
A Modular Visual Model for Hybrid Systems

Radu Grosu, Thomas Stauner� and Manfred Broy

Institut für Informatik, TU München, D-80290 München
Email: {grosu,stauner,broy}@informatik.tu-muenchen.de

Abstract. Visual description techniques are particularly important for
the design of hybrid systems because specifications of such systems must
usually be discussed between engineers from a number of different disci-
plines. Modularity is vital for hybrid systems not only because it allows
to handle large systems, but also because hybrid systems are naturally
decomposed into the system itself and its environment.
Based on two different interpretations for hierarchic graphs and on a
clear hybrid computation model, we develop HyCharts, two modular vi-
sual formalisms for the specification of the architecture and behavior of
hybrid systems. The operators on hierarchic graphs enable us to give
a surprisingly simple denotational semantics for many concepts known
from statechart-like formalisms. Due to a very general composition oper-
ator, HyCharts can easily be composed with description techniques from
other engineering disciplines. Such heterogeneous system specifications
seem to be particularly appropriate for hybrid systems because of their
interdisciplinary character.

1 Introduction

Hybrid systems have been a very active area of research over the past few years
and a number of specification techniques have been developed for such systems.
While they are all well suited for closed systems, the search for hybrid description
techniques for open systems is relatively new.
For open systems – as well as for any large system – modularity is essential.

It is not only a means for decomposing a specification into manageable small
parts, but also a prerequisite for reasoning about the parts individually, without
having to regard the interior of other parts. Thus, it greatly facilitates the design
process and can help to push the limits of verification tools, like model-checkers,
further.
With a collection of operators on hierarchic graphs as tool-set, we follow

the ideas in [6] and define a simple and powerful computation model for hybrid
systems. Based on this model HyCharts, namely HySCharts and HyACharts, are
introduced as two different interpretations of hierarchic graphs. HySCharts are a
visual representation of hybrid, hierarchic state transition diagrams. HyACharts
are a visual representation of hybrid data-flow graphs (or architecture graphs)
and allow to compose hybrid components in a modular way. The behavior of
� The second author was supported with funds of the DFG, within the priority program

Design and design methodology of embedded systems (reference number Br 887/9-1).

)[

)[

)
[EHC

Filter

bend

sHeight

aHeight

fHeight

resetdReset

Control

aHeight

fHeight

dReset

sHeight

time

[
)

Df

Fig. 1. The EHC: Architecture and a typical evolution.

these components can be described by using HySCharts or by any technique
from system theory that can be given a semantics in terms of dense input/output
relations. This includes differential equations. Dense input/output relations are
a relational extension of hybrid Focus [10, 4].

Example 1 (An electronic height control system, EHC) The follow-
ing example illustrates the kind of systems we want to regard. It will be used
throughout the paper to demonstrate the use of HyCharts.
The purpose of the electronic height control system (EHC), which was orig-

inally proposed by BMW, is to control the chassis level of an automobile by a
pneumatic suspension. The abstract model of this system which regards only
one wheel was first presented in [12]. It basically works as follows: Whenever the
chassis level is below a certain lower bound, a compressor is used to increase it.
If the level is too high, air is blown off by opening an escape valve. The chassis
level sHeight is measured by sensors and filtered to eliminate noise. The fil-
tered value fHeight is read periodically by the controller. which operates the
compressor and the escape valve and resets the filter when necessary. A further
sensor bend tells the controller whether the car is going through a curve.
Here, we concentrate on the software part of the system. The environment

is omitted. The basic components of the system are therefore the filter and the
controller. The escape valve and the compressor are modeled within the con-
troller. The diagrams in Figure 1 depict on the left the architecture of the EHC
and on the right a typical evolution of the system over time. The architecture of
the EHC is given by a HyAChart. Each component of this chart can be defined
again by a HyAChart or by a HySChart or some other compatible formalism.
The components only interact via clearly defined interfaces, or channels, in order
to get modularity. The behavior of a component is characterized, as intuitively
shown in Figure 1, right, by periods where the values on the channels change
smoothly and by time instances at which there are discontinuities. In our ap-
proach the smooth periods result from the analog parts of the components. The
discontinuities are caused by their combinational (or discrete) parts.
We specify the behavior of both the combinational and the analog part of a

component by a HySChart, i.e., by a hybrid, hierarchic state transition diagram,
with nodes marked by activities and transitions marked by actions. The tran-
sitions define the discontinuities, i.e., the instantaneous actions performed by
the combinational part. The activities define the smooth periods, i.e., the time

i2di2u

reset

n2b b2n

Control

b2n

reset

n2b

outTol

u2d

d2u
d2i

reset

d2d

outTolu2i

i2d

i2ui2i

u2u

w_inc
t_o

t_o
t_o

inTol

up down

a_const

a_inc a_dec
a_const

outBend

outBend

inBend

Fig. 2. The EHC’s Control component.

consuming behavior of the analog part while the combinational part is idle. As
an example, Figure 2 shows the HySChart for the EHC’s Control component. It
consists of three hierarchic levels. Figure 2, left, depicts the highest level. Figure
2, top right, refines the state outBend and Figure 2, bottom right, further refines
the state outTol. The states, transitions and activities (written in italics in the
figure) are explained in Section 5. �
In contrast to the well-known technique of hybrid automata [1], HyCharts are
fully modular and suitable for open systems. The hybrid modules from Alur
and Henzinger [2] are modular, but their utility suffers from the fact that it is
not obvious how to model feedback loops. For theoretical reasons, loops pose a
problem in our approach, too. Nevertheless we explicitly allow feedback loops, as
long as they introduce a delay. Demanding a delay is not unrealistic, as signals
cannot be transmitted at infinite speed. Another modular model, hybrid I/O
automata, is presented in [9]. While this model is promising from the theoret-
ical point of view, we think it has some deficits in practice. Namely, there is
no graphical representation for hybrid I/O automata yet, there is no hierarchy
concept for them and finally, there is no visual formalism for the specification of
the architecture of a composed system. The same applies for the hybrid modules
mentioned above. From the systems engineering point of view our approach is
therefore more convenient. In contrast to the hybrid statecharts introduced in
[8] HyCharts not only permit hierarchic states, but also hierarchic activities.
HyCharts look largely similar to the description techniques used in the software
engineering method for real-time object-oriented systems ROOM [11] and may
therefore be seen as a hybrid extension of them.
The rest of the paper is organized as follows. In Section 2 we present an

abstract interpretation of hierarchic graphs. This interpretation provides the in-
frastructure for defining an unusually simple denotational semantics for the key
concepts of statecharts [7] offered in HyCharts, like hierarchy and preemption. It
is also the foundation for the denotational semantics of our hybrid computation
model, which is introduced in Section 3. Following the ideas developed in this
model, HyCharts are defined in Sections 4 and 5 as a multiplicative and respec-
tively an additive interpretation of hierarchic graphs. Both interpretations are

N1

a2a1

1b

N1 N1

c

b

a

FeedbackSequential compositionVisual attachment

b2

N2
a b c

N2

identification ramification transpositionidentity

a

a a

a a a

a a

a

b

b

a

Fig. 3. The composition operators and the connectors

introduced in an intuitive way by using the example above. Finally, in Section
6 we summarize our results.
A version of this paper that goes into greater technical detail is available as

a technical report [5].

2 Hierarchic Graphs as Relations

A hierarchic graph consists of a set of nodes connected by a set of arcs. For each
node, the incoming and the outgoing arcs define the node’s interface. In general,
the arcs have associated some type information.
Suppose T is a set of type names and D is a type function mapping each

name t ∈ T to an associated domain of values Dt. Since we want to speak about
incoming and outgoing arcs collectively we assume given a binary (monoidal)
operation � with neutral element e, both on type names and on the corresponding
domains. For types, we obtain the set of terms given by the grammar a := t ∈
T | e | a � a | (a). The � operation on type terms is assumed to be compatible
with the � operation on domains, hence Da�b = Da �Db and Da�e = De�a = Da.
Now a node N with incoming arcs that collectively have type a and outgoing

arcs that collectively have type b can be interpreted as a relation N ⊆ Da ×Db.
Visually, this is represented by a box labeled by N , with an incoming arrow
labeled by a and an outgoing arrow labeled by b. We shall also write N : a → b.

Operators on nodes. In order to obtain graphs, we put nodes next to one an-
other and interconnect them by using the following operators on relations: visual
attachment, sequential composition and feedback. Their visual representation is
given in Figure 3, top.
The visual attachment is achieved by extending � to an operation over nodes.

Given N1 : a1 → b1 and N2 : a2 → b2 we define N1 � N2 to be of type a1 � a2 →
b1 � b2. The sequential composition is the usual composition of relations. Given
N1 : a → b and N2 : b → c we define N1 ; N2 to be of type a → c. The feedback
operation allows to connect the output of a node to the input of the same node,
if both have the same type. Given N : a � c → b � c we define N↑c

� to be of type
a → b.

1N

2yy1

2x1x

Additive Interpretation Multiplicative interpretation

N21NN2

1.s

1.t

N21N

1.s 2.s

1.t 2.t

Fig. 4. The additive and multiplicative interpretations

Operators on arcs. Beside operators on nodes, we also have the following
operators on arcs: identity, identification, ramification and transposition. The
visual representation of these connectors is given in Figure 3, bottom.
The identity connector Ia : a → a copies its input to the output. The binary

identification connector ∨a : a � a → a joins two inputs together. This operator
is naturally extended to k inputs. In this case it is written ∨k

a. The binary ram-
ification connector ∧a : a → a � a copies the input information on two outputs.
For its natural extension to k outputs we write ∧a

k. Finally the transposition
connector aXb : a � b → b � a exchanges the inputs.
To be a precise formalization of graphs, the above abstract operators and

connectors have to satisfy a set of laws, which intuitively express our visual un-
derstanding of graphs. These laws correspond to symmetric monoidal categories
with feedback enriched with branching constants, see e.g. [13]. Such a category
also contains associativity isomorphisms for �. To simplify notation, they are
never written explicitly and assumed present, when necessary.
[6] shows that the additive and the multiplicative interpretations of the oper-

ators and connectors are particularly relevant for computer science.

The additive interpretation. Here � is interpreted as the disjoint sum op-
eration + over the variable state space S, i.e., S+S = {1}×S ∪ {2}×S. In the
following, we write the tuples (1, s) and (2, s) concisely as 1.s and 2.s. Extending
+ to an operation over nodes, we obtain (N1 +N2)(i.s) = {i.t | t ∈ Ni(s)}.
Its visual notation is given in Figure 4, left. The meaning of (N1+N2)(1.s) is

intuitively shown in Figure 4, middle. Receiving the tuple 1.s, the sum uses the
control information 1 to “demultiplex” the input and select the corresponding
relation N1; this relation is then applied to the state s to obtain the next state
t; finally, the output of the relation is “multiplexed” to 1.t.
The effect of using the additive interpretation is that (composed) nodes

closely correspond to control states and arcs to transitions of automata. A node
receives control on one of its entry points, i.e., its incoming arcs, and passes con-
trol on on one of its exit points, i.e., its outgoing arcs. The whole graph models
the control-flow in the automaton.
The other operators and connectors are defined consistently with +. Feedback

in the additive interpretation allows loops. Hence, it has to be used with care
in order to avoid non-termination, as in usual programming. For the additive
connectors we write the symbols Ia, k>•a, a•<k and b

a/\.

Com+

+Out Lims

Act1

.σn

n.τ

... Actn

Ana

1.σ

1.τ

κ3 = 3

3o
o4

0

1

time

2

1t t2 t3

Ana

ο

κ.σ

κ.τ

ι

ι
ι

3ι

κ2 = 5κ1 = 2

1o 2oo

κ

ι

Fig. 5. The hybrid-machine computation model

The multiplicative interpretation. Here � is interpreted as the product
operation × over sets of communication histories.1 Extending × to an operation
over nodes, we obtain (N1 ×N2)(x1, x2) = {(y1, y2) | yi ∈ Ni(xi)}.
Its visual notation is given in Figure 4, right. When we think of a system

as consisting of interconnected components running in parallel, the effect of this
interpretation is that arcs closely correspond to data flow and nodes to system
components . A component receives data on all of its input channels and sends
data along all of its output channels. Thus the graph models the data-flow in
the system.
The other operators and connectors are defined consistently with ×. In the

multiplicative interpretation, feedback allows to map the output of a component
back to its input. It is defined as the greatest solution of a fixed-point equation.
A unique solution is guaranteed to exist, if the output on the feedback channel
c is delayed before it is fed back to the input. The multiplicative connectors are
written as Ia, ◦∨k

a,
◦∧a

k and
aXb.

3 The Hybrid Computation Model

We start this section by informally explaining how our hybrid computation model
works. After that the model’s constituents are introduced formally.

General idea. We model a hybrid system by a network of autonomous compo-
nents that communicate in a time synchronous way. Time synchrony is achieved
by letting time flow uniformly for all components.
Each component is modeled by a hybrid machine, as shown in Figure 5,

left. This machine consists of three basic parts: a combinational (or discrete)
part (Com), an analog (or continuous) part (Ana) and a feedback loop.2 The
feedback models the state of the machine. It allows the component to remember
at each moment of time t the input received and the output produced “just
before” t.

1 Communication histories basically are functions from the time domain to some data
domain M , a detailed definition follows in the next section.

2 Note the similarity of this machine model with models from control theory [3].

The combinational part is concerned with the control of the analog part and
has no memory. It instantaneously and nondeterministically maps the current
input and the fed back state to the next state. The next state is used by the
analog part to select an activity among a set of activities (or execution modes)
and it is the starting state for this activity. If the combinational part passes the
fed back state without modification, we say that it is idle. The combinational
part can only select a new next state (different from the fed back state) at distinct
points in time. During the intervals between these time instances it is idle and
the selection of the corresponding activity is stable for that interval, provided the
input does not change discretely during the interval. The analog part describes
the input/output behavior of the component whenever the combinational part
is idle. Hence, it adds to the component the temporal dimension. It may select
a new activity whenever there is a discrete change in the input it receives from
the environment or the combinational part.

Example 2 Figure 5, right, shows the exemplary behavior of a component. The
shaded box κ indicates the time periods where the combinational part idles in
node i. (κ can be regarded as the control state.) At time t1 the discrete move of
the environment triggers a discrete move of the combinational part. According
to the new next state received from the combinational part, the analog part
selects a new activity. The activity’s start value at time t1 is as determined by
the combinational part. At time t2 there is a discrete move of the environment,
but the combinational part remains idle. The analog part chooses a new flow
whose start value is the analog part’s output just before t2, because this is what
it receives from the combinational part at time t2. Thus, the output has a higher
order discontinuity here. At time t3 the environment does not perform a discrete
move, but the combinational part does, e.g. because some threshold is reached.
Again the analog part selects a new activity, which begins with the start value
determined by the combinational part. During the intervals (0, t1), (t1, t3) and
(t3,∞) the combinational part is idle. �

Feedback and state. Since the input received and the output produced may
change abruptly at any time t, as shown in Figure 5, right, we consider that the
state of the component at moment t is the limit limx↗tψ(x) of all the outputs
ψ(x) produced by the analog part when x approaches t. In other words, the
feedback loop reproduces the analog part’s output with an infinitesimal inertia.
We say that the output is latched . The infinitesimal inertia is realized by the
Lims part of the hybrid machine (Fig. 5, left). Its definition is Lims(ψ)(t) = s
if t = 0 and Lims(ψ)(t) = limx↗tψ(x) for t > 0, where s is the initial state of
the hybrid machine.
The state of the machine consists of a mapping of latched (or controlled)

variable names to values of corresponding type. Let S denote the set of controlled
variable names with associated domains {σv | v ∈ S}. Then the set of all possible
states, i.e. the variable state space, is given by S =∏

v∈S σv. The set of controlled
variable names can be split in two disjoint sets: a set P of private variable names
and a set O of output (or interface) variable names. We write SP for

∏
v∈P σv

and SO for
∏

v∈O σv. Clearly, S = SP × SO. The latched inputs are a subset of
P .
The input is a mapping of input variable names to values of corresponding

type. Let I denote the set of input variable names with associated domains
{σv | v ∈ I}. Then the set of all possible inputs is given by I =∏

v∈I σv.

The combinational part. The combinational part is a relation from the
current inputs and the latched state to the next state, formally:

Com ∈ (I × Sa)→ P(Sa)

where a is a sum term and P(X) = {Y ⊆ X | Y �= {}}. The sum term is due
to the additive interpretation of hierarchic graphs which defines Com and gives
the number of leaf nodes in Com (see Section 5.1). The computation of Com
takes no time.
An important property of the relation defining the combinational part is that

it is defined for all states and inputs, i.e., it is total . To emphasize totality, we
wrote it in a functional style. Furthermore, we want that the combinational part
passes the next state to the analog part only if it cannot further proceed. In other
words, if s′ ∈ Com(i, s) is the next state, then Com(i, s′) = {s′}, i.e., no new
state s′′ �= s′ can be computed starting in s′ with input i. We say that Com is
idle for i and s′. Finally, the set E ⊆ I×Sa of inputs and states for which Com is
not idle must be topologically closed. Together with the preceding property this
guarantees that the extension of Com over time can only make discrete moves
at distinct points in time. It is needed to ensure that the semantics of a hybrid
machine is well-defined.

The analog part. Whenever the combinational part idles, the analog part
performs an activity. We describe an activity by a relation Act with type

Act ∈ (I × S)Rc+ → P(SRc+)

where R+ stands for the non-negative real line. For any set M , the set MRc+

stands for the set of functions R+→M that are continuous and piecewise smooth.
We say that a function f ∈ R+→M is piecewise smooth iff every finite interval
on the nonnegative real line R+ can be partitioned into finitely many left closed
and right open intervals such that on each interval f is infinitely differentiable
(i.e., f is in C∞) for M = R or f is constant forM �= R. Infinite differentiability
is required for convenience. It allows us to assume that all differentials of f are
well defined. A tuple of functions is infinitely smooth iff all its components are.
We also call MRc+ the set of flows over M .
To model analog behavior in a “well behaved” way, activities must be total

and time guarded, that is at any moment of time t, the output at t should be
completely determined by the input and the state received until that moment.
Formally, for all ϕ1, ϕ2, σ1, σ2 and t:

(ϕ1, σ1)↓[0,t] = (ϕ2, σ2)↓[0,t] ⇒ Act(ϕ1, σ1)↓[0,t] = Act(ϕ2, σ2)↓[0,t]

where by (σ, ϕ)↓δ we denote the restriction of σ and ϕ to the time interval δ.

The complete behavior of the analog part is described by a relation Ana with
type:

Ana ∈ (I × Sa)R+ → P(SR+
a)

where Sa is the output type of Com and for any set M , MR+ denotes the set of
piecewise smooth functions R+→M . Hence, the input and output of the analog
part is not necessarily continuous. We call MR+ the set of dense communication
histories.
The relation Ana is obtained by pasting together the flows of the activities

associated to the nodes where the combinational part Com idles. Pasting is real-
ized as shown in Figure 5, middle, by extending the sum operation to activities.
Given a set of activities ACT = {Actj | j ≤ n}, their sum is defined as below3:

+n
j=1Actj

def= { (ι, κ.σ, κ.τ) | ∀δ,m. κ|δ = m† ⇒ m ≤ n ∧ (ι, σ, τ)|δ ∈ (Actm)|δ}
where δ is a left closed right open interval,m† is the extension ofm to a constant
function over δ, ι ∈ IR+ and κ.σ, κ.τ ∈ SR+

a . The tuple κ.σ consists of the control
flow κ which gives at each moment of time the node where the combinational
part idles (see Figure 5, right) and the state flow σ which gives at each moment
of time the state passed by the combinational part. The tuple κ.τ consists of
the same control flow κ and of the state flow τ computed by the sum. For
each interval δ in which the combinational part idles, the sum uses the control
information κ|δ to demultiplex the input κ.σ|δ to the appropriate activity and to
multiplex the output τ |δ to κ.τ |δ. Section 5.2 will show how Ana is constructed
from the activities in a HySChart by using the + operator.
Note that the type of Ana assures that (ι, κ.σ) is partitioned into pieces,

where ι, κ and σ are simultaneously piecewise smooth. The output histories κ.τ
of Ana are again piecewise smooth, by the definition of Ana.
As we demand that every activity is total and time guarded, the analog part

also is total and time-guarded. Furthermore, for the analog part we demand
that it is resolvable, which means that it must have a fixed point for every state
s0 ∈ Sa and every input stream i ∈ IRc+ , i.e.,

∃σ ∈ SRc+
a .σ(0) = s0 ∧ σ ∈ Ana(ι, σ)

Resolvability of the analog part is needed to prove that the semantics of a hybrid
machine is well-defined [5].

The component. Given an initial state s0, the behavior of the hybrid machine
is a relation Cmp between its input and output communication histories. Writing
the graph in Figure 5, left, as a relational expression with the multiplicative
operators results in the denotational semantics of Cmp:

Cmp ∈ Sa → IR+ → P(OR+)
Cmp(s) = ((◦∧2×I) ; (I×Com†) ; Ana ; ◦∧2 ; (Out

†×Lims)) ↑×
where R† trivially extends the combinational relationR in time, i.e.,R†(ι) def= {o |
o(t) ∈ R(ι(t))} for any t ≥ 0. Out selects the output variables from the state
stream.
3 Here we use for convenience the relational notation Act ⊆ IRc+ × SRc+ × SRc+ .

By definition, Cmp is a time guarded relation, because Com†, Ana, Out†,
Lims, I and ◦∧2 are time guarded. [5] proves that Cmp is total if Com and Ana
satisfy the properties required above and if Com in connection with Ana never
performs infinitely many discrete actions within a finite interval. The central
part of the proof is that, due to the properties of Com and Ana, some time
δ > 0 passes between any two discrete moves of Com.

4 System Architecture Specification - HyACharts

The system architecture specification determines the interconnection of a sys-
tem’s components.

Graphical syntax. The architecture specification is a hierarchic graph, a so
called HyAChart (Hybrid Architecture Chart), whose nodes are labeled with
component names and whose arcs are labeled with channel names. We use
a graphical representation that is analogous to the structure specifications in
ROOM [11].

Semantics. As a HyAChart is a hierarchic graph, it is constructed with the op-
erators of Section 2. Writing the graph as the equivalent relational formula and
interpreting the operators in it multiplicatively directly gives the HyAChart’s
semantics. As � is interpreted as the product operation for sets in this interpre-
tation, visual attachment here corresponds to parallel composition. Hence, each
node in the graph is a component acting in parallel with the other components
and each arc in the graph is a channel describing the data-flow from the source
component to the destination component, as explained in Section 2.
The component names in the graph refer to input/output behaviors specified

in other HyACharts, in HySCharts (Section 5) or with other formalisms. The
channel names are the input and output variable names used in the specification
of the components. The variables’ types must be specified separately.

Example 3 (The HyAChart of the EHC) We now return to the HyAChart
of our example system given in the introduction in Figure 1, left, and develop
its semantics.
The boolean-valued channel bend in the figure tells the controller whether

the car is in a curve. The real-valued channel sHeight carries the chassis level
measured by the sensors. The real-valued channel fHeight carries the filtered
chassis level. The real-valued channel aHeight carries the chassis level as pro-
posed by the actuators, compressor and escape valve, without environmental
disturbances. The boolean-valued channels reset and dReset (“delayed reset”)
transfer the boolean reset signal to the filter. The delay component Df ensures
that the feedback is well-defined (see e.g. [10]).
The types of the filter, the control component and the delay component follow

from the channels’ types. The filter has type Filter ∈ (R × B)R+ → P(RR+),
the controller’s type is Control ∈ (B×R)R+ → P((R×B)R+) and the delay has
type Df ∈ B

R+ → P(BR+). The semantics of the whole system EHC is defined
as below. It is the relational algebra term corresponding to the HyAChart of

Figure 1, left.

EHC ∈ (B × R)R+ → P(RR+)
EHC = ((I×Filter) ; Control ; (I×Df)) ↑×

Note that the user only has to draw the HyAChart and define the types of the
channels. �

5 Component Specification - HySCharts

A HySChart (Hybrid StateChart) defines the combinational and the analog part
of a hybrid machine. The input/output behavior of the resulting component
follows from these parts as explained in Section 3.

The Graphical Syntax of HySCharts. A HySChart is a hierarchic graph,
where each node is of the form depicted in Figure 6, left. Each node may have
sub-nodes. It is labeled with a node name, which only serves for reference, an
activity name and possibly the symbols →◦ and ◦→ to indicate the existence
of an entry or exit action, which is executed when the node is entered or left.
The outgoing edges of a node are labeled with action names. The action names
stand for predicates on the input, the latched state and the next state. They
are structured into a guard and a body. The activity names refer to systems
of ordinary differential (in)equations. The specification of actions and activities
and their semantics is explained in detail in the following. Transitions from com-
posed nodes express preemption. Except for activities, HySCharts look similar
to ROOM-charts [11].

The Semantics of HySCharts. The semantics of a HySChart is divided
into a combinational and an analog part. The combinational part follows almost
directly from the diagram. The analog part is constructed from the chart with
little effort. In the following we will first explain how the combinational part is
derived from a HySChart and how actions are specified. Then, the analog part
and continuous activities are covered.

5.1 The Combinational Part
A HySChart is a hierarchic graph and therefore constructed from the operators
in Section 2. As mentioned there, interpreting the graph additively leads to a
close correspondence to automata diagrams.
We may view the graph as a network of autonomous computation units (the

nodes) that communicate with each other over directed control paths (the arcs).
Due to the additive interpretation, each time control resides in only one (primi-
tive) computation unit.
In order to derive the combinational part from the HySChart we now give a

semantics to its nodes, i.e., to its computation units. The semantics for hierarchy
and actions follows.

Computation units. Each primitive node of the HySChart represents the
graph given in Fig. 6, top right. It corresponds to the relational expression:

CompUnit
def=(+m

i=1entry+ I);m+1>•;•<n+1; ((+n
i=1(guardi; exit; bodyi))+wait)

nodes

sub-

entry

entry

men

1en

m

Activity

1

wait

Node

1ex

nex

entry

1exentry

nen

N1 N...

en

ex

1body

nbody

1guard

nguard

exit

exit

1body

nbody

1guard

nguard

exit

exit

action1

actionn

k

wt

wt 1

wt j

1

wt
wt

j

wt

Fig. 6. Syntax and semantics of a computation unit.

According to the additive operators, it has the following intuitive meaning. A
computation unit gets the control along one of its entry points eni and gives the
control back along one of its exit points exj .
After getting control along a regular entry point, i.e., an entry point different

from wait wt, a computation unit may first execute an entry action entry.
Then it evaluates a set of action guards guardk. If one of the guards is true,
then the corresponding action is said to be enabled, the exit action exit is
executed, if present, and then the action’s body bodyk is executed. After that,
the computation unit passes control to another computation unit along the exit
point corresponding to the executed action.
If more than one guard is true, then the computation unit nondeterministi-

cally chooses one of them. Guard wait in the diagram stands for the negation
of the disjunction of the actions’ guards guardk. Hence, if none of the guards
is true, then the discrete computation is completed, and the control leaves the
combinational part along the designated wait exit point wt. The next section
shows that the analog part takes advantage of the information about the exit
point to determine the activity to be executed and gives control back along the
corresponding wait entry point.

Hierarchy. A composed or hierarchic node in the HySChart stands for the
graph in Figure 6, bottom right. A principal difference to primitive nodes is that
the entry points are not identified, instead they are connected to the correspond-
ing entry points of the sub-nodes. Similarly, the exit points of the sub-nodes are
connected to the corresponding exit points of their enclosing hierarchic node.
Furthermore, the hierarchic node has a wait entry and wait exit point for every
wait entry/exit point of the sub-nodes. When it receives control on one of them,
it is directly passed on to the wait entry point of the corresponding sub-node.
Thus, the wait entry point identifies a sub-node. The hierarchic node is left along
a wait exit point, if a sub-node is left along its corresponding wait exit point.

Actions. An action a is a relation between the current input, the latched state
and the next state:

a ⊆ (I × S) × S

For HySCharts, actions are specified by their characteristic predicate. They are
the conjunction of a precondition (the action guard) on the latched state and
the current input and a postcondition (the action body) that determines the
next state. The precondition implies that the postcondition is satisfiable, hence
the action is enabled iff the precondition is true. We use left-quoted variables v‘
to denote the current input, right-quoted variables v′ to denote the next state
and plain variables to denote the latched state. Moreover, we mention only the
changed variables and always assume the necessary equalities stating that the
other variables did not change. To simplify notation further, we associate a
variable c with each channel c.
For example, the action resetting the filter is defined as dReset‘ �= dReset ∧

dReset′ = dReset‘ ∧ fHeight′ = 0. It says that each time dReset is toggled,
fHeight should be reset to 0. We abbreviate this by dReset? ∧ fHeight′ = 0,
where e? for boolean variables e stands for e‘ �= e ∧ e′ = e‘ and indicates that,
toggling e is an event. Similarly, we define e! for boolean variables e, to indicate
the sending of an event. e! stands for e‘ �= e.
As mentioned in Section 3, the combinational part may only perform discrete

state changes, on a topologically closed subset I × S. This condition is satisfied
by a HySChart defining the combinational part, if the precondition of every
action in the chart identifies a topologically closed subset of I ×S. Note that in
conjunction with hierarchy the action guards must be chosen with care in order
to guarantee that the combinational part specified by the HySChart is total.
The additive interpretation of graphs also provides the infrastructure to easily

model preemption, history variables and other concepts known from statecharts-
like formalisms [6].

Semantics. If each node in the HySChart is replaced by the corresponding
graph of Figure 6, right, we obtain a hierarchic graph whose nodes merely are
relations. Writing the graph as the corresponding relational expression with the
additive operators gives the denotational semantics of the HySChart’s discrete
part, i.e., the combinational part of a hybrid machine.
At the highest level of hierarchy, the hierarchic graph resulting from the

HySChart has one wait entry/exit point pair for every primitive (or leaf) node
in the chart. On the semantic level there is exactly one summand in the sum
term a of the combinational part’s type (I × Sa)→ P(Sa) for every entry/exit
point pair. The analog part uses the entry/exit point information encoded in
this disjoint sum to select the right activity for every node in the HySChart.

Example 4 (The EHC’s Control component) To outline the utility of this
approach for hybrid systems we now return to the HySChart for the controller
given in the introduction. We describe the states and transitions in Figure 2 in
a top-down manner. The activities, written in italics in the figure, are explained
in the next section.

The computation unit Control. On the top level of the component Control
we have two computation units, outBend and inBend. When the controller
realizes that the car is in a curve, the computation unit inBend is entered. It is

left again when the controller senses that the car no longer is in a curve. Sensing
a curve is event driven. We use the boolean variable bend for this purpose. The
actions n2b and b2n are identical and very simple: n2b ≡ b2n ≡ bend?

The computation unit outBend. The computation unit outBend is refined
to inTol and outT ol as shown in Figure 2, top right. Control is in inTol as long
as the filtered chassis level is within a certain tolerance interval. The compressor
and the escape valve are off then. If fHeight is outside this interval at a sampling
point, one of the sub-nodes of outT ol is entered. These sub-nodes are left again,
when fHeight is inside the desired tolerance again and the filter is reset. The
actions originating from inTol are defined as follows:

t o ≡ w = ts, i2i ≡ lb ≤ fHeight ≤ ub
i2u ≡ fHeight ≤ lb, i2d ≡ fHeight ≥ ub

An interesting aspect of inTol is the specification of the composed action started
by the timeout t o, which semantically corresponds to the ramification operator
for hierarchic graphs. Of course, one could have used three separate transitions
instead. However, in this case the visual representation would have failed to
highlight the common enabling condition t o.
Leaving the computation unit outT ol along its exit point reset causes the

execution of the reset action. This action is always enabled and defined by
reset ≡ reset!. Note that we used here the same name for the action and its
associated event. The transition n2b originates from the composed node outBend
(and from none of its sub-states). This expresses weak preemption, i.e., this
transition can be taken from any sub-node of outBend, as long as it is not
overwritten (see [5] for details).

The computation unit outTol. As shown in Figure 2, bottom right, the
computation unit outT ol consists of the computation units up and down. When
the filtered chassis level is too low at a sampling point, node up is entered,
where the compressor is on. When the level is too high, down is entered, where
the escape valve is open. Control remains in these nodes until fHeight is inside
the desired tolerance again (actions u2i, d2i). These actions cause outT ol to be
left along the same exit point, reset. The actions originating from up and down
are very similar to those of inTol, so we do not give them explicitly here.
As indicated by the symbol→◦ the nodes inTol, up and down have an entry

action. It is defined as entry ≡ w′ = 0 and resets w. Together with action t o
and the activity w inc it models sampling in these nodes.

Semantics. As explained, the combinational part follows directly from the
HySChart by replacing the nodes by their corresponding graphs of Figure 6,
right. As every wait entry/exit point pair at the highest hierarchic level of the
resulting graph corresponds to an operand in the type of the combinational part,
we get that the combinational part of Control has type Com ∈ (I×Sa)→ P(Sa),
where Sa = S + (S + (S + S)).
Note that the user only has to draw the HySChart and give the definitions

of the actions. The corresponding combinational part can be constructed auto-
matically. �

5.2 The Analog Part

The second part of a HySChart’s semantics is the analog part it defines. In the
following we explain how this analog part is derived from the chart.

Activities. Each activity name in the HySChart refers to a system of ordinary
differential (in)equations over the variables of the component. We demand that
for any tuple of initial values s ∈ S and any continuous, piecewise smooth input
stream i ∈ IRc+ , the resulting initial value problem is solvable. This ensures that
the analog part that is constructed in the following is resolvable as required in
Section 3.

Example 5 (The activities of Control) In our example from Figure 2 the
activity names written in italics stand for the following differential (in)equations:

w inc ≡ d
dtw = 1 a inc ≡ d

dtaHeight ∈ [cp−, cp+]
a const ≡ d

dtaHeight = 0 a dec ≡ d
dtaHeight ∈ [ev−, ev+]

where cp−, cp+ > 0 and ev−, ev+ < 0 are constants. For w this means that it
evolves in pace with physical time. Variable aHeight either increases with a rate
in [cp−, cp+] (activity a inc), it decreases (a dec) or remains constant (a const).
Note that this is all the user has to provide to specify the analog part. �

The activity Act ∈ (I × S)Rc+ → P(SRc+) in every node is derived from the
differential (in)equations in the following way: For the input stream i and the
state stream s we take s(0) as the initial value for the system of differential
(in)equations. The activity’s set of output streams then consists of the solutions
of the resulting initial value problem for input stream i. For those controlled
variables v, whose evolution is not determined by the initial value problem, the
activity’s output is equal to s.v, i.e., to the v component of the state stream the
activity received. Hence, it remains unmodified.

Composition of Activities. To reflect the hierarchy in the HySChart the ac-
tivities specified in the nodes are composed appropriately. Therefore, we extend
the sequential composition operator ; to (disjoint sums of) activities:

Act1 ; Act2 = {(i, σ, σ′) | ∃τ. (i, σ, τ) ∈ Act1 ∧ (i, τ, σ′) ∈ Act2}
A HySChart can be seen as a tree with the primitive nodes as its leaves. The
HySCharts in Figure 2, for example, has node Control as its root and the nodes
inBend, inTol, up and down as leaves. Starting from the tree’s root we derive
the composed activity defined by the HySChart as follows: (We write ActN for
the (primitive) activity of node N and CActN for the composed activity of node
N , here.)

– if N has sub-nodes M1, . . . ,Mn, CActN
def= +n

i=1 (ActN ;CActMi)
– if N is a primitive node, CActN

def=ActN

The analog part is the composed activity of the HySChart’s root node,
i.e. Ana = CActroot. Figure 7 and the following example explain this definition.

w_inc w_inc

wt
inTol

wt
up

wt
down

a_const

w_inc w_inc

wt
inTol

wt
up

wt
down

a_const
a_inc a_dec

wt
inBend

wt
inBend

Fig. 7. The Control component’s analog part.

Example 6 (The analog part of Control) The HySChart in Figure 2 has
the analog part:

Ana ≡ (w inc ; a const) + (w inc ; (a const+ (a inc+ a dec)))

where we use the activity names to refer to the semantics of each activity, here.
Figure 7 depicts the different paths in the associated tree. �

The entry and exit point symbols in the figure highlight that the analog part
has one path for every primitive node in the HySChart. When we construct the
combinational part from the HySChart, we also get one wait entry and wait
exit point at its highest level of hierarchy for each primitive node. This allows
to sequentially compose the combinational part with the analog part as in the
semantics of a hybrid machine in Section 3. The distinct wait points allow both
the combinational part and the analog part to know which node in the HySChart
currently has control and to behave accordingly.

6 Conclusion

Based on a clear hybrid computation model, we were able to show that the
ideas presented in [6] can smoothly be carried over to hybrid systems and yield
modular, visual description techniques for such systems. Namely, the resulting
techniques are HyACharts and HySCharts for the specification of hybrid system
architecture and hybrid component behavior, respectively.
With an example we demonstrated the use of HyCharts and their features.

Apart from many features known from statecharts-like formalisms, this in par-
ticular includes the ability to compose HySCharts with components specified
with other formalisms. In our opinion such heterogeneous specifications are a
key property for designing hybrid systems, as it allows to integrate techniques
from different engineering disciplines.
Methodically we conceive a HySChart as a very abstract and precise math-

ematical model of a hybrid system. Knowing exactly the behavior of the analog
part as given by a system of differential (in)equations allows us to develop more
concrete models that can easily be implemented on discrete computers. For such
models it is essential to choose a discretization which preserves the main prop-
erties of the abstract description.
Although this paper mainly aims at hybrid systems appearing in the con-

text of disciplines like electrical and mechanical engineering, we think that the

continuous activities in HySCharts also make them well suited for specifying mul-
timedia systems, such as video on demand systems. Basically HyCharts seem to
be appropriate for any mixed analog/digital system where the use of continuous
time is more natural than a discrete time model.
In the future we intend to develop tool support and a requirement specifica-

tion language for HyCharts. For the verification of HySCharts we believe that
the techniques known for linear hybrid automata [1] can easily be adapted.

Acknowledgment. We thank Ursula Hinkel, Ingolf Krüger, Olaf Müller and
Jan Philipps for their constructive criticism after reading draft versions of this
paper.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3–34, 1995.

2. R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. In CON-
CUR 97: Concurrency Theory, LNCS 1243. Springer-Verlag, 1997.

3. M. Branicky, V. Borkar, and S. Mitter. A unified framework for hybrid control.
Technical Report LIDS-P-2239, MIT, June 1994.

4. M. Broy. Refinement of time. In ARTS’97, LNCS 1231. Springer-Verlag, 1997.
5. R. Grosu and T. Stauner. Modular and visual specification of hybrid systems - an

introduction to HyCharts. Technical Report TUM-I9801, Technische Universität
München, July 1998.

6. R. Grosu, Gh. Stefănescu, and M. Broy. Visual formalisms revisited. In Proc. Int.
Conf. on Application of Concurrency to System Design (CSD). IEEE, 1998.

7. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8, 1987.

8. Y. Kesten and A. Pnueli. Timed and hybrid statecharts and their textual repre-
sentation. In Formal Techniques in Real-Time and Fault-Tolerant Systems, 2nd
International Symposium, LNCS 571. Springer-Verlag, 1992.

9. N.A. Lynch, R. Segala, F.W. Vaandrager, and H.B. Weinberg. Hybrid I/O au-
tomata. In Hybrid Systems III, LNCS 1066. Springer-Verlag, 1996.

10. O. Müller and P. Scholz. Functional specification of real-time and hybrid systems.
In Proc. Hybrid and Real-Time Systems (HART), LNCS 1201. Springer, 1997.

11. Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time Object-Oriented Mod-
eling. John Wiley and Sons Ltd, Chichester, 1994.

12. T. Stauner, O. Müller, and M. Fuchs. Using HyTech to verify an automotive
control system. In Proc. Hybrid and Real-Time Systems (HART’97), LNCS 1201.
Springer-Verlag, 1997.

13. Gh. Stefănescu. Algebra of flownomials. Technical Report TUM-I9437, Technische
Universität München, 1994.

