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Abstract

In this paper, we motivate the importance of the field of mo-
bile computing and survey current practical and formal ap-
proaches. We argue that the existing formalisms are not suf-
ficiently general and powerful because they do not model all
necessary concepts of mobility adequately. The main con-
tribution of the paper is, therefore, to identify and define the
fundamental concepts of mobile systems by providing a pre-
cise, mathematical foundation. The model we present is an
extended variant of existing, compositional network models
for control and data flow of non-mobile systems, enriched by
the concept of locations as places containing components.
To model the migration of a component from one location to
another, the containment relation may change dynamically
over time. Based on this formal model, we define a num-
ber of fundamental properties and characteristics such as
network transparency. Finally, we demonstrate how exist-
ing description techniques may be extended in the context
of mobility, and sketch a supporting CASE tool.

1 Why Mobility is Important

Recent developments in hardware and software technol-
ogy have created the infrastructure for a new computation
paradigm: mobile computing. According to this paradigm,
both hardware and software components may dynamically
migrate between distributed locations.
Mobility implies a fundamental paradigm shift in the area
of computing. According to Carlo Ghezzi [1], for example,
“the long term vision is that computers are no more viewed
as mainly autonomous and self-contained computing de-
vices accessing local resources, occasionally communicat-
ing with each other; rather, they are part of a global com-
puting platform, built upon a synergy of local and remote
resources, whose sharing is enabled by broadband commu-
nication networks”. Without doubt, mobile computing will
enable a wealth of novel applications, for example, in the
area of fieldwork construction, maintenance, and life-cycle
management systems, as well as smartcard-based electronic
commerce applications.

In the following, we sketch some of the possibilities in avi-
ation. During the production of an airplane, the respective
manufacturers may integrate small computers with sensors
into the single parts of the aircraft to trace the location of
the parts during construction (which is performed by work-
ers with wearable computers, of course).
Once the airplane is completed, the integrated sensors pro-
vide actual information over the state of the parts, enabling
proactive maintenance and replacement on need. During
flight, the communication between its computers and sta-
tionary computers on the ground (and also with the mobile
computers of the maintenance staff) has to be organized.
Finally, the passengers and their various mobile computing
devices must eventually be taken into account, ranging from
smartcards used to pay calls over the airplane’s phone sys-
tem to laptop computers connected to the internet via the
airplane’s local area network.
Scenarios like this involve a variety of different hardware
and software components with various, dynamically chang-
ing relations between them.
Currently, an integrated view on mobility is still missing.
Research and development is mostly focused on relatively
isolated areas, like mobile hardware design, mobile data
management [2, 3], and protocols for mobile and wire-
less networks [4]. These areas are exploited by integrated
technical platforms for the development of mobile systems.
Such platforms try to reach a high degree of mobile trans-
parency, so that programmers are able to implement a mo-
bile system as they are used to implement a non-mobile sys-
tem. There are three groups of platforms:

� The platforms in the first group are based on tradi-
tional programming platforms for distributed systems,
like CORBA [5] and DCOM [6]. Based on their facili-
ties for transparent communication, support for mobile
code and mobile data may be implemented [7].

� The second group of platforms has its roots in the
area of distributed operating systems. Odyssey [8],
for example, enhances the distributed operating sys-
tem Mach [9] with additional features like hierarchical
namespaces and code as well as data resources. Mobile
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applications may then navigate within the namespaces
and get access to various resources.

� The last group of mobile system platforms are mobile
languages. Most languages are based on rather tradi-
tional concepts, enhanced by a few constructs for pro-
cess migration from one host to another. Well-known
implementations of mobile code languages are Tele-
script [10], Java [11], Aglets [12], Javelin [13], Agent
Tcl [14], Sumatra [15], Omniware [16], Obliq [17],
ML [18], TACOMA [19], and Ara [20].

Most current platforms do not cover all aspects of mobility,
but concentrate on single aspects, like the mobility of data
and code, the concurrency of mobile system components,
or the relocation of mobile devices. A truly integrated ap-
proach supported by an overall methodology for the devel-
opment of mobile systems is still missing. In our opinion,
this is partly due to the absence of precisely defined con-
cepts and formalisms serving as a foundation for advanced
languages, development techniques, and tools. An adequate
formalism for mobility would also contribute to the reliabil-
ity of mobile systems, as it is a necessary precondition of
formal correctness proofs.
In Section 2, we survey the existing formalisms in the area
of mobile computing and identify some of their deficiencies.
Section 3 presents our formal approach, which is based on
existing compositional models for control and data flow of
dynamic, non-mobile systems. We show that the basic for-
malism can be extended and adapted to special applications.
Finally, Section 4 demonstrates how existing description
techniques and CASE tools for non-mobile systems may be
extended in order to deal with mobility. A short conclusion
ends the paper.

2 Existing Formal Approaches

As explained in the previous section, a clear, well-under-
stood formal foundation of mobile systems is currently
missing. This is mainly due to the complexity of these sys-
tems and the multitude of involved concepts:

� First, mobile systems are interactive because they have
to be able to continuously exchange messages with
their environment. As a consequence, they imply a
shift from sequential systems to concurrent systems.

� Second, mobile systems may evolve dynamically over
time. Even basic system properties like the number of
components and the structure of the connections be-
tween them may change at runtime.

� Third, mobile systems involve components that mi-
grate from one location to another location.

Based on these characteristics, we identify three layers of
increasing complexity, namely interactive systems, dynamic
systems, and mobile systems. In the following, we present
some typical examples of formal approaches in these three
layers. The chosen set of formalisms is by no means
complete—it merely serves as an illustration of the main
features (and the complexity) of mobile systems.

2.1 Interactive Systems

CCS and CSP [21, 22]: These two approaches formal-
ize static, interactive systems in a rather operational fash-
ion. While CCS is purely operational and equivalence be-
tween processes is defined only by bisimulation, CSP also
has a denotational failure semantics. Both approaches use
a synchronous handshaking communication—the sender is
blocked as long as the receiver is not ready to communicate.

FOCUS [23, 24, 25, 26]: With respect to mobility, FOCUS

is at the same level as CCS and CSP because it only char-
acterizes static, interactive systems. However, in contrast to
the other two approaches, FOCUS is mainly a denotational
approach. It is based on well-established techniques for de-
scribing the behavior of sequential systems as a relation be-
tween input and output values [27, 28]. In contrast to these
formalisms, it provides the concept of time by using rela-
tions between sequences of input and output values. Com-
munication is asynchronous—a sender is never blocked by
a receiver.

2.2 Dynamic Systems
� -Calculus and HO- � -Calculus [29, 30, 31]: The � -
calculus is an extension of CCS to model dynamic reconfig-
uration. This feature is achieved by allowing channel iden-
tifiers to “move” along channels. This is quite similar to
familiar object-oriented languages where object identifiers
may be passed between programs. In higher-order (HO)
� -calculus, not only channel identifiers, but also whole pro-
cesses may “move” along channels. This corresponds to
passing clones in object-oriented languages. As in CCS,
communication is done synchronously using handshaking.

DYNAMIC FOCUS [32, 33, 34, 35]: This approach ex-
tends FOCUS similar to the way � -calculus extends CCS
by allowing channel names to be passed between processes.
This leads to a new, denotational understanding of dynamics
as a set of privacy invariants that have to be maintained by
the interacting processes. As in FOCUS, communication in
DYNAMIC FOCUS is asynchronous.

Blue Calculus [36]: The blue calculus is an asynchronous
version of Milner’s � -calculus, based on the idea that the
messages are elementary processes that can be sent with-
out any sequencing constraint. Furthermore, names may be
restricted, making them private in the context of an agent.
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These two concepts are sufficient to encode the synchronous
communication of the � -calculus.

Chemical Abstract Machine [37]: The chemical abstract
machine is a semantic framework based on the chemical
metaphor used in the Gamma language of Banatre and Le
Métayer. States of a machine are understood as chemical so-
lutions where molecules may interact according to reaction
rules. It is possible to dynamically encapsulate subsolutions
within membranes that force reactions to occur locally. Us-
ing the abstract machine, the operational semantics of the
� -calculus machine used by Milner to encode the lambda-
calculus is defined.

2.3 Mobile Systems

Join-Calculus [38]: The join-calculus is an experimental
language based on the homonymous process calculus, pro-
viding basic support for distributed programming. The join-
calculus programming model features concurrent processes
running on several machines, static type-checking, global
lexical scope, transparent remote communication, agent-
based mobility, and some failure-detection.

Ambient-Calculus [39]: An ambient is a bounded place
of computation. Each ambient has a name, a collection of
subambients, and a collection of local agents. These are
computations that run directly within the ambient. The
model of mobile ambients is an extension of the asyn-
chronous � -calculus. It supports reasoning about mobil-
ity and also about system security. Note however, that
the ambient-calculus does not fundamentally distinguish be-
tween components and locations, as it defines only a single
subambient relation.

The above survey presents a rather balanced number of ap-
proaches in each conceptual category. An extensive survey
would reveal a pyramid—while there are many formalisms
for interactive systems, only few approaches for dynamic
and especially mobile systems yet exist.
It is interesting to note that distribution, which is necessary
to model mobility, brought new requirements concerning
communication primitives. Whereas synchronous commu-
nication by handshaking is quite natural for local systems,
it turned out to be a great restriction for distributed sys-
tems. This is the reason why both the join-calculus and the
ambient-calculus are asynchronous. Moreover, the intro-
duction of a location concept seems to be essential to model
process migration.
Most of the published approaches are operational, making
the translation to programming languages easy. However,
there is no doubt that a denotational understanding of mobil-
ity is indispensable for a simple characterization of process
equivalence and compositionality.

3 A Model for Mobile Systems

The proposed model is a mobile extension of the existing,
compositional FOCUS network model with a denotational
semantics. We first outline its essential concepts in an in-
formal way. In the following, the concepts and relations are
explained in a more formal way by giving mathematical def-
initions. Finally we show some variations of our formalism
and consider extension concepts.

3.1 Essential Concepts of Mobile Systems

We think that an explicit model for mobile systems must
distinguish mobile entities, namely, components, from the
locations between which they are moving. Surprisingly, this
seemingly simple and evident distinction is only implicitly
present in some of the current formalisms for mobility, as
can be seen from Section 2. Components may be software
as well as hardware components, ranging from software
agents and Java programs over laptops, cellular phones, and
airplane onboard computers to persons moving around in an
‘intelligent’ building, for example. Locations may be phys-
ical locations in the real world, like rooms of a building,
streets in a town, or squares of a wooden chessboard, but
they may also be logical or conceptual locations, like nodes
of a logical network, departments of a company, or squares
of a simulated chessboard.
The most important relation between components and lo-
cations is containment. A location contains a number of
components at a certain time. In a mobile system, the con-
tainment relation changes over time. A cellular phone con-
tained in a certain cell at a certain time, for example, may
later on leave this cell and migrate to another cell, thereby
changing the containment relation.
Furthermore, we allow hierarchical components by intro-
ducing a subcomponent relation between components. In
the subcomponent relation, each subcomponent may only
have at most one parent component in order to ensure proper
encapsulation of subcomponents.
Locations may also be hierarchical. However, in contrast to
components, there may be multiple sublocation relations,
and a location may be a sublocation of multiple parent loca-
tions. However, each sublocation relation must be a directed
acyclic graph—a location may not be its own sublocation.
Examples for sublocation relations are the spatial and logi-
cal inclusion of a kitchen or bathroom in a flat, the logical
inclusion of a subnet in a computer network, and the math-
ematical inclusion of a two-dimensional vector space in a
three-dimensional vector space.
Finally, we also introduce a room relation which assigns lo-
cations to components. Examples for this relation are the re-
lation between the location inside a sugar bowl and the sugar
bowl itself, and the relation between a computer’s mem-
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ory (understood as a location containing program compo-
nents) and the computer itself. Note that the relations �������
and ����� �
	�� �� are not inverse—the memory of the computer
doesn’t contain the computer itself. Note, furthermore, that
our model yields two possibilities for component inclusion:
besides being a subcomponent of another component (like
the keyboard of the computer), a component may be con-
tained in a location assigned to a component (like the pro-
grams living inside the memory assigned to the computer
component).
Of course, the essential concepts identified above are not
sufficient to model all properties and features of mobile sys-
tems. However, we think that additional concepts should be
introduced based on this foundation in order to tailor it to
various applications (cf. Section 3.3). An example is the
concept of a way, defined as a connection between loca-
tions. We have not introduced ways as a base concept be-
cause it is not necessary for systems with freely migrating
components. Furthermore, there are many ways to intro-
duce ways—they may constrain or influence, for example,
the migration of components or the communication between
them.

3.2 Formalizing the Concepts

The mathematical model presented in the following subsec-
tions is structured according to the three layers explained at
the beginning of Section 2: starting with a model for static,
interactive systems, we obtain models for dynamic and, fi-
nally, mobile systems by adding dynamicity and locations,
respectively.

3.2.1 Static Systems

We model an interactive system by a network of au-
tonomous components which communicate via directed
channels in a message asynchronous way. Message asyn-
chrony means that it is always possible to send a message
along a channel. Figure 1 shows a simple component (visu-
alized by a box with a solid borderline) with input channels���

to
���

and output channels � � to ��� .

Component1 Componentk

1I
kI

kO1O

1i i

Component...

...

o o1 n

m

...

... ...

...

Figure 1: Component with input and output channels

Syntactic Interface: Let ����������� be the set of channel
identifiers, let � be the set of messages flowing along chan-

nels1 and let � �"!$#%�����&���'� be the identifiers of the input
respectively output channels of components. The syntactic
interface of a component is then given by the pair of la-
belled product types �)(*� and !+(*� . For simplicity,
we denote these product types also by ,� and ,! , respectively.

In order to define and analyze the flow of messages along
the channels, we have to model time. The simplest assump-
tion about time is that it increases with some constant time
unit, i.e., that it is discrete. For convenience, we use - as ab-
stract time axis. In this case, the messages exchanged over
time along a channel define an infinite sequence /.0�21 ,
where � 1 is an abbreviation for -3(4� , such that �5 ��6
is the message occurring in time unit

�
. We call such a se-

quence a channel history.
An assumption leading to a simple and uniform model is
that the message flow is time synchronous, i.e., that time
flows in the same time scale for each channel. In this case,
the labelled product type �879!:( � 1 of the histories
of a component’s channels is equal to the history type of
the component’s interface 5;�<7=!>(?� 6 1 . As a conse-
quence, �@(A� 1 is equal to 5;�@(A� 6 1 , abbreviated to
5�,� 6 1 . The same holds for the output channels 5B,! 6 1 . Note
that this is not true for other, non-synchronous models of
message flows. Further notice that the limitation to a time
synchronous model is no restriction at all in practice, as
time synchrony is a very powerful model. Based on it,
other models of time can be easily defined, including, for
instance, asynchronous ones.

Semantic Interface: Due to the equivalence of �C7D!E(
� 1 and 5;�F7G!H(I� 6 1 for synchronous time, the behavior
of a component can be completely described by a sequence
of input/output relations

�J#K5L,�2M$,! 6 1ON
We call this relation sequence the semantic interface of the
component. We assume that messages occurring in the his-
tories of the output channels in time unit

�
are independent

of the future input history, i.e., from the messages occur-
ring in the histories of the input channels at time PKQ �

.
Clearly, each implementable component must obey this re-
striction. We call behaviors respecting this property time
guarded. We define

�BRFSUTH5L,�2M+,! 6 1
to be the set of time guarded sequences of input/output re-
lations. There are multiple techniques to define these re-
lations. A very common one are state transition diagrams
(STD) describing a kind of automata consuming input and
producing output with each transition.

1Assuming different sets of messages for different channels is surely
necessary for any realistic system. However, it complicates the formal
treatment and does not provide further insights to the considered model.
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3.2.2 Hierarchical Components

Components may be assembled to more complex compo-
nents hierarchically. If ���&R S���� is the set of component
identifiers, hierarchy may be characterized by defining a
subcomponent relation

������� ��RFS # �	�&R S����GM �	��RFS ���
associating with each component identifier the set of its
(sub)component identifiers.
The identifier � of a leaf component is mapped to a triple
5;� � ! ��� 6 of its input/output channels and its input/output re-
lation sequence by using the relations
 � ��� �� # �	��RFS �'� M ��� �����'�
and the function

��� ��� �	�&R S����<(*� RFS
defined as follows:
 � 5;� 6 T � ��� �� 5;� 6 T ! � ��� �O5 � 6 T �
As Figure 2 shows, a set of components may be combined,
yielding a hierarchical component. Its interface consists of
the channels of its inner components that are not fed back
to other inner components.

Component1 Componentk

1I
kI

kO1O

1i i

Component...

...

o o1 n

m

...

... ...

...

Figure 2: Assembling a hierarchical component

Let � be the identifier of a hierarchical component with������� ��RFS 5 � 6 T�� � � � N'N�N �"� ��� . Then we define

 � , � �� and��� � for � as follows:
 �B5;� 6 T 5 
 � 5 � ��6 7 N�N�N 7 
 � 5;��� 6�6��

5�� �� 5;� ��6 7 N'N�N 7�� �� 5 ��� 6 6
� �� 5;� 6 T 5�� �� 5;� ��6 7 N'N�N 7�� �� 5 ��� 6 6��

5 
 � 5 � ��6 7 N�N�N 7 
 � 5;��� 6�6��� �O5 � 6 T ��5 � � � 6����� N 5 � ��� � � �!�&6 . ��� �O5;� � 6��
N'N�N � ��� ��5;� � 6 �

The sets of input channels � and output channels ! of the hi-
erarchical component � consist of the union of the subcom-
ponent sets of input channels �#" and output channels !$" , re-
spectively, minus the set of channels % T 5 7 � "�& � 
 � 5 �'" 6�6)(
5 7 � "�& � � �� 5;�'" 6�6 that are fed back (see Figure 2, left). The
feedback channels are private and therefore hidden.
The behavior of a hierarchical component � is the set of
labeled input/output history pairs 5 � � � 6 .H5 ,� 6 1 M 5 ,! 6 1 ob-
tained from the associative product

�
of the subcomponent

behaviors2 by hiding the histories
� . ,% 1 which are fed

2Note that the associative product * of two labeled products is a labeled
product having as set of labels the union of the component sets of labels.

back. By
�+�,�

and � �,�
we denote the unique tuples con-

structed from
� �"� and

�
such that

�-�,� .95 ,� 6 1 � 5 ,% 6 1 and
� �.� . 5 ,! 6 1 � 5 ,% 6 1 . At this time, we must ensure that
feedback loops contain a delay. This can be achieved by
components that need at least one time tick to produce their
output.
Note that both for leaf components as well as for com-
posed components the syntactic interface given by


 � and
� �� does not change over the whole communication his-
tory. As a consequence, their interconnection structure is
also fixed. We therefore call systems characterized by such
components static.

3.2.3 Dynamic Systems

There are two orthogonal ways to change a system dynami-
cally. First, the number of components may change. For ex-
ample, the interconnection structure of the interactive queue
shown in Figure 3 is fixed, even if the number of cells may
vary over time. In such systems, the syntactic interface
of the involved components remains fixed. However, these
components are recursive.

cell queuecellqueuecell

queue
queue

first instance second instance

Figure 3: An interactive queue

Second, the interconnection structure may change, as
shown in Figure 4. Here, the components remain the same,
but the connection structure changes. In such systems,
the syntactic interface of the involved components changes
over time. Changes of the connection structure are usually
achieved by passing channel identifiers between compo-
nents. At each moment, the set of channel identifiers owned
by a component determines its syntactic interface and, con-
sequently, its communication capabilities.

base1 base2 base1 base2

telephone telephone

Figure 4: A mobile telephone

The syntactic interface of a dynamic component may vary
in time, yielding the dynamically changing sets �0/ and !1/ ,
respectively. For each time unit

�
, the relation ��/ #@5 ,��/�M0,!1/ 6

gives the behavior of � in that time unit. As a consequence,
the overall input/output relation � that reflects the complete
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input/output history of a dynamic component has the fol-
lowing type:

� #K5�5���� �����'�<(I� 6 M 5���� �����'�<(I� 6 6 1
where �����&�����D( � denotes the set of labeled tuples with
labels in a subset of �����&���'� . The functions


 � and � ��
are also not constant anymore. For each moment of time

�
,
 � / 5 � 6 T � / and � �� / 5 � 6 T ! / are the identifiers of known

(or accessible) input and output channels, respectively. Sim-
ilarly, the subcomponent relation ������� �&R S may also vary in
time. For each time unit

�
, ������� �&R S / 5;� 6 T � � � � N'N�N �"��� � �

gives the set of current subcomponents of � , where � / is a
natural number that depends on

�
. Hence,


 � # 5��	��RFS �'�GM � � ������� 6 1
� �� # 5��	��RFS �'�GM � � ������� 6 1������� �&R S # 5��	��RFS �'�GM ���&R S���� 6 1

The relations

 � , � �� , and ��� � are defined for composed

components by extending their static counterparts over time
as shown below:
 � / 5;� 6 T 5 
 ��/ 5;� � 6 7 N'N�N 7 
 �-/ 5 � � � 6�6��

5�� �� / 5 � ��6 7 N�N'N 7.� �� / 5;��� � 6 6
� �� / 5 � 6 T 5�� �� / 5 � ��6 7 N�N'N 7.� �� / 5;��� � 6 6��

5 
 � / 5;� ��6 7 N'N�N 7 
 � / 5 ��� � 6�6��� � / 5 � 6 T ��5 � � � 6�� � � N 5 � �	� � � �!�&6 . ��� � / 5 � �'6 �
N'N�N � ��� � / 5;��� � 6 �

3.2.4 Hierarchical Locations and Containment

In order to describe mobile systems, we introduce locations.
Intuitively, a location is defined as a place where compo-
nents may be located and where computation takes place.
As with components, we also allow hierarchical locations.
However, in contrast to components, a location may be a
sublocation of many other locations, yielding a DAG (di-
rected acyclic graph) structure. We define the sublocation
relation as follows:

������� � � #�� � � �'�2M�� � � ���
There may also be more than a single sublocation relation in
order to model different location hierarchies, for example, a
spatial and a logical one. To keep the discussion simple, the
following definitions consider only a single relation. The
extension to multiple hierarchies is straightforward.
Each component is assigned to the set of locations where the
component resides via the � ��� � � 
 � � relation. Conversely,
locations can be assigned to components via the ���#��R rela-
tion:

� ��� � � 
 � � # � � � ��� M �	��RFS ���
���#��R # �	��RFS �'�GM�� � � �'�

Figure 5 shows examples for these relations. The notation
of the diagram on the left side uses dotted lines to distin-
guish locations from components, which are drawn with

solid lines. Note that the ���#��R relation between the loca-
tion 	 and the component a is not visualized on the right
side to keep the diagram simple.

3.2.5 Mobile Systems

In a mobile system, each of the relations introduced in the
previous section may change over time. We therefore get
the following time-varying relations:

�����
� � � # 5�� � � ��� M�� � � �'� 6 1� ��� � � 
 � � # 5�� � � ��� M ���&R S���� 6 1
���#��R # 5��	��RFS ���DM�� � � ��� 6 1

For each moment of time
�
, location � , and component � ,������� � � / 5� 6 yields the sublocations of � , � ��� � � 
 � � / 5�� 6 yields

the set of components contained by the location � , and
���0�&R / 5;� 6 yields the set of locations contained by the com-
ponent � .
If these relations do not vary over time, we obtain the clas-
sical conceptual framework of distributed systems. To call a
system mobile, it is sufficient if at least one of these relations
varies over time. Usually, this is the case for the � �&� � � 
 � �
relation.

3.2.6 Network Transparency

Component migration is usually achieved by passing the
component’s closure, i.e., the component’s behavior and
state, between locations. In our model, migrating com-
ponents also keep their communication capabilities, repre-
sented by their channels. As can be seen from Figure 6,
migrating the laptop component therefore does not involve
any changes of syntactic interfaces.
If no further constraints or assumptions apply, the subcom-
ponent hierarchy and the timed, functional behavior of a
mobile system are not influenced by changes of the �����
� � � ,� �&� � � 
 � � , and ���0�&R relations at all. We call this property
strong network transparency. In most cases, this property
is too strict because it constrains not only the functional be-
havior, but also the timing of the system. A more reasonable
property is called weak network transparency. It only re-
quires that the functional behavior according to some speci-
fication remains stable and allows the timing to vary accord-
ing to the actual configuration of the system components. If
also the functional behavior may vary, we call the system
network aware.

3.3 Properties and Possible Variations

Based on the formal foundation presented in the previous
section, many specialized variations and properties may be
defined:

Flat versus Leveled Structures: If no sublocation or sub-
component relations are defined, the result is a flat location
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Figure 5: Sublocation and subcomponent hierarchies
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Figure 6: Migration of a laptop

or component structure. This allows to model simple sce-
narios, like the migration of unstructured software agents in
a flat structure of computing nodes, without introducing un-
necessary complexity. In a system model with flat structures
�� � � ��� T�� and �� � �������2T�� must hold, respectively.

Tree Structures versus General DAG Structures: If ad-
ditional complexity is required, arbitrarily complex sublo-
cation relations may be defined. In many cases, tree-like re-
lations will be sufficient, for example, to model the relation
between a building and its rooms. However, a room may
also be situated in many other rooms. This applies, for ex-
ample, to a street that belongs to different quarters of a city.
Although the street could be modeled with a tree structure
by dividing it up into its single segments and treating them
as sublocations of the different city quarters, it is often more
natural to view the street as a whole. If a system model has a
tree structure, each sublocation has a single parent location,
correspondingly 	 � � � . � � � ��� � � ������� � ��
 � 5 � � � 6'����

must
hold.

Single Hierarchy versus Multiple Hierarchies: In many
cases, a single location structure is sufficient to model all
interesting aspects of reality. However, there are also sit-
uations in which multiple location structures are neces-
sary. Imagine, for example, a cellular phone which is
able to change its spatial position as well as its logical
network cell. In this case, the phone component is con-
tained in two locations of different location hierarchies at
the same time. To support multiple hierarchies in the sys-

tem model we have to introduce a family of location rela-
tions �����
� � ��� # 5 � � � ���UM � � � ��� 6 1 . In the case of the cel-
lular phone, the system model would include two location
relations: ������� � ��������������� and �����
� � ��� ����!������ .
Single versus Multiple Containment: There are simple
systems whose components are contained in exactly one lo-
cation of a given location hierarchy at each time. This ap-
plies, for example, to non-distributed software agents which
are executed on single computing nodes. To model single
containment, the � �&� � � 
 � � relation must obey the following
condition: 	 �������U.#" ����� �%$ � � ����� �
	�� �� 


�
5 ������� 60�&�'�

.
However, there are scenarios where single containment is
not sufficient. Imagine, for example, a huge anaconda com-
ponent creeping out of the living room location of a little
flat, its head entering the bedroom location, while its tail
still has not left the bathroom location. In this case, it would
be difficult to use a single-containment model because the
snake can not be easily cut into segments that could be as-
signed clearly to a single location.

Static versus Dynamic Structures: The � ��� � � 
 � � rela-
tion is usually changing over time, while the ���0�&R rela-
tion will often be static (in case of the sugar bowl compo-
nent, for example, its inside location can hardly be removed
or changed without destroying the sugar bowl component).
For the sublocation and/or subcomponent relations, both
static and dynamic relations make sense. To define a sublo-
cation relation modeling the spatial structure of the three-
dimensional space, for example, a static structure seems to
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be adequate, unless we consider relativistic effects like the
distortion caused by gravity. In contrast to this, containment
structures will usually be dynamic. An example is, again,
the anaconda component, which, after arriving in the bed-
room location, may incorporate the little woman component
contained there, thus changing the subcomponent relation.

Free versus Constrained Migration and Communication
As mentioned in Section 3.1, migration may be constrained
by ways in some systems. Components may, for example,
migrate only if there exists a suitable way leading from its
present location to the new location. Ways could also in-
fluence the speed of migration or even the behavior of the
components migrating over them. Similar considerations
may apply to communication: channels between compo-
nents at different locations may only exist if there is a suit-
able way, and the communication delay may be influenced
by the length of the way, for example.

Additional Properties To extend the formal model, arbi-
trary kinds of additional relations may be added. Exam-
ples are relations like, for example, dependsOn, cooper-
atesWith, executedOn, availableAt, or slowsDownItsNeigh-
boursByFactorTen. Like the pre-defined relations, these re-
lations may hold temporarily or permanently, and they may
vary over time. Often, additional relations will violate the
network transparency and latency tolerance of a system, so
that additional measures have to be taken to ensure its cor-
rect operation.

4 Tool Support

In general, there are two different groups of tools for mobile
systems: management tools and CASE tools.
Management tools are used to perform installation, con-
figuration and maintenance of already implemented mo-
bile systems. The Productivity Tools for Managing Dis-
tributed Applications from Inprise [40], for example, can be
used to browse and change the current locations of CORBA
objects. Another example is a location management tool
which could be used by a cellular phone company to re-
structure the location hierarchy during run-time of the sys-
tem, for instance, when new transmitting stations are built
or when a license for a new region is acquired. Management
tools could also log the migration of components to figure
out bottlenecks.
To our knowledge, CASE tools tailored to the specific needs
of mobile systems are still missing. It seems to be promis-
ing to enhance and adapt existing CASE tools for embedded
systems. The static version of the development method FO-
CUS (cf. Section 2) is supported by a prototype implementa-
tion of a multi-user software engineering tool for the specifi-
cation and simulation of distributed systems, named AUTO-
FOCUS [41]. The concepts and description techniques

of AUTOFOCUS are described in detail in [42]. Currently,
AUTOFOCUS does not support description techniques for
mobile systems.
To fully support mobile system development in AUTOFO-
CUS, the existing description techniques have to be extended
with new concepts. Extended event traces, a subset of Mes-
sage Sequence Charts as standardized in ITU Z.120 [43],
could be enriched as shown in Figure 7. It shows the same
components and locations as Figure 6. In the beginning, the
pc1, pc2, pc3, and laptop components are contained in the
lan1 location, while the pc4 and pc5 components are con-
taind in the lan2 location. The rest of the diagram is similar
to UML sequence diagrams [44], with the additional con-
cept of migration, which is represented by a bold arrow. In
the scenario, the laptop component first reads all data from
the PCs in lan1 into its local memory. Then it migrates to
lan2 and stores the data.
Apart from the description techniques, the simulation en-
gine of AUTOFOCUS also needs to be adapted for mobile
systems [45]. Concepts like locations, migration, and com-
munication latency have to be integrated into the simulator.

5 Conclusion

In this paper, we have surveyed the state of the art in the
field of mobile computing, especially with respect to its for-
malization. In our opinion, the existing formalisms are not
sufficient, partly because they do not distinguish adequately
between components and locations. Our own approach is
based on the established and well-developed formal model
for static and dynamic systems of the FOCUS method.
Our main contribution is the introduction of locations as the
places where components are situated and between which
they migrate. We have also outlined how to extend and en-
rich the basic formalism by additional concepts. Of course,
the foundation presented in the paper can only serve as a
starting point—specialized models, calculi, and languages
must be elaborated that reflect the characteristics of real-
world applications. This pertains especially to graphical de-
scription techniques which are particularly needed for com-
munication with end users. To evaluate the usefulness of
these languages and techniques, we will perform a reason-
ably complex case study.
Our long-term goal is to develop a general development
method for mobile systems based on the formal foundation
presented in this paper. Besides graphical description tech-
niques and a suitable development process model, such an
overall method should also contain a stock of well-proven
standard solutions and architectures which can be used for
the construction of the complex, mobile systems of the fu-
ture.
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