and filled circles, respectively. Transitions incident to a default
entry or exit point, which are not shown on the picture, are visually attached directly to the box
representing the mode.

To ensure stability of the robot, only one leg can be in the air at any time. A leg lifts off the
ground when its variable tokenIn get the value true. The leg then moves diagonally upwards until
the desired height is reached, and the mode is switched to begin horizontal movement. When the
leg is moved forward enough, another mode switch happens and the leg is moved diagonally down.
When the leg reaches ground, a signal from the paw sensor sets the variable ground, the mode
switch occurs and the token is passed to the next leg by the action of the transition.

We compare the three kinds of mode constraints using the mode OnGround, shown in Figure 4,
as an example. A differential constraint describes the trajectory of a continuously evolving variable
by specifying the value of its first derivative with respect to time. In the mode OnGround, the
vertical position of the paw (variable y) does not change, while the horizontal position (variable
x), measured relative to the shoulder joint of the leg, decreases1. An algebraic constraint can also
be used in this way, except that it specifies the value of the variable instead of its derivative. The

1The body moves forward while the paw stays on the ground.
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algebraic constraints of the mode Leg (see Figure 3) that provide the transformation of paw position
into the joint angles are used in this way. However, the algebraic constraint in mode OnGround is
used differently. The transition of the mode Walk that enters the mode OnGround sets the value of
tokenOut to true. The algebraic constraint, which requires tokenOut to be false, resets it as soon
as the continuous step begins. Thus the algebraic constraint here is used as a way to implement
instantaneous events. Finally, the invariant constraint allows the mode to be active only as long
as the input variable tokenIn remains false. When it is set to true, the invariant is violated and
control has to leave the mode. Here, the invariant ensures that the instantaneous event send by
the preceding leg is not missed.

2.2 Informal semantics

An execution of an atomic agent, whose behavior is given by a single mode, is an alternating
sequence of discrete and continuous steps. During a continuous step, the variables of the mode
are updated according to the differential and algebraic constraints of the mode and its active sub-
mode, recursively to the atomic mode at the bottom of the hierarchy. To ensure that all applicable
constraints are used during a continuous step, we require that every discrete step of the mode
begins and ends in an atomic mode. Consider the mode M shown in Figure 5. Assume that the
active sub-modes are M1 and, within it, M11, and, finally, M111, which is an atomic mode. In order
for M to switch its active sub-mode from M1 to M2, it needs to traverse the following sequence
of transitions. 1) leave the active atomic mode (possible when the guard g11 is satisfied), then 2)
leave M11 via the exit point ex1 (possible when the guard g1 is satisfied), then 3) switch to M2

if g is satisfied, and 4) enter the atomic mode M21. This sequence occurs instantaneously and
atomically. Alternatively, M can perform a discrete step without changing its active sub-mode. It
this case, M11 is exited by the exit point ex2 and the step ends in the atomic mode M121. Finally,
a group transition attached to the default exit point of M1 can be taken whenever it guard ggroup is
satisfied. When that happens, control is transferred to the mode M3 regardless of which sub-mode
of M1 was active at that moment. However, when control re-enters M1 through the default entry
point, the active sub-mode is restored.

As we will see in Section 3, steps of a mode are captured by a collection of relations. Exit
relations specify how a mode can transfer control from the currently active sub-mode to a given
control point. An exit step consists of an exit step of the active sub-mode followed by an exit
transition leading to the specified exit point. Entry step relations specify how control is transferred
from an entry point to the inside of the mode. An entry step of a mode consists of an entry
transition followed by an entry step of the new active sub-mode. Finally, the internal step relation
specifies the steps of a mode where the control stays within the mode. Such step is either an internal
step of the active sub-mode, or an exit step of the active sub-mode, followed by a transition of the
mode, followed by an entry step of the target sub-mode of the transition, which then becomes the
new active sub-mode.

An execution of a composite agent A is also an alternating sequence of discrete and continuous
steps. The steps are constructed from the steps of the sub-agents. In a continuous step, time
progresses in all agents at the same rate and the variables are updated according to the conjunction
of applicable constraints in all sub-agents. During a discrete step of A, each atomic agent that is
a descendant of A in the agent hierarchy takes a discrete step. Combined together in a sequence,
these discrete steps of sub-agents make a discrete step of A. When constructing discrete steps, we
want to ensure that all agents participating in the step have a coherent view of the world; that
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is, if two agents read the value of an input variable in the same discrete step, they both get the
same value. Since the discrete step of an agent may change the values of variables, we have to
impose restrictions on the order of steps of sub-agents in a step of the agent. Consider the example
in Figure 6. The agent A contains three sub-agents, A1, A2, and A3. The agent A1 outputs the
value of the variable s, which is read by the agent A2 but not by the agent A3. Therefore, the step
of A1 has to precede the step of A2 in any discrete step of A, and thus, the legal steps of A are
〈t1, t2, t3〉, 〈t1, t3, t2〉, and 〈t3, t1, t2〉. Note that any execution ordering will produce the same result,
since t3 is independent of any variables manipulated by t1 and t2 and vice versa.

In order to determine the legal orderings of steps of sub-agents in a discrete step, we have
to keep dependencies between variables in different agents and disallow circular dependencies to
ensure that the the values assigned to variables in a discrete step are unambiguous2. We allow the
dependencies to be dynamic in the following sense. Consider the model in Figure 1. It contains
four instances of the Leg agent. Each instance updates the variable tokenOut when its leg touches
the ground, which is read as tokenIn by the next leg in the movement order before lifting up (see
Figure 3). Thus it may seem that there is a circular dependency between the legs. However, since
only one leg can be in the air at any time, at most one variable is updated at any time instance.
Therefore, the step of Walk are unambiguously constructed by making the step of the agent that
corresponds to the leg in the air precede the steps of all other leg agents.

2This is a sufficient condition. The proposed solution is a trade-off between the number of models that are
syntactically rejected and the ease of implementing semantics.
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3 Syntax and semantics of modes

Notation. We will represent modes and agents as tuples of components. If T is a tuple or a set
containing elements t1, . . . , tn, we identify the component ti of T as tTi . When T is understood from
the context, it may be omitted.

Given a set V of typed variables, a valuation for V is a function mapping variables to their
values. We will assume that all valuations are type correct. The set of valuations over V is denoted
QV . Given a valuation q over V , and a set W ⊆ V , q[W ] denotes the restriction of q to the variables
of W . The value of variable v in the valuation q is denoted q(v).

A flow for a set V of variables is a differentiable function f from a closed interval of non-negative
reals [0, δ] to QV . We refer to δ as the duration of the flow. We assume that only constant functions
are differentiable for non real-valued types. We denote a set of flows for V as FV .

3.1 Syntax

A mode M is a tuple 〈E,X, V, SM,Cons , T 〉, where E is a set of entry control points, X is a set of
exit control points, V is a set of variables, SM is a set of sub-modes, Cons is a set of constraints,
and T is a set of transitions.

Variables. A mode has a finite set of typed variables V , partitioned in two ways.

• The set of global variables Vg and the set of local variables Vl. We assume that there are no
conflicts between the names of local variables in different modes.

• Global variables are further partitioned into the set of input variables Vi and the set of output
variables Vo.

Sub-modes. SM is a finite set of sub-modes. We require that each global variable of a sub-mode
is a variable (either global or local) of its parent mode. That is, if N ∈ SM , then V N

g ⊆ V .
This requirement ensures a natural scoping rule for variables in a hierarchy of modes: a variable
introduced as local in a mode is accessible in all its sub-modes but not in any other mode. We
assume the absence of name clashes between variables of the mode and local variables of its sub-
modes.

Control points. E is a set of entry points; X is a set of exit points. There are two distinguished
control points representing default entry and exit: de ∈ E and dx ∈ X.

Special modes. We distinguish two kinds of modes that play a special role in the semantic
definitions. A mode M is an atomic mode if SMM = ∅, TM = ∅, EM = {de}, and XM = {dx}.
Atomic modes perform continuous steps according to their constraints and have no “interesting”
discrete behaviors. A top-level mode has a single non-default entry point init and no non-default
exit points. Top-level modes are used to describe behavior of agents, as described in Section 4.
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Constraints. The finite set Cons of constraints defines the flows permitted by M3. Cons con-
tains an invariant I, which defines when the mode can be active (see the definition of an active
mode below). Further, for an output or local variable x ∈ Vo, Cons can contain an algebraic con-
straint Ax, which defines the set of admissible values for x, or a differential constraint Dx, which
defines admissible values for the derivative of x with respect to time. The invariant and algebraic
constraints are predicates on QV and differential constraints Dx are predicates on QV ∪d(x). Syn-
tactically, an algebraic constraint Ax is a conjunction of equalities and inequalities of the form
x  ! f(x1, . . . , xn), where  != {<,≤,=,≥, >}. A differential constraint is constructed similarly,
using d(x), representing the first time derivative of x, instead of x. Examples of constraints are
d(x) ≤ f(x, y) and g(x, y) ≤ 0. A flow f is permitted by the mode if for every t > 0 in the domain
of f , f(t) satisfies all the constraint predicates.

Transitions. Transitions of a mode connect control points of the mode and its sub-modes. A
transition can originate at an entry point of a mode, or at an exit point of a submode, and lead
to an exit point of the mode or an entry point of a submode. When a transition is executed,
it can update variables of the mode. T is a finite set of transitions of the form (e, α, x), where
e ∈ E ∪ XSM , x ∈ X ∪ ESM , and α, the action of the transition (see below). Each transition
is categorized into entry transitions (e ∈ E), exit transitions (x ∈ X), and internal transitions
(e ∈ XSM and x ∈ ESM ). A mode is not allowed to have transitions from one of its entry point
directly to an exit point. It must enter one of its sub-modes first4.

Default entry and exit points are used to handle preemption and history retention. A transition
that originates at a default exit point of a sub-mode is called a group transition of that sub-mode.
A group transition can be taken to interrupt an execution of the sub-mode. If a sub-mode has
been exited by a group transition, the currently active sub-mode and the values of local variables
are retained as history information. If the next time the mode is entered through its default entry
point, the interrupted execution resumes from the saved state, as defined precisely in the next
section. We disallow exit transitions of a mode leading to its default exit point so that an execution
cannot be blocked if the guard of a group transition is not satisfied.

Actions of the mode transitions. Each transition has a guard and an action. A guard is a
predicate over the values of the mode variables. A transition can be taken during an execution
when its guard is true. An action of the transition is a sequence of assignments to the output and
local variables of the mode. Each assignment is of the form x = f(x1, . . . , xn), where x1, . . . , xn are
variables of the mode. Assignments in an action are executed atomically and instantaneously when
the transition is taken during an execution of the mode. Assignments are executed sequentially,
that is, action y = f1(x); z = f2(y) is the same as y = f1(x); z = f2(f1(x)).

For assignments that make up actions of entry transitions, we have an additional restriction
that if the assignment is a part of the action of an entry transition, then the assignment can
depend only on the global variables of the mode and those local variables that have been assigned
by previous assignments in the same action. This restriction stems from the concept widely used
in programming languages: local data state of a component is constructed when the component is

3The semantics does not depend on how sets of flows are specified. Here, we choose one of the possible ways.
4This restriction is necessary since we require that a discrete step of a mode consists of one internal transition

and ends in an atomic mode. If a transition connected entry directly to an exit, the parent mode may be required to
take two transitions to reach an atomic mode.
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activated and needs to be initialized before it can be used.
We view the combination of the transition guard and action as an action relation α from QVg

to QV if e ∈ E and from QV to QV otherwise. The pair (q, q′) ∈ α if and only if q satisfies the
guard of the transition and q′ is the result of performing the assignments of the transition action.

3.2 Operational semantics

State of a mode. The state of a mode is a valuation of all variables of the mode and its sub-
modes, V∗, computed recursively as V∗ = Vg � Vl∗, Vl∗ = Vl � V SM

l∗ . We use q, possibly primed
and subscripted, to denote states of a mode. Note that the history variables of the mode and its
sub-modes, introduced below, collectively capture the control state.

Active mode. During a mode execution, we need to keep track of the location of discrete control.
We do this using the notion of an active mode. At any time during an execution, one atomic mode
in each agent is active, and all of its ancestors in the mode hierarchy are active as well. The
top-level mode of each agent is always active and has one active submode. The currently active
submode of a mode M is kept in a new local variable hM that we introduce into each mode that
has sub-modes. The history variable h of a mode M can assume values from the set SM ∪ ε. A
sub-mode N of M is active when M is active and the history variable of M has the value N . The
value ε represents the situation whenM has completed its execution and released control to another
mode. If an execution of M has been interrupted, the history variable records the submode that
has been active prior to interruption and is used to continue the execution when M is reactivated.

We manipulate the history variable in the expected way by extending the action relations of
each transition (e, α, x) of M . Given α, we define the new action α′ as follows. Let (q, q′) ∈ α. If
x is an entry point of a sub-mode N , then q′(hM ) = N , otherwise q′(hM ) = ε. If e is an exit point
of a sub-mode N ′, then q(hM ) = N ′, otherwise if e is the default entry point of M , q(hM ) �= ε.
In other words, a transition that leaves a sub-mode N can be taken only when N is active, and
if the transition enters a submode N ′, then N ′ is the new active sub-mode. With entry and exit
transitions, the situation is asymmetric: when an exit transition of M is taken, M becomes inactive
and the history variable is ε. By contrast, a group transition of M interrupts the mode execution
without resetting the history variable, so that the execution can be restarted when the mode is
entered via the default entry point later. However, M can be exited by a group transition and then
entered by a regular entry point, in which case the history information is abandoned. To allow
this scenario, we do not require the history variable to be ε for an entry transition to occur. An
interesting special case arises when the mode has been exited by a regular exit mode and thus does
not have a recorded history, and is later entered via the default entry point. In this case, the mode
is non-deterministically entered via one of its regular entry points.

Figure 7 illustrates the use of the history variable in different scenarios. Ignoring all other
variables and transition actions, we show the value of the history variable and transitions that
occur. Scenario {ε} t1→{N} t2→{N ′} t4→{ε} t5→{ε} t6→{ε} represents an initialization/completion cycle.
Scenario {ε} t1→{N} t2→{N ′} t7→{N ′} t8→{N ′} t3→{N} represents an interrupt with a subsequent contin-
uation of the interrupted behavior. Scenario {ε} t1→{N} t2→{N ′} t7→{N ′} t6→{N ′} t1→{N} represents an
interrupt with a subsequent reinitialization where the interrupted behavior is abandoned. Finally,
scenario {ε} t1→{N} t2→{N ′} t4→{ε} t5→{ε} t8→{ε} t1→{N} shows a reinitialization via a default entry: since
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Figure 7: Execution scenarios

no history information is available, the execution follows an entry transition attached to a non-
deterministically chosen entry point.

Discrete steps of a mode. When viewing a mode from a higher level in the mode hierarchy,
we capture three kinds of information separately: 1) we need to know what kinds of steps can the
mode take without relinquishing control. Viewed externally, such a step is seen as a change in the
variables of the mode. Such steps are captured by the relation RD. Since the mode retains control,
we call these steps internal steps of the mode. In addition, we need to know 2) how the mode
can relinquish control via an exit point x, i.e., perform an exit step, and 3) how the mode can be
acquire control via an entry point e, i.e., perform an entry step. Entry and exit steps are captured
separately for each control point by the relations Rx and the relations Re, respectively. All of these
relations operate on the valuations of the variables of the mode.

An atomic mode has one internal step, which is the idling step enabled if and only if the invariant
of the mode is satisfied. That is, for each state q such that I(q), (q, q) ∈ RD. Further, an atomic
mode can be entered and exited at any time and, since it does not have entry or exit transitions,
the state is not changed on entry or exit. That is, for all q, (q, q) ∈ Rde and (q, q) ∈ Rdx.

For a composite mode M , the entry relations Re and Rx are constructed from the actions of
entry transitions and the entry relations of the sub-modes of M . For each entry transition (e, α, e′),
(q, q′) ∈ Re if, for some q′′, (q, q′′) ∈ α and, if e′ is an entry point of a sub-mode M ′, (q′′, q′) ∈ RM ′

e′ .
For the default entry point, (q, q) ∈ Rde whenever q(h) �= ε, which means that the execution of
M has been previously interrupted by a group transition. When q(h) = ε, a non-deterministic
initialization occurs and thus (q, q′) ∈ Rde whenever (q, q′) ∈ Re for some non-default entry point
e. Similarly, for each exit transition (x′, α, x) of a composite mode, (q, q′) ∈ Rx if, for some q′′,
(q, q′′) ∈ RM ′

x′ and (q′′, q′) ∈ α. Also, M can be interrupted by a group transition at any moment
during its execution and thus has to be always ready to exit by the default exit. Therefore, for
every q such that q(h) �= ε, (q, q) ∈ Rdx.

Internal steps of a composite mode M are either internal steps of the active sub-mode or
transitions of the mode that change the active sub-mode. If a transition of the mode is involved
in the step, then the source sub-mode of the transition should be the active sub-mode and should
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allow an exit step that matches the transition, and also the target sub-mode of the transition should
allow a matching entry step. Consequently, (q, q′) ∈ RD if there exists a state q0 that agrees with
q on the values of output and local variables of Vo ∪ Vl∗ and

• for an active sub-mode N (q(hM ) = N), (q0[V N∗ ], q′[V N∗ ]) ∈ RN
D and q0[V∗\V N∗ ] = q′[V∗\V N∗ ],

or

• the following three conditions hold:

– there exists an exit point x of the active sub-modeN such that for some q1, (q0[V N∗ ], q1[V N∗ ]) ∈
RN

x ;

– there exists an entry point e of a sub-mode N ′ such that for some q2, (q2[V N ′
∗ ], q′[V N ′

∗ ]) ∈
RN ′

e ; and

– there exists a transition (x, α, e) such that (q1, q2) ∈ α.

Continuous steps. During continuous steps of a mode the control state of the mode does not
change but variable values evolve continuously according to the dynamics of the mode and its
active sub-mode. Continuous steps of a mode M are captured by the relation RC . The relation
RC ⊆ QV × FV gives, for every state q of M , the set of flows from q. RC is obtained from the
constraints of a mode and relation RN

C of its active sub-mode. Given a state q of a mode M ,
(q, f) ∈ RC iff the following three conditions hold:

• f is permitted by M ,

• (q[V N∗ ], f [V N∗ ]) ∈ N.RC , and

• for each variable x, q(x) = f(0)(x) unless M has an algebraic constraint Ax.

Note that in the definition above, algebraic constraints can introduce discontinuities at the
initial state of the flow. Otherwise, a flow from a state begins at that state.

Operational semantics. The operational semantics of the mode M consists of its control points
E ∪X, its variables V∗, and relations RC , RD, Re (e ∈ E), and Rx (x ∈ X).

3.3 Executability

The rules in the previous section for constructing steps of a mode need to be augmented with
several restrictions to ensure executability of a mode. On the one hand, constraints of a mode
should always yield a non-empty set of flows. On the other hand the mode must always be able to
complete a step from one atomic mode to another without being “stuck” in between.

To introduce the restrictions, we first consider the dependencies between variables in a mode.
These dependencies will also be used in Section 4 to define discrete steps of an agent.

Variable dependencies in modes. We say that an output variable x is discretely updated in
the mode M if it is assigned a new value in an action of a mode transition (for some transition
t, ∃(q, q′) ∈ αt, such that q(x) �= q′(x)). A variable x is continuously updated in M if M contains
an algebraic or a differential constraint for x. A variable is accessed in the mode M if it appears
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on the right-hand side of an equation or inequality within a differential or algebraic constraint, in
an invariant, in a transition guard, or in the right-hand side of an assignment within a transition
action.

An input variable of M is called delayed if it is accessed only in differential constraints of M
and its sub-modes.

A variable y depends on a variable x if x is accessed in an action that updates y or in a constraint
for y. If x is not a delayed variable, we say that y immediately depends on x. A dependency is
continuous if y is continuously updated and discrete otherwise.

We will use graphs of immediate dependencies to define semantics of modes. A variable depen-
dency graph contains mode variables as nodes and its edges are immediate dependencies between
variables. The dependency graph of an atomic mode is formed by the algebraic equations of the
mode. Given a composite modeM and its sub-modeM ′, the dependency graph DM ′ for M extends
the dependency graph of M ′ with the dependencies from the algebraic equations of M and guards
and actions of the transitions that originate at M ′. Given an entry point e, the dependency graph
De is given by the dependencies of guards and actions of the transitions incident to e. Dependency
graphs will be used to define the semantics of agents in Section 4, where restrictions will be placed
on the graphs to ensure executability. Dependency graphs can be defined in several other ways. The
choice of the definition is a tradeoff between the restrictiveness of the formalism (i.e. the number
of models that are rejected by the imposed restrictions) and the efficiency of the execution model,
since dependency graphs may have to be manipulated dynamically. A union of the dependency
graphs defined above for all sub-modes M ′ yields a static notion of the dependency graph, which
appears to be overly restrictive. On the other hand, a more dynamic notion can be defined that,
depending on the values of the mode variables, does not consider the dependencies corresponding to
the transitions with false guards. This more dynamic dependency graph seems to be too expensive
to manipulate during an execution. We chose to use the notion of the dependency graph presented
above, which seems to be a reasonable compromise.

Implicit in the definition of the mode state is the active dependency graph of the mode. When-
ever q(hM ) = N , the active dependency graph is DN . If q(hM ) = ε, the mode is inactive and has
no active dependency graph.

Well-defined modes. In order to ensure that the modes are well-behaved and can be used to
give semantics for agents in Section 4, we impose the following requirements.

• Modes do not contain redundant variables. This means that each input variable is used and
each output variable is updated in the mode or its sub-modes.

• Variables are single-writer entities, meaning a variable can be declared as output in only one
agent (see Section 4). Therefore, each output variable x must be continuously updated either
by the mode or by all of its sub-modes. Otherwise, we assume that the mode contains the
constraint d(x) == 0. Both the mode and its sub-modes can continuously update an output
variable, however we assume that the conjunction of constraints for each variable along a
path from the mode to each of its atomic descendants has a solution.

• Each local variable of a mode is initialized by every entry transition of the mode, and every
exit transition of the mode assigns every local variable a designated “undefined” value.
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• Modes do not contain algebraic loops, i.e., cycles of immediate continuous dependencies in
the dependency graph of algebraic constraints collected from the mode and recursively from
its active sub-mode. This is necessary to ensure that the sets of algebraic constraints have
continuous solutions.

• We require that the mode cannot be blocked at any of its non-default control points. Precisely,
for every e of M that is not de in M or dx in one of the sub-modes of M , the union αe of all
actions of the transitions originating at e is complete, that is, for every q there is q′ such that
(q, q′) ∈ αe.

Simulation of a well-defined mode. A mode M that satisfies these executability conditions
can be naively simulated in the following way. 1) Initialization. Before starting the simulation,
global variables of the modes are assigned in some arbitrary way. Then, choose an entry point
e to enter the mode and an entry transition that is attached to e that has its guard satisfied.
Such a transition is guaranteed to exist since the mode is well-defined. Execute the assignments
of the transition action. Repeat with entry transitions of the submodes, until an atomic submode
is reached. 2) Continuous step. Traversing the mode hierarchy from the atomic mode up to
M , collect differential and algebraic constraints from each visited mode. Numerically simulate
the differential constraints for one integration step, changing the variables that are differentially
updated. Compute the algebraic constraints in the order of dependencies and update the algebraic
variables. 3) Discrete step. First, collect enabled transitions. We start from the active atomic
mode, which would be level 0, and go up the mode hierarchy. At each level, we separately collect
internal steps and exit steps for each non-default exit point. At level 0, there is an internal idling
step, or none if the invariant is violated. At each level i > 0, we perform the following steps. First,
all internal steps collected at level i − 1 are used as internal steps of level i. Then, we consider
the group transition and all transitions that originate at those exit points of the active submode
(submode at level i− 1), for which there was an exit step recorded at level i− 1. If the transition
leads to a submode, it is added to the internal steps of the current level. If the transition leads to
an exit point, it is added to the exit steps for the exit point. If the invariant of the mode at level i
is violated, all internal steps collected at thus far are discarded, since control has to leave the mode.
Once we reach the level of M , all enabled steps are collected. We pick one of the enabled steps,
and execute the actions of the transitions involved in it, updating the variables. 4) Continuous
and discrete steps alternate indefinitely. Note that in a well-defined mode there is always a way to
extend the execution with the next continuous or discrete step.

As an example, consider the mode in Figure 5. Assume that the active atomic submode is
M111 and the state is such that the guard g11 and the invariant of M11 are violated and all other
guards and invariants are satisfied. Then, at level 0, there is one internal idling step. At level 1
(M11), all internal steps are discarded because of the violated invariant, and there is an exit step
to ex2. At level 2 (M1), we add an internal step from ex2, but no exit steps (since ex1 does not
offer exit steps from level 1). Finally, at level 3, we add the group transition as an internal step,
and non-deterministically choose between the two enabled internal steps.
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4 Syntax and semantics of agents

4.1 Syntax

An agent 〈TM,V, I〉 consists of a set of variables V , a set of initial states I, and a set of top-level
modes TM .

The top-level modes collectively define behavior of the agent. The set of top-level modes in an
agent represent concurrently executing threads of control within the agent. The set V is partitioned
in the same way as the variables in modes. We require that

⋃
M∈TM V M = V , since any variable

that is not used in one of the top-level modes is useless, and Vg ⊆ ⋃
M∈TM V M

g , that is, each global
variable of the agent originates in a top-level mode. Additionally, the agent and its top-level modes
agree on their variables. The set of initial states I ⊆ QV specifies possible initializations of the
variables of the agent. An atomic agent has a single top-level mode. Composite agents have many
top-level modes and are constructed by parallel composition of other agents as described below.

We require that the output variables of each top-level mode are pairwise disjoint.

4.2 Operational Semantics

State of an agent. The state of an agent is a valuation of the agent variables V .

Well-defined agents. In order to be able to describe steps of an agent, we need to ensure
that all variable dependencies are acyclic in each reachable state of the agent. The notion of a
well-defined agent is often defined syntactically. However, in our case this notion depends on the
dependency graphs of top-level modes, which are treated dynamically. Given a composite agent,
we construct a graph of dependencies between the top-level modes in the following way. First, a
union of the active dependency graphs is constructed. Then, the joint dependency graph is lifted
to the top-level modes. That is, a top-level mode M1 depends on a top-level mode M2 if a variable
in M1 immediately depends on an output variable in M2. An agent is well defined if the graph of
dependencies between the top-level modes is always acyclic. Note that the dependency graph can
change when a discrete step happens, since the active dependency graphs of the top-level modes
can change. However, the dependency graph depends only on the set of currently active atomic
modes and not on the agent state.

Discrete steps of an agent. Discrete steps of an agent A are defined by discrete steps of a its
top-level modes. Each discrete step of A contains exactly one discrete step from each of its top-level
modes. The steps of modes are performed sequentially in some order that is consistent with the
variable dependencies in the agent. Rather then introducing this order explicitly in the definition
of the step of the agent, we take a different approach that will allow us to prove compositionality
in the next section.

We transform the discrete transition relation of a top-level mode into an exposed transition
relation that reflects the fact that input variables of the mode can be modified by its environment
(that is, by the steps of other top-level modes of A) before the mode takes its step. Given a top-level
mode M of A with the discrete transition relation RM

D , we define the exposed transition relation
RM

D as follows.
Let q, q′ be two states of A. Then their projections on the variables of M , q[V M ] and q′[V M ],

are the states of M . We say that M exposes a discrete transition from q to q′ if M has a discrete
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Figure 8: A non-well-defined agent

transition to q′ from a state that agrees with q on variables controlled by M (that is, its local
and output variables) and agrees with q′ on the input variables of M . This means that in the
exposed step, M modified its variables according to its semantics, and kept the values of its input
variables as they were set by the steps of other modes. Formally, we write (q[V M ], q′[V M ]) ∈ RM

D ,
iff (q[V M∗ \V M

i ] ∪ q′[V M
i ], q′[V M ]) ∈ RM

D .
Now we can define discrete steps of A in terms of the exposed transition relations of its top-level

modes. A has a discrete step (q, q′) if for each top-level mode Mi ∈ TMA, (q[V Mi ], q′[V Mi ]) ∈ RMi
D .

Initialization steps of A are constructed in a similar way using exposed initialization relations RMi
init

of the top-level modes instead of their discrete relations.
Note that discrete steps of an agent are well-defined only if the agents are will-defined; that is,

if variable dependency relationship is acyclic. Otherwise, the agents will be able to “guess” each
other’s next step. Consider, for example, the agent A in Figure 8, which is not well defined. Here,
A contains two top-level modes M1 and M2, which control variables a and b, respectively. After
performing the initialization step, we expect that A cannot engage in any discrete steps. However,
(〈hM1 = s11, a = 0, b = 1〉, 〈hM1 = s12, a = 1, b = 1〉 ∈ RM1

D , and (〈hM2 = s21, a = 1, b = 0〉, 〈hM2 =
s22, a = 1, b = 1〉 ∈ RM2

D . Therefore, A would have a counter-intuitive step, in which both agents
set their variables to 1 simultaneously. Such behaviors, of course, are prevented by the acyclicity
requirement on the variable dependency graph.

Continuous steps of an agent. A continuous step of an agent is a flow that is permitted by all

top-level modes of the agent. That is, q
f→q′ whenever q[V M ]

f [V M ]→ q′[V M ] for each top-level mode
M ∈ TM .

4.3 Operations on agents

To be able to construct complex agents from simpler ones, we introduce three operations on agents.
The operations allow us to specify concurrent execution of agents and impose structure on com-
munication between agents by disallowing sharing of certain variables of an agent.

Parallel composition. Parallel composition of two agents allows executions of the agents proceed
concurrently, thus the top-level modes of the agents become the top-level modes of the composite
agent. Variables of the two agents form the variables of the composite agent. We have to be careful
to ensure that only one of the two agents can update a variable, to avoid introducing additional
non-determinism into behaviors of the composite agent. Therefore, two agents are called composable
if their output variables are disjoint. The composition of two composable agents A1||A2 is an agent
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A = 〈TM,V, I〉 defined as follows: TMA = TMA1 ∪ TMA2, V A
g = V A1

g ∪ V A2
g , V A

l = V A1
l � V A2

l ,
and q ∈ IA iff q[V A1 ] ∈ IA1 and q[V A2 ] ∈ IA2 .

Variable hiding. The hiding operator makes a set of variables local to the agent. Once a variable
is local, other agents cannot read its value. This restricts unwanted communication between agents.
Given an agent A = 〈TM,V, I〉 and a set of output variables Vh ⊆ Vo, the agent A\{Vh} =
〈TM,V ′, I〉 with V ′

l = Vl ∪ Vh, V
′
g = Vg\Vh. A step of A, projected onto the set of global variables

of A\{Vh}, is a step of A\{Vh}.

Variable renaming. Variable renaming changes variables names to allow agents to communicate
and to avoid name clashes. When an agent is instantiated multiple times, the variables of different
instances are renames differently to avoid name clashes and to enable communication with the
right agents. For example, the agent Dog contains four instances of the agent Leg. Each of the
leg agents has an output variable tokenOut, which has to be renamed so that the legs do not
interfere with each other. At the same time, input variable tokenIn has to be renamed in each
instance to receive the token from the preceding leg. Formally, variable renaming replaces a set
of variables in an agent A with another set of variables. Given an agent A = 〈TM,Vg ∪ Vl, I〉, let
V1 = {x1, . . . , xn}, V2 = {y1, . . . , yn} be indexed sets of variables with V1 ⊆ Vg and V2 ∩ Vl = ∅.
Then, A[V1 := V2] = 〈TM, ((Vg\V1) ∪ V2) ∪ Vl, I〉. Semantics of the variable renaming operator is
given by renaming the variables in the steps of the agent.

5 Compositionality results

5.1 Trace Semantics for Modes

Executions. Executions of a modeM contain steps of four kinds, given by the transition relations
ofM that define its operational semantics defined in Section 3.2, RC , RD, Re, and Rx. An execution
of M may occur within a context of a composite mode, in which M is used as a submode, or in
a parallel context of an agent. When a mode is used as a sub-mode in a larger context, it may
be preempted by a transition of the super-mode or relinquish control voluntarily, and then be
re-entered again. Thus an execution should also capture the period of inactivity between an exit
and a subsequent entry. This is accomplished by environment steps. The only requirement for an
environment step is that it does not change the values of local variables of a mode. Thus, there is
an environment step from q to q′ whenever q[Vl∗] = q′[Vl∗].

To accommodate the case of a parallel context, discrete steps have to be represented by the
exposed transition relation RD instead of RD, as discussed in Section 4. By the same token, an exit
relation Rx should be replaced by a similarly defined exposed exit relationship Rx. This is because
an exit transition of M begins a discrete transition of the super-mode of M (see the construction
of discrete steps in Section 3.2.

An execution of M of a mode, then, is a sequence

. . . qi
fi→qi+1

x→qi+2→qi+3
e→qi+4

f ′
i→ . . . qj

fj→qj+1
x′→qj+2→qj+3

e′→qj+4

f ′
j→ . . . ,

constructed as follows: after each entry step q
e→q′ ∈ Re, continuous and discrete steps alternate,

starting from a continuous step. An exit step q
x→q′ ∈ Rx may immediately follow a continuous

step. Between every exit and entry step, there is exactly one environment step.
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Trace semantics. A trace of the mode is a projection of its execution onto the global variables
of the mode. That is, a trace is obtained from each execution by replacing every qi with qi[Vg], and
every f in transition labels with f [Vg]. We denote the set of traces of a mode M by LM . The trace
semantics of the mode M consists of its control points E ∪X, its global variables Vg, and its set of
traces LM

5.

Mode contexts. The executions (and traces) of a mode M show how the mode relinquishes and
acquires control from its external environment and hide this information for its submodes. To prove
our compositionality results later in this section, it is necessary however, to observe how control is
relinquished and acquired from its submodes, too.

Given a mode M with a submode N we call M [N ] a generic mode. The executions (and traces)
of M [N ] externalize the interaction of M with N by inhibiting the sequential composition of M ’s
transitions with N ’s entry and exit steps (and by exposing the global variables of N). Suppose we
are given a discrete step q1→q2 in an execution of M such that q1(h) = N but q2(h) �= N . This
means that the execution leaves sub-mode N . The corresponding execution of M [N ] will contain
two steps instead: q1

x→q′1→q2 for some exit point x of N , where (q1, q
′
1) ∈ RN

x . The existence of
such q′1 is guaranteed by the construction of the discrete steps of M . Similarly, discrete steps of M
that enter N are also broken into two steps in M [N ]. Hiding the internal interaction of M with N
is denoted by M [N ]. Hence M = M [N ].

Consider now a generic mode M [N ]. The other submodes of M and the transitions of M can be
intuitively viewed as a mode context M [.] for N . To formalize this intuition, call first a mode G the
most general submode of M compatible with N if it has: (1) the same entry and exit points as N ;
(2) the same global variables as N and no local variables; (3) no constraints for the entry, internal
and exit relations; (4) the most general flow relation permitted by M . Then M [.] is syntactic sugar
for the generic mode M [G].

Projection. Given a trace (or execution) σ and a mode M , the restriction σ ⇑M is obtained
from σ by: (1) keeping only the state segments that start with an entry step of M and end with
an exit step of M ; (2) replacing each si and fi by qi[V M ] and fi[V M ]; (3) each segment of σ that
is not included into σ ⇑M is replaced by a single environment step.

Theorem 1 (Trace construction) Given a mode context M [N ]. Then following holds:

LM [N ] = {τ | τ ∈ LM [.] ∧ τ ⇑N ∈ LN}

Proof: Suppose τ is a trace of M [N ], and let α be a corresponding execution. Then α⇑N is an
execution of N , and hence, τ ⇑N is a trace of N . Moreover, τ is a trace of M [.]

Suppose τ is a trace of M [.] and τ ⇑N is a trace of N . Let α be an execution of M [.] corre-
sponding to τ and β be an execution of N corresponding to τ ⇑N . Construct now a sequence γ
by replacing in α each G-subsequence with a β-subsequence (in the same order) and repeat the
last value of the local variables of N in γ until the next β-subsequence. The sequence γ is then by
construction an execution of M [N ]: the G- and β-subsequences agree on the global variables and
global flows, and the local variables of N are not changed by M [.] or the environment. Hence, τ is
a trace of M [N ]. ✷

5We may also need to export the dynamic dependency relation.
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Figure 9: Exposed relations are essential for compositionality

5.2 Trace Semantics for Agents

An execution of an agent is a strictly alternating sequence of continuous and discrete steps that
originates in an initial state and begins with an initialization step, followed by a continuous step.
A trace of an agent is a projection of its execution onto the global variables of A. That is, a trace
is obtained from each execution by replacing every qi with qi[Vg], and every f in transition labels
with f [Vg]. We denote the set of traces of an agent A by LA.

Trace semantics. The trace semantics of an agent A consists of its global variables Vg, and its
set of traces LA.

Theorem 2 (Trace construction)Given agents A,B and sets of variables V,W . Then:

LA\V = {σ[A.V \ V ] | σ ∈ LA}
LA[V :=W ] = {σ[V := W ] | σ ∈ LA}
LA‖B = {σ[A‖B.V ] | σ[A] ∈ LA ∧ σ[B] ∈ LB}

Proof: The proofs for hiding and renaming follow easily from the definition. The proof for parallel
composition is as follows.

Suppose σ is a trace of A‖B. Then there is an execution α of A‖B such that α[(A‖B).Vg ] = σ.
Then by definition of composition, α[A] is an execution of A and α[B] is an execution of B. Hence
σ[A] ∈ LA and σ[B] ∈ LB .

Suppose σ[A] ∈ LA and σ[B] ∈ LB . Then there are two executions α and β of A and B such
that α[A.Vg] = σ[A] and β[B.Vg] = σ[B]. Merge α and β into a sequence γ by taking the values
of variables as updated by the agents controlling them. By construction,γ is an execution of A‖B
(the two agents do not update the same variables) and therefore σ is a trace of A‖B. ✷

Note. Defining the executions of top-level modes in terms of the exposed, discrete transition
relation RD is essential in the compositionality proof above. As an illustration, consider the agents
A and B in Figure 9. A possible trace of the composed agent A‖B is the following:

σ = (0, 0, 0)
f,g→ (5, 5, 12.5) → (5, 10, 22.5)

where each state is given by a tuple (time, x, y), and the flows are defined as f = t and g = t2/2.
The trace σ[B], which happens to be equal to σ in this case, would not be a trace of B if we
were considering the relation RB

D. This is because the tuple ((5, 5, 12.5), (5, 10, 22.5)) is not in RB
D.

However, this tuple is by definition in the exposed relation RB
D.
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Figure 10: Compositionality rules for modes

5.3 Compositionality of Modes

The trace semantics for modes leads to a natural notion of refinement: a mode M refines a mode
N if it has the same global variables and control points, and every trace of M is a trace of N .

Mode refinement. A mode M and a mode N are said to be compatible if M.Vg = N.Vg,
M.E = N.E and M.X = N.X. A mode M refines a compatible mode N , denoted M � N , if
LM ⊆ LN . A context M [N ] is compatible with a context P [Q] if M is compatible with P and N
is compatible with Q. A context M [N ] refines a compatible context P [Q], denoted M [N ] � P [Q],
if LM [N ] ⊆ LP [Q].

As shown below, refinement is compositional with respect to hiding (or mode encapsulation) and
with respect to the hierarchic composition (or generic mode construction). In the latter case
compositionality holds both for submodes and for mode contexts.

Theorem 3 (Compositionality of hiding) If M [P ] � N [Q] then M [P ] � N [Q].
Proof: Let t ∈ LM . Then by definition traces, there is a trace u ∈ LM [P ], such that t = u⇑M .
By hypothesis u ∈ N [Q], too, and by compatibility of M and N , t = u⇑N . Again by definition of
traces of modes t ∈ LN . ✷

Theorem 4 (Submode compositionality) Given a mode context M [.] for Q and a mode P such
that P � Q. Then M [P ] � M [Q].
Proof: Let t ∈ M [P ]. Then by Theorem 1, t⇑P ∈ LP . By compatibility and refinement hypothesis
it follows that t⇑Q ∈ LQ. Hence, by Theorem 1, t ∈ P [Q]. ✷

Theorem 5 (Context Compositionality) Given a mode context M [.] for P and suppose that
M [.] � N [.]. Then M [P ] � N [P ].
Proof: Let t ∈ LM [P ]. Then by Theorem 1, t ∈ LM [.]. Using now the hypothesis it follows that
t ∈ LN [.]. Since t⇑P ∈ LP we conclude by Theorem 1 that t ∈ LN [P ]. ✷

The refinement rules are explained visually in Figure 10. They allow us to decompose the proof
obligation into refinement of submodes in the most general context, and refinement of contexts
under the most general submode.

5.4 Compositionality of Agents

As with modes, the operations on agents are compositional with respect to refinement. Let us first
define refinement for agents.
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Agent refinement. An agent A and an agent B are said to be compatible, if A.Vg = B.Vg. Agent
A refines a compatible agent B, denoted A � B, if LA ⊆ LB.

By using Theorem 2 we show below that all agent operations are compositional with respect to
refinement.

Theorem 6 (Compositionality of hiding) If A � B then A\V � B\V .
Proof: Let t ∈ LA\V . Then by Theorem 2, there is a trace u ∈ LA, such that t = u[A.V \V ]. By
hypothesis u ∈ B, too, and therefore by Theorem 2, t ∈ LB\V . ✷

Theorem 7 (Compositionality of renaming) If A � B then A[V := W ] � B[V := W ].
Proof: Let t ∈ LA[V :=W ]. Then by Theorem 2, there is a trace u ∈ LA, such that t = u[V := W ].
By hypothesis u ∈ B, too, and therefore by Theorem 2, t ∈ LB[V :=W ]. ✷

Theorem 8 (Compositionality of composition) If A � B and A is composable with C then
B is composable with C and A‖C � B‖C.
Proof: The composability of B with C is easy to prove and therefore left out. Let t ∈ LA‖C .
Then by Theorem 2, u[A] ∈ LA and u[C] ∈ LC . By hypothesis u[B] ∈ LB, too, and therefore by
Theorem 2, t ∈ LB‖C . ✷

6 Conclusions

We have presented a new modular semantics for hierarchical hybrid systems. The semantics pre-
serves data-flow dependencies between variables in the model, making it less non-deterministic than
the pure interleaving approach of [AGLS01, ADE+03]. As a result, behaviors of a model are more
natural from the user perspective.

The semantics is compositional both with respect to the system architecture (parallel agents
and their subagents) and the system behavior (modes and their submodes). We have introduced
the notion of refinement between the system components - both modes and agents - and showed
that, in the proposed semantics, composition of components preserves refinement.

We are currently working on an extension of the semantics that will allow us to incorporate,
in a controlled manner, the results of [AGLS01] into the framework presented here. We note that
the semantic approach advocated in this paper, which preserves dependencies between updates
of variables in the model, provides a natural semantic foundation for systems in this concurrent
processes are tightly coupled, such as threads running on the same processor and communicating
through shared variables. For more loosely coupled systems in which processes communicate by
exchanging messages, the interleaving model used in [AGLS01] appears more natural. We believe
that combining the two approaches together will allow us to capture heterogeneous systems, in
which both models of communication are used. By excluding certain variable dependencies from
the dependency graphs, we should be able to naturally represent systems such as GALS (globally
asynchronous, locally synchronous) [BCCSV03]. In doing this, we have to overcome two challenges.
On the semantic level, the semantics has to remain compositional after the new features are added.
This will likely lead to restrictions on how heterogeneity is manifested in the model. On the
syntactic level, we have to determine how the communication model should be reflected in the
system model. Our modeling approach does not represent the dependency graph directly. New
syntactic classifiers for variables or data flows between variables will have to be introduced in order
to capture heterogeneity.
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