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Abstract. We show how to automatically learn the class of Hybrid Au-
tomata called Cycle-Linear Hybrid Automata (CLHA) in order to model
the behavior of excitable cells. Such cells, whose main purpose is to am-
plify and propagate an electrical signal known as the action potential
(AP), serve as the “biologic transistors” of living organisms. The learn-
ing algorithm we propose comprises the following three phases: (1) Geo-
metric analysis of the APs in the training set is used to identify, for
each AP, the modes and switching logic of the corresponding Linear Hy-
brid Automata. (2) For each mode, the modified Prony’s method is used
to learn the coefficients of the associated linear flows. (3) The modified
Prony’s method is used again to learn the functions that adjust, on a
per-cycle basis, the mode dynamics and switching logic of the Linear
Hybrid Automata obtained in the first two phases. Our results show
that the learned CLHA is able to successfully capture AP morphology
and other important excitable-cell properties, such as refractoriness and
restitution, up to a prescribed approximation error. Our approach is fully
implemented in MATLAB and, to the best of our knowledge, provides
the most accurate approximation model for ECs to date.

1 Introduction

Hybrid automata [2,19] are an increasingly popular modeling formalism for sys-
tems that exhibit both continuous and discrete behavior. Intuitively, Hybrid
automata (HA) are extended finite-state automata whose discrete states corre-
spond to the various modes of continuous dynamics a system may exhibit, and
whose transitions express the switching logic between these modes.

Traditionally, HA have been used to model embedded systems, including au-
tomated highway systems, air traffic management, embedded automotive con-
trollers, robotics, and real-time circuits. More recently, they have been used
to model and analyze biological systems, such as cellular cycles and immune re-
sponse [3], bio-molecular networks [1], gene-regulatory networks [7,17,23],
protein-signaling pathways[11], and metabolic processes [4]. The hybrid-system
metaphor has also been used to develop algorithms for large-scale simulation of
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biological systems [15]. Biological systems are intrinsically hybrid in nature: bio-
chemical concentrations may vary continuously, yet discrete transitions between
distinct states are also possible.

Excitable cells (ECs) are a typical example of biological systems exhibiting
hybrid behavior: transmembrane ion fluxes and voltages may vary continuously
but the transition from the resting state to the excited state is generally con-
sidered an all-or-nothing discrete response. Traditionally, however, the preferred
modeling approach for ECs uses large sets of coupled nonlinear differential equa-
tions. Although an invaluable asset for integrating genomics and proteomics data
to reveal local interactions, such models are not typically amenable to control-
theoretic techniques developed for linear systems, and render large-scale simu-
lation impractical.

In previous work [26,27] we showed that it is possible to construct a concep-
tually simpler HA model for ECs that approximates with reasonable accuracy
their electrical properties. We called these HA Cycle-Linear HA (CLHA) to
highlight their cyclic structure and the fact that, while in each cycle they ex-
hibit linear dynamics, the coefficients of the corresponding linear equations and
mode-transition guards may vary in interesting ways from cycle to cycle.

The manual construction of CLHA, however, proved to be a tedious task, and
the CLHA so derived were tied to a particular type of EC and to a particular
species. Moreover, since recent advances in measuring in vitro the electrical
activity of ECs have resulted in the availability of extensive data sets, it was
natural to turn our attention to the following question: Given a training set of
electrical measurements of an EC, is it possible to automatically learn a CLHA
that approximates the behavior of the EC up to a required error margin?

In this paper we address this question, by presenting a methodology for auto-
matically learning CLHA models for two types of ECs: the squid giant axon and
the guinea pig ventricular cell. To the best of our knowledge, these are the most
accurate approximation models (with per-AP-cycle linear dynamics), developed
for these ECs to date, both in terms of electrical-signal morphology and typical
excitable-cell characteristics such as refractoriness and restitution.

To simplify the process of obtaining training sets, we used virtual measure-
ments obtained by applying the so-called S1S2 -protocol to existing nonlinear
models of these ECs. Extending the method outlined here to in vitro data ob-
tained in the laboratory of the fourth author is a direction for future work.

The learning technique we have developed for CLHA is also of independent
interest, as we learn all aspects of excitable-cell CLHA models up to a given error
margin, including the number of modes; for each mode, the dimension of the state
space and the coefficients of its linear time-invariant dynamics; and all aspects of
the mode switching logic, including the jump conditions, thresholds and resets.
To do so, we use the modified Prony’s method to obtain an exponential fit for
the continuous per-mode linear dynamics. Moreover, in learning the CLHA, we
make no a priori assumptions about the dimension of the state space of the
nonlinear system we are targetting, nor the degree of its input and output.
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We also learn the functions that adjust a CLHA’s mode dynamics and switch-
ing logic on a per-cycle basis. This aspect of our technique is critical in the case
of excitable cells, which exhibit the following restitution property: the longer the
recovery time for an EC, the longer in duration its subsequent action potential.

Organization. The rest of the paper is organized as follows. Section 2 defines
Cycle Linear Hybrid Automata (CLHA). Section 3 describes the requisite biol-
ogy of excitable cells. Our proposed methodology for learning a CLHA from a
given training set is presented in Section 4. In this section, we also present our
results for the training/testing set generated from the highly nonlinear Luo-Rudi
dynamic model previously developed for Guinea Pig ventricular cells. Section 5
discusses related work. Section 6 contains our concluding remarks and directions
for future research.

2 Hybrid Automata

We define Cycle-Linear Hybrid Automata as a restricted class of Structured Hy-
brid Automata [20]. SHA, which are derived from Timed Input/Output Au-
tomata [16], can model a general class of hybrid systems for which the in-
put/output distinction intrinsic to the IOA methodology is ignored. We use a
variable structure to specify states of an automaton. Let X be a set of variables.
A valuation x for X is a function that associates with each x ∈ X a value in its
type. The set of all valuations of X is denoted by val(X). For x ∈ val(X), let x.x
denote the value of the variable x within the state x. A trajectory τ : J → val(X)
specifies the values of all variables in X over a real time interval J . The limit
time of a trajectory τ , written as τ.ltime, is the supremum of the domain of τ .
A state model for X is a collection F of differential and algebraic equations
involving the continuous variables in X such that for every x ∈ val(X), there
exists solution trajectory τ of F that starts from x.

Definition 1. A Structured Hybrid Automaton (SHA) with mode set M is a
tuple A = (X, Q, Θ, A, D, P ), where X is a set of variables, including a special
discrete variable called mode of type M; Q ⊆ val(X) is the set of states; Θ ⊆ Q
is a nonempty set of start states; A is a set of actions, D ⊆ Q × A × Q is a set
of discrete transitions; and P is an indexed family Fi, i ∈ M, of state models.

As usual, we will specify the set of transitions in D corresponding to an action
a ∈ A by a guard predicate Ea and a reset map Ra : X → X . A transition
(x, a,x′) ∈ D is called a mode switch if x.mode �= x′.mode. The set TA of
trajectories of an SHA A is defined as follows: a trajectory τ for X is in TA
if the restriction of τ to the set of continuous variables in X satisfies the state
model Fτ(0).mode, and the restriction of τ to the discrete variables in X remain
constant over the domain of τ . An execution fragment captures a particular
run of A; it is defined as an alternating sequence of actions and trajectories
α = τ0a1τ1a2 . . ., where each τi ∈ T , and if τi is not the last trajectory then
(τi(ltime), ai+1, τi+1(0)) ∈ D.
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The SHA model represents one end of the spectrum of hybrid-system models
where one can specify systems with very general dynamics, and discrete me-
chanics. Linear and rectangular hybrid automata [2], at the other end of the
spectrum, enable powerful analysis techniques by restricting the state models
to linear differential equations. The Cycle-Linear Hybrid Automaton (CLHA)
model was proposed in [25] for describing and analyzing highly nonlinear but
periodic systems, and provides the mathematical basis for the remainder of this
paper. Definition 2 gives a precise semantic definition of this model as restricted
SHA. Informally, a CLHA captures a class of hybrid system where the state
models, reset maps, and guards are all linear but with coefficients that are func-
tions of a discrete state variable called epoch. The epoch variable is reset only
when a particular mode is entered.

Definition 2. A Cycle-Linear Hybrid Automaton (CLHA) with state space Q ⊆
val(X), mode set E × P, and snapshot map S : Q → E, is an SHA with mode
set M satisfying:

1. Variable mode has type M = E × P, and its first component is a discrete
variable of type E referred to as epoch. There is a unique ζ ∈ P that is
visited infinitely many times in any execution with an infinite number of
mode switches.

2. For each (ε, p) ∈ M, Fε,p is a linear state model. For each action a ∈ A,
the guard Ea (reset map Ra) can be expressed as a linear predicate (resp.
function) on X, with coefficients that are functions of epoch.

3. Suppose (x, a,x′) is a mode switch with x.mode = (ε1, p1) and x′.mode =
(ε2, p2), for some ε1, ε2 ∈ E, p1, p2 ∈ P. If p2 = ζ then ε2 = S(x); otherwise,
ε2 = ε1. A mode switch of the first type is called is called an epoch transition.

3 Excitable Cells (ECs)

Action potentials. Excitable cells (ECs) can be viewed as active electrical cir-
cuits with nonlinear behavior, capable of amplifying and propagating electrical
signals. ECs include neurons, cardiac cells, skeletal and smooth muscle cells. In
cardiac cells for example, on each heart beat, an electrical control signal is gener-
ated by the sinoatrial node, the heart’s internal pacemaking region. This signal
is amplified and propagated as an electrical wave along a prescribed path, excit-
ing cells in the main chambers of the heart (atria and ventricles) and assuring
synchronous contractions. At the cellular level, the electrical signal is a change
in the potential across the cell membrane caused by different ion currents flow-
ing through the cell membrane. This electrical signal for each excitation event
is known as an action potential (AP). A typical AP for Guinea-Pig ventricular
cells is shown in Figure 1(a). Its morphology is usually defined as a sequence
of six phases: stimulated (S), upstroke (U), early repolarization (E), plateau (P),
final repolarization (F), and resting (R).

For non-pacemaking ECs, APs are externally triggered events: a cell fires
an AP as an all-or-nothing response to a supra-threshold stimulus, and each
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Fig. 1. (a) AP and its phases. (b) Restitution curve. (c) APD, DI and S1S2 protocol.

AP follows the same sequence of phases and maintains approximately the same
magnitude regardless of the applied stimulus. After an initial step-like increase
in the membrane potential, an AP lasts for a couple milliseconds to hundreds
milliseconds in most mammals. During phases U, E, P and the first part of F,
generally no re-excitation can occur. This portion of an AP is therefore known
as the absolute refractory period (ARP). Starting with the second part of phase
F, an altered secondary excitation event is possible if the stimulation strength
or duration is raised. This portion of the AP is therefore known as the relative
refractory period (RRP).

Restitution function. When an EC is subjected to repeated stimuli, two
important time intervals can be identified: the action potential duration (APD),
the period when the AP is above some prescribed percentage (e.g. 10%) of its
maximum height, and the diastolic interval (DI), the period from the end of the
APD to the end of the cycle, i.e. the end of phase R. Figure 1(c) illustrates the
two intervals.

The function relating APD to DI as the cell is subjected to different stimula-
tion frequencies is called the APD restitution function. As shown in Figure 1(b),
the function is nonlinear and captures the phenomenon that a longer recovery
time is followed by a longer APD. A physiological explanation of a cell’s restitu-
tion is rooted in the ion-channel kinetics as a limiting factor in the cell’s response
to multiple stimuli over time. The sum of the APD and DI is called the Basic
Cycle Length (BCL).

The S1S2 protocol is often used to determine the restitution function of an
excitable cell. In this protocol, a cell is driven into a stable mode, in which a
stable APD may be observed, by first subjecting it to a train of so-called S1
stimuli at a fixed BCL. Immediately thereafter, a single S2 stimulus, having a
different (i.e. shorter) BCL is delivered. As such, one can associate a DI-APD pair
with each running of the protocol, viz. the DI preceding the S2-induced APD. By
repeating this procedure and varying the DIs before S2, one gradually constructs
the graph of the restitution curve. Figure 1(c) illustrates the placement of the
last S1 stimulus followed by the S2 stimulus.

Mathematical models of excitation. Modeling of the ionic processes that
underlie cell excitation dates back to 1952, when Hodgkin and Huxley formu-
lated their model of the squid giant axon [13]. Intuitively, the HH model is that
of a nonlinear resistor-capacitor (RC) circuit with current sources, defining AP
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in terms of a stimulation current and three ionic currents: (fast) inward sodium,
(slow) outward potassium, and a time-independent linear (leak) current. The
ionic currents depend themselves on the AP via a gating mechanism (a time-
varying conductance). The corresponding nonlinear system of equations is given
below, where: V , m, n and h are continuous state variables; V is the AP, m, n
and h are the ion-channel gates; gNa,gK,gL are the constants which represent the
maximum channel conductances for the sodium, potassium and leakage chan-
nel, respectively; ENa,EK,EL are the constants for reversal potentials for these
channels; m∞, h∞ and n∞ are the ion-channel gates’ steady-state values, and
τm, τh and τn are their time-constant values; C is the constant cell capacitance
and Ist is the stimulation current.

CV̇ = −gNam
3h(V − ENa) − gKn4(V − EK) − gL(V − EL) + Ist

τm ṁ = m − m∞ τm = 1/(αm + βm) m∞ = αm/(αm + βm)
τh ḣ = h − h∞ τh = 1/(αh + βh) h∞ = αh/(αh + βh)
τn ṅ = n − n∞ τn = 1/(αn + βn) n∞ = αn/(αn + βn)

αm(V ) = 2.5−0.1V
e2.5−0.1V −1 αh(V ) = 0.07e−

V
20 αn(V ) = 0.1−0.01V

e1−0.1V −1

βm(V ) = 4e−
V
18 βh(V ) = 1

e3−0.1V +1 βn(V ) = 0.125e−
V
80

The HH model with its 3 membrane currents, 4 state variables, and 12 fitted
parameters laid the foundation for subsequent models of excitable cells of in-
creasing complexity. All of these models use multiple continuous state variables
(voltage, ion-channel gates, ion concentrations) to describe action potential in
different cell types. One of the most popular cardiac-cell models is the dynamic
Luo-Rudy model [18]. The LRd model uses 11 different membrane currents, more
than 20 state variables and over 150 fitted parameters to describe the AP. Due
to space constraints, the full structure of the LRd model is not listed here.

4 Learning the CLHA of an Excitable Cell

Given a training set of APs generated by applying the S1S2-protocol to an
excitable cell of a particular species, our methodology for learning the CLHA
that approximates the cell’s behavior up to a given error margin consists of
two phases. In the first phase, we obtain for each AP a linear Hybrid automaton
(LHA) whose output is within the specified error bound. This involves identifying
the segments of the APs that correspond to the modes of the LHA, deriving the
flows for each mode, and the guards and reset maps for each transition. In each
mode, we use the modified Prony’s method (MPM) [21] to approximate the AP
with a (normalized) linear dynamics, i.e., with a sum of exponentials.

In the second phase, we derive a CLHA that combines the behavior of all the
LHAs and therefore captures all the APs in the training set. We exploit the fact
that the coefficients defining the flows, guards, and reset maps of the CLHA are
functions of the epoch variable which is updated during an epoch transition. We
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Fig. 2. Null/inflection points in the LRd APs

choose the variable to be a voltage-valued variable called v0 and epoch transitions
to be those that are brought about by the occurrence of a stimulus. In finding
the snapshot map which sets the value of the epoch variable in the post-state of
epoch transitions, we once again use MPM. Specifically, we estimate the voltage-
dependent coefficients of the CLHA as an exponential regression of the constant
coefficients in the LHAs obtained in the first phase.

Assumptions. Our goal is to derive a CLHA, the output of which is within
±2 mv of the output of the Luo-Rudy model, under the following class of stimuli:
each stimulation is a step of amplitude −80 μA/cm2, duration 0.6 msecs, and
BCL between 160 and 400 msecs. The set of 25 APs sampled every 0.2 msecs,
corresponding to BCL 160 to 400 msecs, in 10 msecs intervals, serves as the
training set for deriving the CLHA. The performance of the learned CLHA is
evaluated on the test set consisting of APs with BCL from 165 to 405 msecs, in
10 msecs intervals, sampled at the same frequency.

Identifying Modes. To discover the points in the APs that correspond to
mode transitions in the target LHAs, we computed the null points (zeros of
the first-order derivative) and the inflection points (zeros of the second-order
derivatives) of the APs. This approach worked very well for the HH model, and
the sections of APs between successive null or inflection points were identified
as the modes of the LHAs.

When directly applied to the LRd model, this approach yielded far too many
modes. In particular, there exist trains of inflection points in the P and R phases
of the APs (see Figure 2). This was somewhat surprising because the AP of these
phases appears as rather smooth line segments corresponding to “stretched”
inflection points. The higher-order nonlinearity of the LRd model seems to have
dealt with such segments by generating trains of points whose tangent (first-
order derivative) difference was smaller (in absolute value) than 10−5. Based
on this observation, we designed our own parameterized filter to eliminate such
long sequences of closely-spaced inflexion points. The filter parameter enable us
to increase or decrease the number of segments and thereby achieve the desired
accuracy of the CLHA.
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Fig. 3. (a) Inflection points after filtering. (b) Hybrid-automaton output.

Using the MPM described below, we were able to approximate each segment
with two exponentials and the entire AP to within the desired accuracy. Since,
however, this approach seemed to split each of the E and F phases in two, we
decided to eliminate one inflection point in each. In doing so, we were not able
to maintain the desired accuracy, unless we moved down the end-point of phase
P and up the starting-point of phase R. The correctness of both transformations
was confirmed by analyzing higher-resolution APs, where these points were in-
deed very close to their inferred position. The final seven points chosen are shown
in Figure 3(a).

Using Modified Prony’s Method to Obtain LHA. The null/inflection
points partition the AP into sections defining six modes of the LHA: S, U, E, P,
F and R. We denote the set of modes by P . Since these modes are always visited
in order, the voltages of the six inflection points define the guards (thresholds)
for the corresponding transition edges. We denote the transition voltages by Vp,
where p ∈ P , is the mode in the post-state of the transition. For example, in
the AP of Figure 3(a), the transition from U to E occurs at VE = 45.32 mv. To
completely define the LHA, it remains to define the flows and the reset maps;
for this we use the modified Prony’s method [21].

The modified Prony’s method is a technique for fitting exponential or sinu-
soidal functions to time-series data. For fixed n, MPM minimizes the L2 distance
between time-series data and any function y that solves a differential equation
with constant coefficients:

n+1∑

i=1

ci
di−1y

dti
= 0. (1)

Depending on the coefficients ci, the function estimating the solution of Equa-
tion 1 may be a complex or a real exponential, damped or undamped sinusoids.
Furthermore, the input to the algorithm can be noisy periodic samples from
the actual solution. Because of these attractive features, MPM has found many
practical applications.
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Fig. 4. (a) Original APs and superposed LHA outputs for training set. (b) Sums of 2
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Suppose the voltage in mode p ∈ P of the AP can be approximated as a sum
of exponential functions:

v(t) =
n∑

i=1

aipe
bipt (2)

Then, we can specify the flows in each mode as :

∀ i ∈ {1, . . . , n}, ẋi = bipxi and xi(0) = aip (3)

v =
n∑

i=1

xi,

where the xi’s are the state variables. The initial condition on the state variables
is set by the reset map of the transition from the previous mode. The accuracy of
the above approximation is a function of n, that is, the number of state variables
used. Using the MPM with n = 2, we obtained, approximations that were within
the acceptable error bounds for all modes. The output of the resulting LHA, the
original AP, and the error between the two, are plotted in Figure 3(b). We apply
this procedure to obtain an LHA for each AP in the training set. The output of
these automata, superimposed on the original APs, are shown in Figure 4(a).

Linear to Cycle-Linear HA. From the first phase, we obtain for each AP in
the training set and for each mode p ∈ P , the transition voltage Vp for the guards,
and the coefficients b1p, b2p, and a1p, a2p corresponding to the the differential
equations and initial values for the state variables x1 and x2. In other words,
we obtain one linear hybrid automaton approximating each of the APs in the
training set.

In the second phase, we combine these LHAs into a single CLHA by using
the transition to mode S (stimulus arrival) as the epoch transition, setting the
value of the epoch variable v0. We call the value of v0 the epoch voltage. For each
mode, we find a function mapping v0 of each LHA to transition voltages and
coefficients; this function implicitly defines the snapshot map. We once again
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use sums of two exponentials for these functions and obtain their coefficients by
applying MPM. These functions are defined below, where p ∈ P and i ∈ [1..2]:

Vp(v0) = ϑp eθpv0 + ϑ′
p eθ′

pv0

aip(v0) = αip eλipv0 + α′
ip eλ′

ipv0

bip(v0) = βip eγipv0 + β′
ip eγ′

ipv0

Thus, aip, bip and Vp in the CLHA depend on the AP value stored in variable v0
on the epoch transition between modes R and S. The way MPM approximates
a1U , a2U , b1U and b2U with sums of two or three exponentials is shown in Fig-
ure 4(b). The structure of the CLHA thus obtained is given in Figure 5. For
simplicity, the figure does not show the actions on the transitions and the flows
within the modes.

While the above equations give the general pattern for the transition voltages
and coefficients, a few observations are in place. First, by construction, VF and
VR are constant in all LHAs and therefore no exponential fitting is necessary for
the CLHA. Secondly, the ai and bi coefficients of modes F and R are up to a very
small variation the same in all LHAs. Although we expressed them as functions
in the CLHA, we are confident that using constants instead would have still
satisfied the required accuracy. Thirdly, for the rest of the modes, the ai and bi

obtained for the LHAs are complex values. We therefore separately fitted their
real and imaginary parts. The constant coefficients ϑp, ϑ′

p, θp, θ′p, αip, α′
ip, λip,

λ′
ip, βip, β′

ip, γip and γ′
ip are complex too. Finally, due to space restrictions, we

defer including a table with all voltage and coefficient values to the full version
of the paper. We are happy, however, to provide them upon request.

Simulation results. We have implemented the above-described learning tech-
nique in MATLAB, and applied it to both the HH and LRd models. The accuracy
of the resulting CLHA was analyzed on both the training and test sets. Due to
space constraints, the results on the simpler HH model are omitted.



Learning Cycle-Linear Hybrid Automata for Excitable Cells 255

150 200 250 300 350 400 450 500 550 600 650
−100

−50

0

50

time (ms)

vo
lta

ge
 (

m
v)

LRd model

CLHA on
the test set

0 50 100 150 200 250 300
95

100

105

110

115

120

125

130

DI (ms)

A
P

D
90

 (
m

s)

Lrd model
CLHA on the test set

Fig. 6. (a) Comparison of AP. (b) Comparison of restitution curve.

The output of the CLHA on the LRd test set is shown superposed on the orig-
inal APs in Figure 6(a). As can be observed, the morphology of the output, as
well as the required accuracy, is maintained on this set. In Figure 6(b), the resti-
tution curve obtained from the CLHA by running it on the v0’s specified in the
test set is compared to the restitution curve obtained from the APs in the test
set. Although not perfect, the results are very satisfactory. To our knowledge,
these are the best results among the LRd-approximation models proposed so far.

5 Related Work

We have developed a learning/identification technique for cycle-linear hybrid
automata (CLHA), and applied it to a classical, highly nonlinear model of ven-
tricular cardiac myocytes. The technique of hybrid-automaton identification has
been previously used in a number of communication and control applications, in-
cluding interplanetary life-support systems [12], dynamic power management [8],
autonomous systems and intelligent robots [14,10], and figure tracking [22]. To
the best of our knowledge, our application of this technique in the area of systems
biology, in general, and excitable cells, in particular, is the first of its kind.

Our approach to hybrid-automaton identification is further distinguished from
prior work in the area by the novelty of the identification technique itself. Specific
contributions in this regard include the following: (1) Our approach is applicable
to continuous-time nonlinear systems that exhibit some level of periodicity and
adaptation. Given such a system, the CLHA we learn are also continuous-time,
specifically, linear time-invariant (LTI). In contrast, the techniques of [24,5] tar-
get discrete-time PWARX (piecewise-affine auto-regressive exogenous) models.
Furthermore, in contrast to these approaches, when learning the CLHA for a
system S, we make no a priori assumptions about the dimension of S’s state
space nor the degree of its input and output.

(2) Our technique learns all aspects of a hybrid automaton, including the
number of modes; for each mode, the dimension of the state space and the
coefficients of its LTI dynamics; and all aspects of the mode switching logic,
including the jump conditions, thresholds and resets. To do so, we use a modified



256 R. Grosu et al.

Prony method to obtain an exponential fit for the continuous per-mode linear
dynamics. Cf. [24], where polynomial fitting is used for the case of discrete-time
PWARX systems.

(3) We also learn the functions that adjust a CLHA’s mode dynamics and
switching logic on a per-cycle basis. This aspect of our technique is critical in
the case of excitable cells because of their restitutional nature (see Section 3). In
this case, the coefficients of the mode dynamics and the voltage thresholds are
functions of V0, the cell’s initial transmembrane voltage for the current cycle.

Other approximate models for cardiac-tissue excitability have been proposed
in the literature, including the piecewise-linear model of Biktashev [6] and the
nonlinear model of Fenton and Karma [9]. The CLHA models of excitable cells
learned by our technique retain the simplicity of Biktashev’s model without
sacrificing the expressiveness of Fenton-Karma.

6 Conclusions

We have presented a method for automatically learning CLHA that approximate,
up to a prescribed error margin, the complex, nonlinear processes of amplifica-
tion and propagation of electrical signals (APs) in excitable cells. Our method,
implemented in MATLAB, combines geometric analysis with exponential re-
gression (using the modified Prony’s method) to derive a CLHA that covers in
a cycle-linear manner the input/output behavior of the original nonlinear sys-
tem. Moreover, it provides, to the best of our knowledge, the most accurate
approximation of extant nonlinear excitable-cell models, such as HH and LRd.

A source of complexity in the HH and LRd models is the coupling between
state variables, which seemingly occurs continuously throughout an AP cycle. In
contrast, the coupling between state variables in the CLHA model is markedly
reduced: (i) the membrane voltage v0 at the time a stimulus arrives determines
the coefficients of the flows of the “gated voltages” x1 and x2 for a complete
cycle; (ii) x1 and x2’s flows determine the membrane voltage within a mode;
and (iii) the transition voltages Vp, p ∈ P , determine the mode-switching logic
within a cycle. This decoupling of state variable within the CLHA model may
provide additional insight into essential properties of ECs, such as refractoriness
and restitution. The derivatives of x1 and x2 approximate in each mode of the
CLHA the inward and the outward currents, respectively.

It was therefore no surprise that the AP phases that were most difficult to
linearly approximate were upstroke (U) and early repolarization (E): it is in
these phases when disparate time constants coexist. For smaller error margins,
we will most likely require three exponentials in the MPM approximation of
these phases, and therefore three state variables in the corresponding modes.
The third variable presumably will distinguish between the K and Ca currents
contributing to repolarization.

As future work, we plan to more carefully consider APs at higher stimula-
tion frequencies, i.e. in the 130 to 160 msecs range; accurately capturing their
behavior also seems to require a third state variable. We also plan to develop ad-
ditional training sets based on protocols incorporating stimuli of varying shapes
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and intensity. Furthermore, we intend to study AP propagation within an array
of CLHA. Our preliminary data [26], showed that a 400-x-400 cell array was
able to produce spirals (arrhythmia-related phenomena). We expect that the
increased accuracy of the learned CLHA will better match observed behavior.

Finally, we would like to better understand the class of nonlinear systems
whose behavior CLHA can successfully approximate. Intuitively, they exhibit
periodic, but nonetheless adaptive, behavior with respect to the input stim-
uli. For narrow ranges of the epoch voltage v0, CLHA naturally provide a linear
approximation, and well-established techniques for reachability, stability, observ-
ability and controllability analysis can be readily applied. It would be interesting,
however, to investigate whether the additional structure provided by CLHA (its
parametrization on v0) can be exploited to extend the reach of such techniques.
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