
Hybrid Sequence Charts

Radu Grosu, Ingolf Krüger and Thomas Stauner∗

Institut für Informatik, Technische Universität München

D-80290 München, Germany

http://www4.in.tum.de/~{grosu,kruegeri,stauner}/

Email: {grosu,kruegeri,stauner}@in.tum.de

Abstract

We introduce Hybrid Sequence Charts (HySCs) as a visual description tech-

nique for communication in hybrid system models. To that end, we adapt

a subset of the well-known MSC syntax to the application domain of hybrid

systems. The semantics of HySCs is different from standard MSC semantics.

Most notably, we use a shared variables communication model and assume

the existence of a continuous, global clock. Similar to their classic counter-

part HySCs can be advantageously used in the early phases of the software

development process. In particular, in the requirements capture phase, they

improve the dialog between customers and application experts. They comple-

ment existing formalisms like hybrid automata by focusing on the interaction

between the system’s components. We outline the key concepts and the usage

of HySCs along an example, the specification of an electronic height control

system. Then we define the formal semantics of their basic elements.

∗This work was supported with funds of the Deutsche Forschungsgemeinschaft under the Leibniz

program within project SysLab, and under reference number Br 887/9 within the priority program

Design and design methodology of embedded systems.

1

1 Introduction

Designing software for embedded systems usually requires to take the characteris-

tics of the system’s environment into consideration, e.g. in order to derive timing

requirements. Often the environment is, to a large extent, determined by contin-

uous processes. Sometimes the system itself also exhibits discrete and continuous

behavior. The description of the embedded system together with its environment

therefore necessitates hybrid description techniques, i.e. techniques which are ad-

equate for mixed discrete and continuous systems. Hybrid systems generalize real

time systems by considering further physical quantities apart from time.

In recent years a considerable number of description techniques has been developed

for the specification of hybrid systems. Some of them are based on Petri nets

[17], others use logic [11] and yet others are based on some kind of automata [1,

12, 9]. However, little work has been done to visualize the behavior of a hybrid

system together with the communication between its components. Yet, a thorough

integration of interaction-based and state-based description techniques is essential

if we wish to support and improve today’s development processes for hybrid and,

more generally, embedded systems.

We regard a hybrid system as consisting of a set of time-synchronously operating

components, each encapsulating a private state and communicating with the other

components over directed channels. The behavior of a component is characterized,

as intuitively shown in Fig. 1, top left, by periods where the values on the channels

change smoothly and by time instants at which there are discontinuities. In our

approach the discontinuities are caused by discrete actions. The smooth periods

are caused by analog activities. Two attempts at visualizing the evolution of the

values of a hybrid system’s channel- and private variables are trajectories and timing

diagrams. Their deficiencies motivate our introduction of Hybrid Sequence Charts,

below.

Trajectories. Trajectories are a straightforward visualization approach that di-

2

rectly depicts the evolution of a system’s variables over time (Fig. 1, top left). While

this approach is simple and effective it can only depict one special case, namely the

one in which all variables evolve as in the diagram. It cannot highlight qualitative

differences between system states. Visualization by trajectories is supported by

development tools like MATLAB [16].

Timing diagrams. A first step from single trajectories to an abstract descrip-

tion of sets of trajectories is obtained by partitioning for each variable the time

period under consideration into qualitatively equivalent intervals and by only giv-

ing a predicate specifying the variable’s evolution within the respective interval.

In the diagram of Fig. 1, bottom left, for example, it is only important to know

whether variable fHeight is inside or outside a given tolerance interval. Therefore,

the concrete trajectory fHeight(t) from Fig. 1, top left, can be abstracted to the

sequence of intervals with the predicates greater , meaning that fHeight is outside

the tolerance interval, inside, which is abbreviated by i. in the figure and means

that fHeight is inside the tolerance interval, the unlabeled interval, meaning that

the value of fHeight is arbitrary, and inside again.1 Note that the resulting diagram

has some similarity with timing diagrams [3], which are widely used in hardware

design, and the constraint diagrams introduced in [6]. Causality can be indicated

in the diagram by drawing vertical arrows between the abstract time axes of two

variables if a change in the first variable is relevant, i.e. may provoke a qualitative

change, for the evolution of the second one.

Hybrid Sequence Charts. In this paper we go a step further and also abstract

from the individual variables in the graphical representation of system behavior.

Thus, instead of partitioning and giving predicates for individual variables, we

project the trajectories of all variables of one system component on a single abstract

time axis. One axis for each component is appropriate, because we are interested in

the sequence of qualitative states that each component traverses. Such a qualitative

state of a component is usually characterized by a predicate over all its variables
1Label c. is used as abbreviation for constant in the figure.

3

[

[

)[

[
)

[

[

[[[[[[
))))))
[w

time

)fHeight

dReset

aHeight

decrease

greater

constant

constant

i. inside

c. constant

increase increase

aHeight

fHeight

dReset

w

Filter D Control

set

t_o

reset
dReset

inTol

down

inside

greater a_dec

inside a_const

d2i

hysc d2i

Figure 1: Description techniques for the behavior of hybrid systems.

(see Fig. 1, right). This projection was motivated by notations for component inter-

action that have gained increasing popularity in the domain of telecommunication

systems (cf. [10]), and, more generally, in object-orientation (cf. [13, 5, 4]). We are

aware, of course, that the semantic models – if existent – of such notations do not

necessarily match the time-synchronous hybrid system model with communication

proceeding over shared channels that we have sketched above. Yet, we believe that

by adapting notation from, say, MSCs (cf. [10]) to the application domain we con-

sider here, we can carry over much of the intuition that has contributed significantly

to the popularity of sequence charts in general. In fact, we consider capturing inter-

action sequences among system components an important step of any development

process. Therefore, we borrow a subset of the syntax of MSC-96 (cf. [10]) for the

specification of interaction sequences within hybrid systems2; we call the resulting

notation “Hybrid Sequence Charts (HySCs)”. In particular, we use arrows to de-

note events; arrows are directed from the originator of the event to its destination.

Angular boxes denote conditions on the component’s variables; they may span a

single instance axis (local conditions), or multiple axes (non-local condition), and

2This has the further advantage that developers can use standard syntax-directed graphic

editors for their specifications.

4

even all component axes (global condition). The remaining syntactic elements in

Fig. 1, right, are introduced later. Every HySC specifies a typical evolution, or

scenario, of the system under consideration in connection with its environment over

some finite time interval. If the environment does not behave as depicted in the

HySC, no statement is made about the system’s evolution. By composing such

typical evolutions appropriately, we can achieve a specification of the system’s be-

havior upon different inputs from the environment. Even a complete specification

covering all possible inputs is possible. We use High-level HySCs (HHSCs), whose

syntax we also borrow in part from MSC-96, to specify the composition of HySCs.

To make HHSCs applicable in the context of hybrid systems we provide notation

for expressing preemption, which is an important concept for embedded systems.

HySCs in the development of hybrid systems. Just as MSCs [10] or sequence

diagrams [13] in the discrete case, HySCs can be used for requirements specifica-

tion, interface specification, test-case specification, validation, and documentation.

Due to their intuitive appearance they are particularly well-suited for capturing

and specifying system requirements in the dialog among engineers from different

disciplines, as well as among engineers and customers.

Overview. The rest of this paper is organized as follows. In Section 2 we introduce

HySCs informally and explain our understanding of them. In Section 3 we present

an example hybrid system; in particular, we discuss the key parts of its formal

specification with HySCs in Section 3.2. Section 4 contains the formal semantics

of the basic elements of HySCs. We summarize our work, and draw conclusions in

Section 5.

2 Hybrid Sequence Charts - HySCs

We start with a short introduction to the syntax and informal semantics of basic

HySCs that consist of interactions, conditions, and coregions only. Then we cover

HHSCs, which allow us to specify hierarchic “roadmaps” through sets of HySCs.

5

1

1q
p n

mq

p

...

A

...
...

...

C

...
...

Cond

...
...

B

Figure 2: Basic segment of a HySC.

Basic HySCs. Basic HySCs contain one vertical axis, an abstract time axis,

for each component, or instance, under consideration. Time advances from top

to bottom. Sequences of incoming and outgoing arrows partition the time axis of

each component into intervals. According to our view of hybrid systems, which we

have sketched in Section 1, we require the existence of a global clock, and assume

that communication occurs without delay. We assume further that the components

occurring in the HySC are connected by channels along which message exchange

occurs. Hence, a HySC is built up from sequences of segments of the form given

in Fig. 2. Each such segment denotes the execution of an action by component B.

The action is triggered by the occurrence of all events p1 through pn; we say that

the action guard becomes true. The result of executing the action body is that B

simultaneously emits the events q1 through qm, and changes its state to the one

specified in the condition labeled Cond in Fig. 2. Actions in hybrid systems usually

depend on the values of continuous variables; therefore, we consider action guards

and action bodies carefully, below.

Before we regard the actions in detail, it is necessary to explain our classification of

variables. In our view each component has a set of input variables, which are written

by the environment or by other components and a set of controlled variables that

are written by the component itself. The set of controlled variables of a component

is further partitioned into a set of private variables, whose elements are only visible

to the component, and a set of output variables, whose elements may be read by

6

the other components or the environment. The input and the output variables are

the observable variables.

The action guard p1 ∧ . . . ∧ pn is a conjunction of predicates pi. Each predicate

pi that labels an arrow from a component, say A, to B may depend on the old

and current values of the output variables of A that are input by B and optionally

on the old values of some other private variables of B3. The arrow indicates the

moment of time (the event) when pi becomes true. A similar arrow must be drawn

if pi becomes false again, before the action is executed. However, no second arrow

needs to be drawn if the predicate possibly only holds for a single point in time,

i.e. if the predicate depends on the occurrence of an event or on the exact value of

a continuous variable.

The action body q1 ∧ . . .∧ qm is also a conjunction of predicates qi. Each predicate

qi that labels an arrow from B to, say, A specifies the current values for the output

variables of B that are input by A. These values may depend on the current value

of all input variables and on the old and current value of all controlled variables of

sender B.

As soon as all conjuncts of the action guard are true, the action body is executed.

All the changes that it causes on the output variables simultaneously become visible

to those other components which read these variables. Simultaneity is expressed

graphically by a coregion, i.e. by drawing a region of the time axis of one component

as a dashed line; all the predicates in this coregion are evaluated simultaneously (see

Fig. 2).

We allow the use of predicates as condition labels to indicate a component’s state,

and adopt the convention that no new condition symbol is drawn if the control-state

does not change. Conditions ranging over a set of components are also allowed,

and express a global state of the referenced components. A local as well as such
3Actually, the old values of the output variables of A that are input by B are kept in private

variables of B.

7

a hierarchic condition Cond remains valid up to the next condition symbol that

references the same or a superset of the components referenced by Cond .

Events can be expressed in terms of (event) predicates by toggling boolean variables.

For example, we write e?! for e′ = ¬e meaning that the current value of e (denoted

by e′) is the negation of the old value (denoted by e) [2, 9]. The old value of

a variable e at a time t is defined as the limit from the left limu↗te(u) for this

variable, i.e. as the value just before t.

Note that an arrow from A to B can in general be labeled with the conjunction of a

part of an action body qi of A and a part of an action guard pj of a different action

of B. This may be the case if the current values specified for the output from A to

B are relevant for pj .

A qualitative state in a hybrid system is characterized by a set of trajectories that

are allowed for the variables in that state. Therefore, the condition after an action

in a HySC not only determines the next qualitative state, but it also specifies how

input and controlled variables of the component are expected to evolve in this

qualitative state. Controlled variables may only evolve continuously, because in our

view discontinuities may only be caused by qualitative changes, which in turn result

from actions.

HySCs can also be used to specify timing requirements like “at least time ts passes

between the arrows a and b”, as proposed in [14] for timed MSCs. Basically, this

is achieved by local variables which evolve in pace with global time and which

measure durations. For instance, a timeout can be specified by using a private

variable, which evolves in pace with global time, and an action guard that becomes

true when the variable has reached a certain threshold. Setting the variable to a

certain value corresponds to resetting the timer. We therefore use the set-timer and

timeout symbols borrowed from MSC-96 to denote this (see Section 3.2).

High-level HySCs (HHSCs). HySCs can be used within HHSCs to specify the

complete behavior of a system. For this complete behavior description HHSCs pro-

8

vide operators for the concatenation of HySCs, the choice between HySCs and the

iteration of HySCs. The choice is controlled by global conditions, i.e. by conditions

ranging over all components. A branch of a choice in the HHSC may be taken iff

the condition guarding it is currently true. The system behavior is then determined

by the HySC following the branch operator. It must start with the same condition

as the selected branch. Syntactically, the starting point in an HHSC is represented

by an outlined, downward triangle, an end-point (if it exists) by a filled, upward

rectangle. References to other HySCs appear in rounded boxes. Conditions are

depicted as in basic HySCs. Lines (or arrows) determine the “road-map”, i.e. the

sequence in which the interactions appearing in the referenced HySCs may occur

(see Section 3.2 for examples).

In this paper we introduce the additional concept of preemption to HySCs, which is

not supported by the popular notations for component interaction, like [10] or [13].

Graphically preemption is depicted as a labeled, dashed arrow between two HySC

references in an HHSC. Its meaning is that the system behavior is as determined by

the HySC reference that is the arrow’s source, as long as the preemptive predicate,

to which the arrow’s label refers, is false. As soon as the predicate becomes true,

the system behavior is as specified by the HySC reference to which the arrow is

pointing. Preemption is widely used in the programming of embedded systems. We

believe that this is a highly important concept.

3 HySCs in Practice

3.1 An Electronic Height Control System

To explain the capabilities and usage of HySCs, we formally specify an electronic

height control system (EHC), taken from a former case study carried out together

with BMW, and discuss the key parts of this specification. The purpose of the

EHC is to control the chassis level of an automobile by a pneumatic suspension.

9

EHC

Filter

bend

sHeight

aHeight

fHeight

resetdReset

Control

D

Figure 3: Architecture of the EHC.

The abstract model of this system, which regards only one wheel was first presented

in [15]. It basically works as follows: whenever the chassis level sHeight is below a

certain lower bound, a compressor is used to increase it. If the level is too high, air

is blown off by opening an escape valve. The chassis level is measured by sensors

and filtered to eliminate noise. The filtered value fHeight is read periodically by

the controller, which operates the compressor and the escape valve and resets the

filter when necessary. A further sensor bend informs the controller whether the

car is going through a curve. Periodical sampling of fHeight occurs in dependence

of a timer, which is local to the controller. Besides the environment, the basic

components of the system are the filter and the controller (see Fig. 3). The escape

valve and the compressor are modeled within the controller. The component labeled

D introduces a delay and ensures that the feedback between the filter and the

controller is well-defined. A specification of the EHC with HyCharts, a state-based

description technique for hybrid systems, can be found in [9].

3.2 Specification with HySCs

We specify behavior required by the EHC by using HySCs. First, we present HHSCs

for the top-level requirements. Then, we consider one of the basic HySCs in detail.

3.2.1 High-level HySCs (HHSCs)

The top-level description of the EHC is given by an HHSC, as shown in Fig. 4, left.

On this abstraction level, we distinguish between two scenarios: the car is either

inside a curve or going straight. The behavior inside a curve is characterized by the

10

n2bb2n

inBend

inBendC

outBend

outBendC

hysc EHCroot

outBendC

i2i i2o o2o

inTol

o2i

outTol

hysc outBend

Figure 4: The HySCs EHCroot and outBend.

HySC inBend. The behavior outside a curve is characterized by the HySC outBend.

Preemption. The EHC switches between these two behaviors each time the

boolean value provided by the variable bend , which is controlled by the environment,

is toggled. In other words, toggling bend is a preemption event. To describe this

situation we use the preemption mechanism outlined in Section 2. Recall that we use

a special kind of arrows, preemption arrows, to denote preemption in HHSCs, which

is represented visually by a dashed arrow connecting a source HySC reference to a

destination HySC reference, and labeled by the preemptive predicate. Intuitively,

any prefix of the traces described by the source HySC reference may be followed by

a time instant at which the preemptive predicate is true and then by a trace of the

destination HySC reference. The labels inBend and outBend in the rounded HySC

boxes refer to further HySCs. The labels inBendC and outBendC in the angular

condition boxes refer to the condition predicates bend =True and bend =False,

where variable bend signals whether the car is in a curve. The labels b2n and n2b

both stand for the event predicate b2n≡ n2b≡ bend?!, i.e. for the occurrence of an

event which toggles the value of bend .

(Nondeterministic) choice. The HHSC outBend describes the behavior of the

EHC as long as the car is outside a curve (Fig. 4, right). On this level we use

the nondeterministic choice operator, graphically depicted as branching arrows, to

distinguish between two cases. In the first case, the compressor and the escape valve

11

are off, because the value of fHeight , which was read last, was inside the tolerance

interval. A further choice operator splits this case into two sub-cases: If fHeight

remains inside the interval, the behavior is given by the HySC i2i. If the chassis

level gets outside the interval, then we have a behavior as described by the HySC

i2o. The second case describes the behavior if compressor or escape valve are on,

because of the last value of fHeight being outside the tolerance interval. This part

of the HySC is symmetric to the first one.

The labels inTol and outTol in the HySC refer to the predicates d
dtaHeight = 0

and d
dtaHeight �= 0, respectively, which characterize global states of the system.

Variable aHeight (actuator height) models how the chassis level is influenced by the

compressor and the escape valve. If the derivative of aHeight is zero, i.e. aHeight

remains constant, then the chassis level is not modified by the compressor or the

escape valve.

Feedback. After the behavior specified by the HySCs i2i, i2o, o2i and o2o

is finished, a new cycle starts in which we again have to distinguish the cases

from above. This is modeled by the feedback arrows in the HySC leading from the

bottom of it up to those points in the HySC from where the following behavior must

continue. Thus, feedback allows us to specify infinite behavior.

Finite Behavior. The HHSCs i2o and o2i are examples for HySCs that do not

specify infinite behavior. Instead of feedback arrows, an arrow leading to a black

triangle is drawn in them to mark their end. As they are fairly straightforward, we

omit them in this paper and refer the reader to [7].

3.2.2 Basic HySCs

All the basic HySCs referenced directly or indirectly by HHSC outBend describe

the behavior of the EHC in the interval between two expirations of the Controller’s

timer. In the following we will analyze HySC i2d in detail. This HySC describes

the scenario in which the chassis level increases from within the tolerance interval

12

Filter D Control

inTol

down

inside

t_o

setgreater

a_const

abv

hysc i2d

Filter D Control

inTol

down

inside

abv

greater

a_const

t+s

hysc i2d

Figure 5: The HySC i2d and its reduction without timeout arrows.

to a value above the upper bound (Fig. 5, left). It is referenced by HHSC i2o.

Condition predicates. HySC i2d starts with the condition box labeled inTol.

As mentioned in the previous section this label refers to predicate d
dtaHeight =

0. Because the condition box ranges over all components of the diagram it is a

global condition. The following conditions inside and a const range over only

one component. Hence, they are local conditions. They add some more detail on

the evolution of the variables. Label inside refers to predicate fHeight ∈ [lb, ub],

where lb and ub are constants denoting the lower and upper bound of the tolerance

interval. Label a const stands for d
dtaHeight = 0 ∧ w ≤ ws ∧ d

dtw = 1. The first

conjunct of this condition means that the chassis level is not modified by aHeight ,

the second conjunct means that variable w is less than constant ws, the sampling

period, and the third conjunct provides that w evolves in pace with the global time,

i.e. it is a clock variable or a timer. No local predicate is given for component D.

By convention this means that it implicitly has local predicate True.

Events. The very moment fHeight reaches the upper bound of the tolerance

interval is given by the horizontal arrow labeled by abv, which stands for event

predicate fHeight ≥ ub. After the event abv has occurred, the chassis level is

above the tolerance interval. Again, this property (or interval invariant) is given

by a local condition predicate, the condition predicate greater, which stands for

13

fHeight ≥ ub.

Timers. The control component senses that the chassis level is too low, only when

the timer has expired, i.e., with some delay. As a consequence, neither the escape

valve, nor the compressor are actuated before the expiration. Correspondingly, the

local condition a const continues to hold for the controller.

In the diagram we draw the timeout and set-timer arrows t o and set borrowed

from MSC-96 to represent an event the control component sends to itself. Predicate

t o stands for w = ws, i.e. the timer has reached the threshold, and set stands for

w′ = 0 which starts a new sampling period by resetting the timer. On the level of

semantics these arrows can be reduced to a single arrow labeled t+s pointing from

the axis of the control component to itself (see Fig. 5, right). The label refers to

event predicate w = ws ∧ w′ = 0.

Scoping of conditions. As mentioned previously, conditions remain valid until

the next condition on the same or on a higher level of hierarchy is given. Thus,

before the timer has expired, the overall behavior of the EHC still has to satisfy

the global condition inTol, because no other global condition occurred up to that

point. Correspondingly, the set of behaviors characterized by the conjunction of

the predicates inside ∧ a const and by greater ∧ a const is a subset of the

behaviors characterized by inTol.

4 Semantics of HySCs

Suppose we are given a set of HySCs with the components (or instances) C1, . . . ,

Cn. For each component Ci, we assume its interface, i.e. the set of input and

controlled variables, to be given. In the following let Si be the data space as-

sociated with the controlled variables of component Ci. For uniformity, let S0

be the data space associated with the variables controlled by the environment

and S = S0×. . .×Sn. Then we define the semantics of a HySC M to be a set

14

[[M]] ⊆ SR+ × R
∞
+ of pairs (ϕ, t) where ϕ ∈ R+→S is a piecewise smooth function

(also called a dense communication history or dense stream) that exhibits the be-

havior required by M inside the time interval [0, t]. If t =∞ then the behavior of ϕ

is constrained by M along the whole time axis, i.e., the HySC M never terminates.

R
∞
+ is defined as the set of the nonnegative real numbers, R+, plus the special

element ∞. We say that a function f ∈ R+→Q is piecewise smooth iff every finite

interval on R+ can be partitioned into finitely many left closed and right open

intervals such that on each such interval f is infinitely differentiable for Q = R

or f is constant for Q �= R. Infinite differentiability allows us to assume that all

differentials of f are well-defined. A tuple of functions is infinitely smooth iff all its

components are. For a possibly infinite interval A ⊂ R+ we write QA to denote the

set of functions from A to the set Q that are piecewise smooth on A.

With writing V = S1×. . .×Sn for the data space of the controlled variables, we

can also interpret the semantics of a HySC [[M]] as a relation between the dense

histories of the input variables, the dense histories of the controlled variables and

the considered time intervals, i.e., [[M]] ⊆ S
R+
0 ×V R+ ×R

∞
+ . We do not demand that

this relation is total in the set of input streams S
R+
0 . In fact HySCs may constrain

the evolution of the input variables. This takes into account that a single HySC

describes a system’s response to a particular input from the environment.

Zenoness. Specifications which demand that a system performs infinitely many

discrete moves within a finite interval are called zeno. Like with other powerful

description techniques for hybrid systems, such as hybrid automata [1], it is possible

to write down zeno specifications with HySCs. For instance, zenoness can result

from specifying that the system always reacts discretely when a continuous input

signal crosses a boundary value. In a high-level specification technique we do not

want to exclude such specifications which certainly make sense for many input

signals. Hence, zeno behavior has to be ruled out later in the design process.

15

4.1 Predicates

Condition predicates. The condition predicate p that holds in a certain section

of the abstract time axes of all the components in a HySC can be derived as the

conjunction of all, local, and hierarchic condition predicates that are valid in this

section. The derived condition ranges over all the components. Its semantics is

a relation [[p]] ⊂ ⋃
A∈Itv SA

0 × V Ac , where Itv is the set of possibly infinite right-

open intervals starting from zero, and, for a set X , the notation XAc denotes the

set of piecewise smooth functions XA which furthermore are continuous, hence

XAc ⊂ XA. This type of the predicates’ semantics permits discontinuities in the

input, while the controlled variables must still evolve continuously. This reflects

that discrete jumps in the evolution of the controlled variables are interpreted as

events, hence they are only allowed when an event arrow is drawn in the HySC.

Furthermore, the type allows that a condition predicate specifies finite behavior of

varying length.

Event predicates. The semantics of the event predicates e which label the arrows

is a relation between the old and the new values of the variables [[e]] ⊂ S×S, where

we demand that [[e]] is topologically closed (see Section 4.2 for the justification of this

restriction). The semantics of simultaneous events, which are graphically denoted

by arrows emanating from or pointing to a dashed region of the abstract time axis

of a component in a HySC, is defined as the conjunction of the individual predicates

of all the simultaneous events within the dashed region under consideration. Those

variables for which the event predicates do not specify new values remain constant.

4.2 Basic HySCs

The basic idea behind the semantics of a HySC M is that it defines a set [[M]] of

tuples such that for each (ϕ, t) ∈ [[M]] the dense history ϕ behaves inside the time

interval [0, t] as required by M and arbitrarily outside of [0, t]. In the definition of

[[M]] it is useful to generalize the lower bound 0 to an arbitrary value u ∈ R+ and

16

to work with sets [[M]]u where the dense histories ϕ are constrained inside the time

interval [u, t]. In the following we define [[M]]u inductively on the structure of M .

Then obviously the semantics of a HySC M is [[M]] def= [[M]]0.

Neutral HySC. HySCs without events act as the neutral elements with respect

to our semantics. All the conditions in them are ignored, and no time elapses in

them: [[M]]u
def= {(ϕ, u) | ϕ ∈ SR+}

Single event HySC. Suppose p is the condition predicate that results from the

conjunction of all the condition predicates that are valid in the section of the HySC

before event e happens. Note that e may be the conjunction of a set of simultaneous

events. [[M]]u is defined as follows:

[[M]]u
def= {(ϕ, t) ∈ SR+ × R+ |

t = min{v > u | (limx↗vϕ(x), ϕ(v)) ∈ [[e]]} ∧

ϕu↓[0,t−u) ∈ [[p]]↓[0,t−u) }

where min ∅ def= ∞, ϕu(x)
def= ϕ(u + x) and ϕ↓δ denotes the restriction of a dense

stream to the time interval δ. Restriction is extended to tuples of dense streams

in a componentwise style. To constrain ϕ inside [u, t] without violating the time’s

origin assumption we constrain the translation ϕu of ϕ by the condition predicate

p inside the interval [0, t − u).

The definition requires that a finite, non-zero amount of time passes before the

event becomes true. The HySC then terminates at the first time instant t at which

e is true. Provided e does not hold initially, this first time instant, defined as

the minimum of a set, is guaranteed to exist, because [[e]] is topologically closed.

(See [8] for a proof under similar assumptions.) Demanding that some time passes

before the event occurs is motivated by the visual representation. If we wanted to

specify that no time passes between two consecutive events, we would have to use

simultaneous events.

Note that ∞ �∈ R+ and therefore if t = ∞ then [[M]] = ∅. Thus, the semantics

17

requires that the event eventually occurs, which is also motivated by the visual

representation. The event arrow in the diagram would be misleading, if we allowed

it to never occur.

Sequential composition. The sequential composition of the HySCs M1 and M2,

textually denoted as M1;M2, is syntactically well formed only if M1 ends with the

global condition with which M2 starts. In particular, this includes the case that M1

and M2 are successive parts of a single, larger HySC. The semantics is given only

for well formed terms.

[[M1;M2]]u
def= {(ϕ, t) ∈ SR+×R

∞
+ | ∃v ∈ R+. (ϕ, v) ∈ [[M1]]u ∧ (ϕ, t) ∈ [[M2]]v}

Note that whereas the HySCM1;M2 may describe an infinite computation (t ∈ R
∞
+)

any of its prefixes exhibiting the behavior required by M1 has to be finite (v ∈ R+).

4.3 HHSCs

Due to space limitations the reader is referred to [7] for the detailed semantics of

nondeterministic choice, feedback and (nested) preemption. Basically, the semantics

of feedback is obtained by a fixed point construction. The definition for preemption

is rather technical and in large parts similar to the semantics definition for single

event HySCs and sequential composition. The semantics of nondeterministic choice

is fairly straightforward.

5 Conclusion

Borrowing from the standardized syntax of MSC-96, we have introduced a de-

scription technique that allows the system developer to specify the communication

between the components of a hybrid system graphically. Basically, this is achieved

by giving precise meaning to the conditions and events in HySCs. Motivated by the

specific needs of embedded systems we have, furthermore, included a construct into

our definition of HHSCs that allows us to specify preemption. We demonstrated

18

the usage of HySCs along a non-trivial example and defined their formal semantics.

HySCs are more abstract than drawing trajectories of the system variables, and are

more detailed than other forms of graphical interaction specifications that do not

handle continuous variables, e.g. [10, 13]. Thus we believe they are a good supple-

ment to state-based hybrid techniques like hybrid automata or HyCharts [1, 9], just

as ordinary sequence diagrams are beneficial in the development of discrete systems.

In particular, they seem to be well-suited for bridging the gaps between require-

ments capture, specification, and later phases of system development. Note that,

apart from their syntax, HySCs are substantially different from standard MSCs.

Acknowledgment. We thank Manfred Broy, Jan Philipps and Olaf Müller for

their constructive criticism after reading a draft version of this paper.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,

A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid sys-

tems. Theoretical Computer Science, 138:3–34, 1995.

[2] R. Alur and T.A. Henzinger. Reactive modules. In Proc. of the 11th An-

nual Symposium on Logic in Computer Science. IEEE Computer Society Press,

1996.

[3] T. Amon, G. Borriello, T. Hu, and J. Liu. Symbolic timing verification of timing

diagrams using presburger formulas. In Proc. of the 34th Design Automation

Conference. ACM, 1997.

[4] M. Broy, C. Hofmann, I. Krüger, and M. Schmidt. A graphical description

technique for communication in software architectures. Technical Report TUM-

I9705, Technische Universität München, 1997.

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. A System

of Patterns. Pattern-Oriented Software Architecture. Wiley, 1996.

19

[6] C. Dietz. Graphical formalization of real-time requirements. In Proc.

FTRTFT’96, LNCS 1135. Springer Verlag, 1996.

[7] R. Grosu, I. Krüger, and T. Stauner. Hybrid sequence charts. Technical Report

TUM-I9914, Technische Universität München, 1999.

[8] R. Grosu and T. Stauner. Modular and visual specification of hybrid systems

- an introduction to HyCharts. Technical Report TUM-I9801, Technische Uni-

versität München, September 1998.

[9] R. Grosu, T. Stauner, and M. Broy. A modular visual model for hybrid systems.

In Proc. FTRTFT’98, LNCS 1486. Springer-Verlag, 1998.

[10] ITU-TS. Recommendation Z.120 : Message Sequence Chart (MSC). Geneva,

1996.

[11] L. Lamport. Hybrid systems in TLA+. InHybrid Systems, LNCS 736. Springer-

Verlag, 1993.

[12] N.A. Lynch, R. Segala, F.W. Vaandrager, and H.B. Weinberg. Hybrid I/O

automata. In Hybrid Systems III, LNCS 1066. Springer-Verlag, 1996.

[13] Unified modeling language, version 1.1. Rational Software Corporation, 1997.

[14] I. Schieferdecker. Proposal for time and performance in MSCs. In Proc. ITU-T

Meeting SG10, Geneva, 1998.

[15] T. Stauner, O. Müller, and M. Fuchs. Using HyTech to verify an automotive

control system. In Proc. HART’97, LNCS 1201. Springer-Verlag, 1997.

[16] The MathWorks Inc. MATLAB. http://www.mathworks.com/products/

matlab/, 1999.

[17] R. Wieting. Hybrid high-level nets. In Proc. of the 1996 Winter Simulation

Conference, Coronado, California, USA / Charnes, pages 848–855, 1996.

20

