
Automated Refinement Checking for

Asynchronous Processes

Rajeev Alur, Radu Grosu, and Bow-Yaw Wang

Department of Computer and Information Science
University of Pennsylvania

200 South 33rd Street
Philadelphia, PA 19104

Email: alur,grosu,bywang @ cis.upenn.edu

URL: www.cis.upenn.edu/~alur,grosu,bywang

Abstract. We consider the problem of refinement checking for asyn-
chronous processes where refinement corresponds to stutter-closed lan-
guage inclusion. Since an efficient algorithmic solution to the refinement
check demands the construction of a witness that defines the private
specification variables in terms of the implementation variables, we first
propose a construction to extract a synchronous witness from the specifi-
cation. This automatically reduces individual refinement checks to reach-
ability analysis. Second, to alleviate the state-explosion problem during
search, we propose a reduction scheme that exploits the visibility infor-
mation about transitions in a recursive manner based on the architectural
hierarchy. Third, we establish compositional and assume-guarantee proof
rules for decomposing the refinement check into subproblems. All these
techniques work in synergy to reduce the computational requirements
of refinement checking. We have integrated the proposed methodology
based on an enumerative search in the model checker Mocha. We illus-
trate our approach on sample benchmarks.

1 Introduction

Refinement checking is the problem of analyzing a detailed design, called the
implementation, with respect to an abstract design, called the specification. Re-
finement checking is useful for detecting logical errors in designs in a system-
atic manner, and offers the potential of developing systems formally by adding
details in a stepwise manner. Our notion of refinement is based on language in-
clusion, and due to its high computational complexity, traditionally refinement
proofs are done manually or using theorem provers1. A recent promising ap-
proach to automated refinement checking combines assume-guarantee reasoning
with BDD-based symbolic search routines [21, 12, 13], and has been successfully
applied to synchronous hardware designs such as pipelined processors [22] and a

1 Note that stronger notions such as bisimulation and simulation are used in many
process algebras, and are supported by automated tools [23, 7, 14, 26].

VGI chip [11]. In this paper, we develop the foundations and heuristics for au-
tomated refinement checking of asynchronous processes, and report on several
case studies.

The standard notion of refinement is inclusion of trace languages: every ob-
servable behavior of the implementation must also be a possible behavior of
the specification. In the asynchronous setting such as shared memory multi-
processors, asynchronous circuits, and distributed processes communicating by
messages, there is no notion of global time, and the speeds of the processes are
independent. Consequently, behaviors that differ from each other only modulo
stuttering (repetition of the same observation) need to be considered identical,
and the appropriate notion of refinement is inclusion of stutter-closed languages:
P < Q iff every trace of P is stutter-equivalent to some trace of Q [25, 2, 18].

Given two processes P and Q, checking whether P < Q holds, is compu-
tationally hard: if Q is nondeterministic then it must be determinized, which
requires subset construction, and furthermore, to account for stuttering, an ε-
closure construction must be applied, which requires computation of the tran-
sitive closure of the transition relation. Both these problems disappear if the
specification process Q has no private state. Then, as in the synchronous case,
it suffices to establish that every reachable transition of P has a corresponding
transition in Q, and this can be done by an on-the-fly search routine that can
report counter-examples. On the other hand, when the specification has private
variables, the classical approach is to require the user to provide a definition of
the private variables of the specification in terms of the implementation variables
(this basic idea is needed even for manual proofs, and comes in various formal-
izations such as refinement maps [1], homomorphisms [17], forward-simulation
maps [19], and witness modules [12, 21]). Thus, the refinement check P < Q
reduces to P‖W < Q, where W is the user-supplied witness for private variables
of Q. In our setting of asynchronous processes, it turns out that the witness
W itself should not be asynchronous (that is, for asynchronous W , P‖W < Q
typically does not hold). This implies that the standard trick of choosing Q it-
self as a witness, used in many of the case studies reported in [22, 11], does not
work in the asynchronous setting. As a heuristic for choosing W automatically,
we propose a construction that transforms Q to Eager (Q), which is like Q, but
takes a stuttering step only when all other choices are disabled. This construc-
tion is syntactically simple, and as our case studies demonstrate, turns out to
be an effective way of automating witness construction. The complexity of the
resulting check, is then, proportional to the product of P and Q.

The second component of the proposed method is a heuristic for on-the-fly
search based on compressing unobservable transitions in a hierarchical manner.
This is an extension of our earlier work on efficient invariant verification [6]. The
basic idea is to describe the implementation P in a hierarchical manner so that
P is a tree whose leaves are atomic processes, and internal nodes compose their
children and hide as many variables as possible. The basic reduction strategy,
proposed by many researchers, is simple: while computing the successors of a
state of a process, apply the transition relation repeatedly until a shared vari-

able is accessed. This is applicable since changes to private state are treated as
stuttering steps. The novelty is in applying the reduction in a recursive man-
ner exploiting the hierarchical structure. Our strategy is easy to implement,
and gives significant reductions in space and time requirements, particularly for
well-structured systems such as rings and trees.

The last component of our methodology is an assume guarantee princi-
ple for the stutter-closed refinement in the context of our modeling language
of reactive modules [4]. Our assume guarantee principle asserts that to prove
P1‖P2 < Q1‖Q2, it suffices to establish separately P1‖Q2 < Q1 and Q1‖P2 < Q2.
This principle, similar in spirit to many previous proposals [27, 2, 4, 10, 21], re-
duces the verification of a composition of implementation components to indi-
vidual components, but verifies an individual component only in the context of
the specifications of the other components. Our first two techniques are used to
check individual components afterwards.

We have incorporated our methodology using an enumerative search engine
in the new implementation of the model checker Mocha (see [5] for a descrip-
tion of the first release). This version is implemented in Java, and supports an
extensive GUI with a proof assistant that allows the user to select refinement
goals, and generates subgoals via compositional and assume-guarantee rules.
The counter-examples generated by the refinement checker are displayed by a
simulator in the message-sequence-chart like format. The tool is available at
www.cis.upenn.edu/~mocha

The case studies reported in this paper include (1) an assume-guarantee style
proof relating two descriptions of alternating-bit protocol, (2) a refinement check
of a tree-structured implementation of an n-way arbiter using 2-way elements
(this illustrates the use of eager witnesses, and efficiency of the heuristic for hi-
erarchical reduction), (3) a leader election protocol (illustrating the efficiency of
the hierarchical reduction), and (4) ring of distributed mutual exclusion cells [20]
(illustrating use of automatic witness construction, assume-guarantee proofs, and
hierarchical reduction). While these examples have been analyzed previously by
model checkers, prior studies have focussed on verifying temporal logic require-
ments, and in contrast, our tool checks (stutter-closed) refinement with respect
to an abstract specification process.

2 Process Model

We start with the definition of processes. The model is a special class of re-
active modules [4] that corresponds to asynchronous processes communicating
via read-shared variables. A process is defined by the set of its variables, rules
for initializing the variables, and rules for updating the variables. The variables
of a process P are partitioned into three classes: private variables that cannot
be read or written by other processes, interface variables that are written only
by P , but can be read by other processes, and external variables that can only
be read by P , and are written by other processes. Thus, interface and external
variables are used for communication, and are called observable variables. The

process controls its private and interface variables, and the environment controls
the external variables. The separation between controlled and external variables
is essential for the assume guarantee reasoning, and the separation between pri-
vate and observable variables is essential for compressing internal transitions
effectively. Once the variables are defined, the state space of the process is de-
termined. A state is also partitioned into different components as the variables
are, for instance, controlled state and external state. The initialization specifies
initial controlled states, and the transition relation specifies how to change the
controlled state as a function of the current state.

Definition 1. A process P is a tuple (X, I, T) where

– X = (Xp, Xi, Xe) is the (typed) variable declaration. Xp, Xi, Xe represent
the sets of private variables, interface variables and external variables re-
spectively. Define the controlled variables Xc = Xp ∪ Xi and the observable
variables Xo = Xi ∪ Xe;

– Given a set X of typed variables, a state over X is a function mapping
variables to their values. Define Qc to be the set of controlled states over Xc

and Qe the set of external states over Xe. Q = Qc ×Qe is the set of states.
We also define Qo to be the set of observable states over Xo;

– I ⊆ Qc is the set of initial states;
– T ⊆ Qc × Qe × Qc is the transition relation with the property (called asyn-

chronous property) that for any q ∈ Qc and any e ∈ Qe, (q, e, q) ∈ T .

Starting from a state q, a successor state is obtained by independently letting
the process update its controlled state and the environment update the external
state. The asynchronous property says that a process may idle at any step, and
thus, the speeds of the process and its environment are independent.

Definition 2. Let P = ((Xp, Xi, Xe), I, T) be a process, and q, q′ be states.
Then q′ is a successor of q, written q −→P q′, if (q[Xc], q[Xe], q′[Xc]) ∈ T 2.

Note that our model allows simultaneous updates by component processes, and
thus, is different from the interleaving model (as used in Spin [15], for instance).
It is a special case of the model used by Mocha , which supports a more general
synchronous model in which the updates by the process and its environment
can be mutually dependent in an acyclic manner. Modeling asynchrony within
a synchronous model by a nondeterministic choice to stutter is a well-known
concept [23].

In order to support structured descriptions, we would like to build complex
processes from simpler ones. Two constructs, hide H in P and P‖P ′ for building
new processes are defined (we also support instantiation, or renaming, but it is
not needed for the technical development in this paper). The hiding operator
2 For a state q over variables X, and a subset Y ⊆ X, q[Y] denotes the projection of

q on the set Y .

makes interface variables inaccessible to other processes, and its judicious use
allows more transitions to be considered internal.

Definition 3. Let P = ((Xp, Xi, Xe), I, T) be a process and H ⊆ Xi. Define
the process hide H in P to be ((Xp ∪ H, Xi \ H, Xe), I, T).

The parallel composition operator allows to combine two processes into a
single one. The composition is defined only when the controlled variables of the
two processes are disjoint. This ensures that the communication is nonblocking,
and is necessary for the validity of the assume guarantee reasoning.

Definition 4. Let P = ((XP
p , XP

i , XP
e), IP , T P) and Q = ((XQ

p , XQ
i , XQ

e), IQ, T Q)
be processes where XP

c ∩ XQ
c = ∅. The composition of P and Q, denoted P‖Q,

is defined as follows.

– Xp = XP
p ∪ XQ

p ; Xi = XP
i ∪ XQ

i ; Xe = (XP
e ∪ XQ

e) \ Xi;
– I = IP × IQ;
– T ⊆ Qc × Qe × Qc where (q, e, q′) ∈ T if (q[XP

c], (e ∪ q)[XP
e], q′[XP

c]) ∈ T P

and (q[XQ
c], (e ∪ q)[XQ

e], q′[XQ
c]) ∈ T Q.

It follows from the definition that the transition relation of the composed process
has the asynchronous property.

A stuttering step is a step in which the observation does not change. The
interaction of a process with the environment is not influenced by the stuttering
steps it takes. To capture this aspect, we first extend the notion of successor and
take only observable (non-stuttering) moves into account. A weak successor can
be obtained by a sequence of successors where all the steps are stuttering steps
except the last step.

Definition 5. Let P = ((Xp, Xi, Xe), I, T) be a process, and q, q′ states. We
say q′ is a weak successor of q, q −→P

w q′, if there are states q0 = q, q1, . . . , qn =
q′ ∈ Q such that

– for all 0 ≤ i < n. qi[Xo] = q0[Xo]; and
– for all 0 ≤ i < n. qi −→P qi+1; and
– qn−1[Xo] �= qn[Xo].

An execution of P is a sequence σ̄ = q0q1 · · · qn in Q∗, where q0 ∈ I × Qe

and qi −→P
w qi+1 for 0 ≤ i < n.

The trace of an execution is its projection to observables:

Definition 6. Let P = ((Xp, Xi, Xe), I, T) be a process and σ̄ = q0q1 · · · qn

an execution of P . The trace tr(σ̄) of σ̄ is a sequence in Q∗
o, defined to be

q0[Xo]q1[Xo] · · · qn[Xo]. The language of a process P , L(P), is defined to be the
set of traces of all executions of P .

Note that the language of a process completely determines its interaction with
the environment: the language P‖P ′ can be constructed from the languages L(P)
and L(P ′).

We say process P weakly refines process Q if the projection of the trace of
any execution of P is a trace of some execution of Q. Intuitively, P weakly refines
Q if any observable behavior of P is also an observable behavior of Q modulo
stuttering.

Definition 7. Let P = ((XP
p , XP

i , XP
e), IP , T P) and Q = ((XQ

p , XQ
i , XQ

e), IQ, T Q)
be two processes. Define P weakly refines Q, P < Q, if XQ

i ⊆ XP
i , XQ

o ⊆ XP
o ,

and {ᾱ[XQ
o] : ᾱ ∈ L(P)} ⊆ L(Q). We write P ∼= Q if both P < Q and Q < P .

Note that the definition of the refinement allows the implementation to have
more interface variables than the specification. The refinement relation defines
a preorder over processes.

3 Refinement Checking

In the refinement verification problem, the user provides the process definitions
for the implementation Impl and specification Spec, and our task is to check
Impl < Spec. The problem is computationally hard for two reasons:

1. Checking language inclusion requires determinizing the specification Spec.
However, determinization requires subset construction, and may cause ex-
ponential blowup, and thus, should be avoided.

2. Since the definition of weak refinement considers stutter-closed traces, we
need to consider the ε-closure of the specification Spec (that is, we need to
match implementation transitions by the weak successors in specification).
This problem is specific to the asynchronous setting. The computation of
ε-closure is typically done by the transitive closure construction, and this is
expensive.

3.1 Asynchronous Specification without Private Variables

If the specification has no private variables, all variables appear in the implemen-
tation as well. An observable implementation state corresponds to at most one
state in the specification. Hence the first problem is resolved. In addition, since
each specification transition is observable, the ε-closure of Spec is Spec itself.
The refinement check then corresponds to verifying that (1) every initial state
of Impl has a corresponding initial state of Spec, and (2) every reachable tran-
sition of Impl has a corresponding transition in Spec. This can be checked using
the function shown in Figure 1. Notice that it is an on-the-fly algorithm and
reports a violation once detected. It is easy to modify the algorithm to return,
as a counter-example, the trace of Impl that is not a trace of Spec.

funct SimpleRefinement(s, Impl, Spec) ≡
for t such that s −→Impl t do

if ¬(s[XSpec
o] −→Spec t[X

Spec
o]) then return false

elsif t �∈ table then
insert(table, t);
if ¬SimpleRefinement(t, Impl, Spec) then return false

od
return true

Fig. 1. Algorithm for refinement checking

3.2 Specification with Private Variables

If the specification has private variables, the correspondence between implemen-
tation states and specification states should be provided by the user in order
to make the checking feasible. The user needs to provide a module that as-
signs suitable values to the private variables of the specification in terms of
values of implementation variables. This basic idea is needed even for manual
proofs, and comes in various formalizations such as refinement maps [1], homo-
morphisms [17], forward-simulation maps [19], and witness modules [12, 21]. We
formalize this using witnesses.

Definition 8. Let Impl = ((XI
p , XI

i , XI
e), II , T I) and Spec = ((XS

p , XS
i , XS

e), IS , T S)
be two processes such that XS

o ⊆ XI
o . Then W = ((XW

p , XW
i , XW

e), T W) is called
a witness for Spec in Impl if XW

i = XS
p , XW

e ⊆ XI and T W ⊆ QW × QW . We
write q −→W q′ for (q, q′) ∈ T W .

Notice that the transition relation of a witness takes new values of its external
variables into account. That is, witnesses are not asynchronous processes, and
can proceed synchronously with the implementation.

Since our parallel composition was defined over processes, we need a new
operation corresponding to product with the witness. We denote this operation
by ⊗ (its formal definition is omitted due to lack of space). Once a proper witness
is found, the refinement can be established by the following theorem.

Theorem 1. Let Impl, Spec = ((XS
p , XS

i , XS
e), IS , T S) be processes and W be

a witness for Spec in Impl. Define Specu = ((∅, XS
p ∪ XS

i , XS
e), IS , T S). Then

Impl ⊗ W < Specu implies Impl < Spec.

If the verifier has expertise on the implementation, an efficient witness can be
built based on this expert knowledge. Ideally, the witness should be stateless, and
thus, should define the values of XS

p as a function of the variables XI . However,
if the implementation is complicated, finding a proper witness may be difficult.
In this case, one would like heuristics to fabricate the witness automatically.

Suppose the specification is composed of two subprocesses which control pri-
vate and interface variables separately, say Spec = Specp‖Speco. The one control-
ling private variables (Specp) would be a candidate as a witness, for it updates

Impl

i = 0

i = 1

i = 2

Speco

i = 0

i = 2

i = 1

p = 0

p = 1

Specp

p = 0

p = 1

i = 1

SpecpEager()

p = 0

p = 1

i = 1

i <> 1

||

i = 2

Impl Specp

p = 0
i = 0

p = 0
i = 1

p = 0

Counterexample for
< Spec

Fig. 2. Illustration of Eager Witness

the private variables of Spec based on the values of the observables of Spec, and
hence of Impl . This is used in many of the case studies reported in [22, 11], and in
fact, this choice of witness is complete if Specp is deterministic. However, in our
setting, Specp is asynchronous, and is always nondeterministic as it may stutter
at each step. In our examples, setting witness to Specp does not work. Consider
the example shown in Figure 2. Three processes Impl , Specp and Speco appear in
the left. Suppose the variable p is private and i is an interface variable. It is easy
to see that Impl < Specp‖Speco. If we were to use Specp as a witness (assuming
variables have their proper types), the middle figure gives a trace in Impl‖Specp

but not in Specp‖Speco. This problem results from the asynchronous property:
private variables may not be updated because it is always possible to retain their
old values regardless of observable variables. To avoid this, we would like them
to react to the implementation updates immediately, whenever possible. This
motivates the following definition:

Definition 9. Let P = ((Xp, Xi, Xe), I, T) be a process. Define the eager variant
of P , Eager(P), to be the process ((∅, Xp∪Xi, Xe), I,Eager(T)) where Eager(T) =
T \ {(q, e, q) : there exist q′ �= q.(q, e, q′) ∈ T }.
In our modeling language, the eager variant of an asynchronous process can be
constructed by a simple syntactic translation: we simply need to remove the
keyword lazy from the atom declarations.

We propose to use Eager (Specp) as a witness, and thus, the refinement check
Impl < Specp‖Speco is reduced to Impl ⊗ Eager (Specp) < Specp‖Speco. The
right figure in Figure 2 shows the synchronous witness Eager (Specp), and it is
easy to verify that Impl ⊗ Eager (Specp) < Specp‖Speco holds.

The assumption that Spec is decomposed into Specp and Speco can be relaxed
if one can extract the private component Specp from any given specification pro-

p = 0
i = 0

p = 1
i = 1

Spec Priv(Spec)

p = 1

p = 0

i = 0 & i’ = 1

Fig. 3. Extraction of Spec Controlling Private Variables

cess Spec in a systematic way. Consider the transition shown in Figure 3 where
i is an interface variable and p a private variable. We would like to construct
a process Priv(Spec) that controls only p. Notice that variable i becomes an
external variable in Priv(Spec), and cannot be updated by it. Now the private
variable p should be updated whenever i changes from 0 to 1. Since this ex-
traction is used only to construct an eager witness, it can be synchronous, and
can read new values of i. Hence we can construct a corresponding transition in
Priv(Spec) as shown in the figure. This translation also can be automated easily
in our modeling language by a simple syntactic transformation.

4 Hierarchic Reduction of Unobservable Transitions

Our reduction scheme is based on compressing sequences of transitions that nei-
ther read nor write observable variables. Such transitions are called unobservable
transitions as formalized in the following definition.

Definition 10. Let P = (X, I, T) be a process. A transition (q, e, q′) ∈ T is
invisible if

– it doesn’t write to interface variables. q[Xi] = q′[Xi]; and
– it doesn’t read from external variables. For all e′ ∈ Qe. (q, e′, q′) ∈ T .

A transition is visible if it is not invisible.

It is worth emphasizing that invisibility is different from stuttering. It turns
out that to check weak refinement, the number of invisible transitions taken by
a process is not essential. Hence, we define a derivative of the process, which
merges several invisible transitions together.

Definition 11. Let P = (X, I, T) be a process. The process Next P = (X, I, T ′)
satisfies the following condition: (q, e, q′) ∈ T ′ if q = q′ or there are states q0 =
q, q1, . . . , qn = q′ ∈ Qc such that (qi, e, qi+1) ∈ T is invisible for 0 ≤ i < n − 1;
and (qn−1, e, qn) ∈ T is visible.

A useful property of the Next operator is that the weak refinement is a con-
gruence relation with respect to it. In particular, Next P ∼= P . Therefore, one

may apply the Next operator to composite processes hierarchically. For exam-
ple, instead of applying the Next of the composition of two processes, we can
apply Next to the component processes and then compose them. In practice,
the number of states of two Next processes composed together is less than the
Next of the composition. This is due to the fact that Next can potentially re-
duce the number of interleavings of unobservable transitions of the components.
Hence the number of intermediate states generated by composition is reduced,
as will be illustrated in the examples of Section 6.

In [6], we had reported an on-the-fly algorithm to search such process ex-
pressions. A modification of that algorithm is used during refinement check. The
algorithm is guaranteed to visit every reachable state of the given expression,
and visits no more, and typically much less, than that required to explore the
flat expression obtained by removing the applications of Next . The running
time is linear in the number of states (more precisely, the transitions) visited by
the algorithm, and there is basically no overhead in applying the reduction.

Since our modeling language distinguishes private, interface and external
variables, our implementation can utilize this information to determine whether
a transition is visible or not. In addition, the attributes of variables are syntacti-
cally determined, so the visibility of each transition can be recognized by parsing
the model. Checking whether any transition is visible or not becomes a simple
table lookup at runtime.

5 Compositional and Assume Guarantee Reasoning

A key property of the weak refinement relation is compositionality. It ensures
that the refinement preorder is congruent with respect to the module operations.

Proposition 1. (Compositionality) If P < Q then P‖R < Q‖R and hide H in P <
hide H in Q.

By applying the compositionality rule twice and using the transitivity of refine-
ment it follows that, in order to prove that a complex compound module P1‖P2

(with a large state space) implements a simpler compound module Q1‖Q2 (with
a small state space), it suffices to prove (1) P1 implements Q1 and (2) P2 imple-
ments Q2. We call this the compositional proof rule. It is valid, because parallel
composition and refinement behave like language intersection and language con-
tainment, respectively.

While the compositional proof rule decomposes the verification task of prov-
ing implementation between compound modules into subtasks, it may not always
be applicable. In particular, P1 may not implement Q1 for all environments, but
only if the environment behaves like P2, and vice versa. For example, consider a
simple version of the alternating bit protocol.

Figure 4 shows the specification of the sender. The keywords external, inter-
face and private classify the variables of a module as required in Definition 1.
The transition relation of a module is given by several atoms, each atom having

type Pc is {snd, wait}
type message is {a, b, c}
module senderSpec is

external ack : channel[1] of bool
interface abp : channel[1] of bool; msg : channel[2] of messages;

pcS : Pc; x, y : bool
private m : message

lazy atom sndSp

controls send(abp), pcS, x, y, m

reads receive(ack), pcS, x, m

init
[] true -> pcS’ := snd; x’ := false; y’ := false; m’ := nondet

update
[] pcS = snd -> send(abp, x); send(msg, m); pcS’ := wait

[] pcS = wait & ¬ isEmpty(ack) ->

receive(ack, y); x’ := ¬ x; m’ := nondet; pcS’ := snd

Fig. 4. Specification of Sender Process

an exclusive update right on a subset of the controlled variables. In the asyn-
chronous case, atoms can be viewed as (atomic) processes. The way an atom
initializes and updates its controlled variables is given by a guarded command.
The primed notation stands for new values of variables. The reads and controls
keywords allow to define the variables read and written by an atom. The lazy
keyword corresponds to our asynchronous condition and allows stuttering.

To simplify the asynchronous specification style, we support a predefined
channel type. This is essentially a record type, consisting of a ring buffer, a
sender and a receiver pointer. Note however, that in our setting, the fields of
this record may be controlled by different modules (or atoms) and this has to
be made explicit. The sender specification simply assumes that the sender and
the receiver are synchronized with each other by using the boolean one element
channels abp and ack. The implementation of the sender (Figure 5) makes sure
that the sender works properly in an environment that may lose messages. Each
time the sender sends a new message along the channel msg it toggles the bit x
and sends it along the channel abp. If it does not receive this bit back along the
channel ack it resends the message. The receiver module works in a symmetric
way.

Trying to prove now that senderImp < senderSpec or that receiverImp <
receiverSpec fails. The implementation of the sender and receiver refine their
abstract counterparts only in an environment that behaves like the abstract
receiver and sender respectively. For such cases, an assume-guarantee proof rule
is needed [27, 10, 3, 4]. Our rule differs from the earlier ones in that it uses a
different notion of refinement, namely, the stutter-closed one.

Proposition 2. (Assume-Guarantee) If P1‖Q2 < Q1‖Q2 and Q1‖P2 < Q1‖Q2,
then P1‖P2 < Q1‖Q2.

module senderImp is
external ack : channel[2] of bool
interface abp : channel[2] of bool; msg : channel[2] of message;

pcS : Pc; x, y : bool
private m : message

lazy atom sndSp

controls send(abp), pcS, x, y, m

reads receive(ack), pcS, x, y

init
[] true -> pcS’ := snd; x’ := false; y’ := false; m’:= nondet

update
[] pcS = snd -> send(abp, x); send(msg, m); pcS’ := wait

[] pcS = wait & first(ack, ¬ x) -> receive(ack, y); pcS’ := snd

[] pcS = wait & first(ack, x) ->

receive(ack, y); x’ := ¬ x; m’:= nondet; pcS’ := snd

Fig. 5. Implementation of Sender Process

Since P1‖P2 has the largest state space, both proof obligations typically
involve smaller state spaces than the original proof obligation. The assume-
guarantee proof rule is circular; unlike the compositional proof rule, it does not
simply follow from the fact that parallel composition and implementation behave
like language intersection and language containment. Rather the proof of the
validity of the assume-guarantee proof rule proceeds by induction on the length
of traces. For this, it is crucial that every trace of a module can be extended. An
alternative version of the rule states that “if P1‖Q2 < Q1 and Q1‖P2 < Q2, then
P1‖P2 < Q1‖Q2.” For the enumerative checker, we prefer the variant stated in
Proposition 2 because it constrains the right hand side and therefore reduces the
required computation.

The soundness of assume-guarantee depends crucially on the asynchronous
property of the processes (it is not valid for arbitrary reactive modules). Recall
that witnesses are not processes. This implies that witnesses can be introduced
only after generating all subgoals using assume-guarantee since the assume guar-
antee requires asynchronicity.

6 Case Studies

6.1 Tree-structured parity computer

We will demonstrate our proposed techniques in a tree-structured process that
computes a function, say, parity, of the requests received from the leaf clients,
where each request supplies value that is either 0 or 1 (Figure 6). Each client
sends requests and receives acknowledgements to and from its parent. Each link
process gathers requests from its children, computes the parity, and reports it
to its parent. The root process calculates the final result and sends the result to
the children link processes, which in turn, propagate the result down.

ackreq

req0
ack0 ack1

req1

Link00 Link11Link01 Link10

Link0 Link1

Link

Root

req00
ack00 ack10 ack11ack01

req10req01 req11

Parity

Parity Computer

Spec

Leader Election

Cell

Cell

Cell

Cell

Fig. 6. Parity Computer and Leader Election

Let us focus on the process System described as

Root ‖ Link ‖ Link0 ‖ Link1 ‖ Link00 ‖ Link01 ‖ Link10 ‖ Link11

We can naturally cluster subprocesses as shown in Figure 6, replace the process
System by the process NextSystem:

NEXT hide [Root ‖ NEXT hide [Link ‖ NEXT hide (Link0 ‖ Link00 ‖ Link01)
NEXT hide (Link1 ‖ Link10 ‖ Link11)]].

For readability the argument variables to hide are not shown above, but should
be obvious from context: only the variables communicating with the parent need
to be observable at each level of the subtree. Note that a step of the tree rooted
at Link is composed of a step of the process Link, and a sequence of steps of the
subtree rooted at Link0 until req0 or ack0 is accessed, and a sequence of steps
of the subtree rooted at Link1 until req1 or ack1 is accessed. Since each node
communicates with parent only after it has received and processed requests from
its children, we get excellent reduction. Furthermore, the congruence property
ensures that System can be replaced by NextSystem during any refinement check.

The specification Parity is an n-way process that simply calculates the parity
based on all of its inputs. However, since the input signals may not arrive at
the same time, Parity needs private variables to record processed signals. Our
goal is to check if System < Parity holds. In this case, the correspondence
between the private variables of the two descriptions is unclear. To construct a
witness, the first step is to extract the process Priv(Parity) from Parity , and
then, use its eager version as the witness. This automatic construction turns out
to be adequate in this case. Then we apply the hierarchic reduction and check
NextSystem‖Eager (Priv(Parity)) < Parity . Figure 7 shows the number of states
stored in the table when we check the refinement. As indicated, our hierarchical
reduction is quite effective in alleviating the state-explosion problem.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

2 3 4 5

T
a
b
l
e

s
i
z
e

Number of cells

w/ NEXT
w/o NEXT

0

5000

10000

15000

20000

25000

30000

3 4 5 6 7

T
a
b
l
e

s
i
z
e

Number of cells

w/ NEXT
w/o NEXT

Fig. 7. Table Size of Parity Computer and Leader Election Examples

6.2 Leader election

The leader election problem consists of cells, each with a unique initial number,
connected in a ring (see Figure 6). The problem is to elect a leader, which is
achieved by determining who has the greatest number. Each cell can have one of
three statuses: unknown, chosen, and not chosen. Initially, all cells have status
unknown. In the end, only the cell with the greatest number should have sta-
tus chosen, and all other cells should have status not chosen. Variants of this
problem have been extensively used to illustrate temporal logic model checking.
We show consistency of a distributed leader election protocol with respect to
the process Spec that determines all statuses in a centralized manner by com-
paring the given numbers. Since there is no private variable in Spec, we can
directly check if System < Spec. The result is shown in Figure 7, which indicates
effectiveness of the hierarchical reduction (see Figure 6 for clustering for the
hierarchical reduction).

6.3 Distributed mutual exclusion

In Distributed Mutual Exclusion (DME) [20], a ring of cells are connected to a
user process each. Figure 8 shows the specification of a cell.

In the specification, a virtual token is passed around the cells clockwise. Ini-
tially, only one cell has the token. Each cell can send requests to its right neighbor
(right req) and acknowledgements to its left neighbor and user (left ack and
user ack). When it receives a request from its left neighbor, it checks if it pos-
sesses the token. If it does not, a request is sent to its right neighbor. Otherwise,
it passes the token by setting left ack to true. After its left neighbor receives
the token, it resets left acknowledgement to false.

It handles user’s requests similarly. However, when the user releases the token
by assigning user req to false, the cell resets not only the user acknowledgement
to false, but also the token variable to true. That is, it obtains the token from
the user. Finally, if it sends request to its right neighbor and the neighbor passes

module CSpec T is
external left req, right ack, user req : bool
interface left ack, right req, user ack : bool; token : bool
lazy atom CSPEC T

controls left ack, right req, user ack, token

reads left req, left ack, right req, right ack,

user req, user ack, token

init
[] true -> left ack’ := false; right req’ := false;

user ack’ := false; token’ := true

update
[] left req & ¬left ack & ¬right ack & ¬token -> right req’ := true

[] left req & ¬left ack & token -> left ack’ := true; token’ := false

[] left ack & ¬left req -> left ack’ := false

[] user req & ¬user ack & ¬right ack & ¬token -> right req’ := true

[] user req & ¬user ack & token -> user ack’ := true; token’ := false

[] user ack & ¬user req -> user ack’ := false; token’ := true

[] right req & right ack -> token’ := true; right req’ := false

Fig. 8. Specification of a DME Cell with Token

the token, it sets the token variable to true and the right acknowledgement to
false.

Each cell is implemented by basic logic gates (10 ANDs, 2 ORs, 7 NOTs)
and special components (C-element and 2-way Mutual Exclusion blocks). The
user process simply sends requests and receives acknowledgements accordingly.
Previous verification studies of DME implementation have considered checking
requirements written in a temporal logic such as CTL. We define the process
System to be the composition of three cells and user processes. The specification
process Spec, then, is the high-level distributed algorithm shown in figure 8. Our
goal is to check whether System < Spec.

In order to make checking System < Spec feasible, we would like to avoid
non-deterministic choices of variable values in Spec. Hence, we need to establish
the relation among variables of System and of Spec. Notice that the high level
specification Spec uses the virtual token. Because the implementation System
consists of circuit signals, it is rather difficult, if not impossible, to establish the
desired relation. We therefore apply the technique in section 3.2 to extract the
witness module for each cell.

In figure 9, module Wit T is the witness module Eager (Priv(Cell T)). It
is easy to see that the witness can be generated by syntactic transformation
(cf. figure 8). We thus define the witness module Eager (Priv(Spec)) to be the
composition of cell witnesses and check System⊗Eager(Priv(Spec)) < Spec. We
can apply hierarchical reduction on the refinement checking. In addition, since
assume guarantee proof rule is valid, we can use the rule to reduce search space.

Figure 10 shows the table size of each experiments. We can see that Next
operator reduces the number of states while checking the whole system. There

module Wit T is
external left req, right ack, user req : bool;

left ack, right req, user ack : bool
interface token : bool
atom WIT T

controls token

reads left req, right req, right ack, user req, user ack, token

awaits left ack, user ack, right req

init
[] true -> token’ := true

update
[] left req & ¬left ack & token & left ack’ -> token’ := false

[] user req & ¬user ack & token & user ack’ -> token’ := false

[] user ack & ¬user req & ¬user ack’ -> token’ := true

[] right req & right ack & ¬right req’ -> token’ := true

Fig. 9. Witness Module for DME Cell

with Next without Next

without assume guarantee 4128 6579

with assume guarantee 3088 3088

Fig. 10. Table Size of Distributed Mutual Exclusion

are three obligations in assume guarantee proof rule for System consists of three
cells. They all use the same number of states, which is less than checking the
whole system. However, Next operator does not save space for obligations.

7 Conclusions

We have proposed a methodology, with an associated tool, for checking refine-
ment based on stutter-closed language inclusion. Our notion of refinement is the
natural one for asynchronous processes, and in many cases, writing the specifica-
tion as a process is more intuitive than writing a set of temporal logic assertions.
Let us summarize our approach to refinement checking.

1. The input refinement problem concerning weak refinement of asynchronous
descriptions is decomposed into subgoals using compositional and assume-
guarantee rules.

2. For each subgoal of the form Impl < Spec is replaced by the check Impl ⊗
W < Spec, where W is a (synchronous) witness. The witness may either be
supplied by the user, or automatically chosen to be Eager (Priv(Spec)).

3. Checking Impl ⊗ W < Spec corresponds to a reachability analysis. During
the search, Impl is optimized by replacing each subexpression E in Impl by
Next E.

We have reported on an enumerative refinement checker and a proof assistant.
Note that the first and the third items above exploit the hierarchical constructs
in our language. The methodology is illustrated based on traditional benchmarks
involving asynchronous processes. We conclude by summarizing our experience
about different heuristics.

Assume-guarantee reasoning. Its application requires decomposing the spec-
ification into components, and this can be tedious. The subgoals can be of
much lower complexity than the original goals. However, particularly in the
context of enumerative algorithms, subgoals can also be more difficult to
check since specifications tend to be nondeterministic or partial. Thus, ef-
fectiveness of this technique has been mixed.

Automatic witness construction. We have proposed a simple heuristic for
constructing a synchronous witness from the specification. This approach
has been surprisingly effective in our examples.

Hierarchical reduction. The algorithm to compress invisible transitions in a
recursive manner is easy to implement with no noticeable overhead, and good
reduction in many cases. This method is incomparable to and compatible
with symmetry reduction [8, 16]. When compared to the partial-order reduc-
tion method [24, 9], for the problem of invariant verification our method gives
less reduction at least in the leader election example. However, it is unclear
if partial-order reduction is applicable for refinement checking in presence of
synchronous witnesses.

Acknowledgements

We thank all the members of the Mocha team at University of California at
Berkeley and at University of Pennsylvania for their assistance. This research was
supported in part by NSF CAREER award CCR97-34115, by DARPA/NASA
grant NAG2-1214, by SRC contract 99-TJ-688, by Bell Laboratories, Lucent
Technologies, and by Alfred P. Sloan Faculty Fellowship.

References

1. M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical
Computer Science, 82(2):253–284, 1991.

2. M. Abadi and L. Lamport. Composing specifications. ACM TOPLAS, 15(1):73–
132, 1993.

3. M. Abadi and L. Lamport. Conjoining specifications. ACM TOPLAS, 17:507–534,
1995.

4. R. Alur and T. Henzinger. Reactive modules. Formal Methods in System Design,
15(1):7–48, 1999.

5. R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran. MOCHA:
Modularity in model checking. In CAV’98: Computer Aided Verification, LNCS
1427, pp. 516–520, 1998.

6. R. Alur and B.-Y. Wang. “Next” heuristic for on-the-fly model checking. In
CONCUR’99: Concurrency Theory, Tenth International Conference, LNCS 1664,
pp. 98–113, 1999.

7. R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A
semantics-based tool for the verification of finite-state systems. ACM Trans. on
Programming Languages and Systems, 15(1):36–72, 1993.

8. E. Emerson and A. Sistla. Symmetry and model checking. In CAV’93: Computer-
Aided Verification, LNCS 697, pp. 463–478, 1993.

9. P. Godefroid. Using partial orders to improve automatic verification methods. In
E. Clarke and R. Kurshan, editors, CAV’90: Computer-Aided Verification, LNCS
531, pp. 176–185, 1990.

10. O. Grümberg and D. Long. Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems, 16(3):843–871, 1994.

11. T. Henzinger, X. Liu, S. Qadeer, and S. Rajamani. Formal specification and veri-
fication of a dataflow processor array. In ICCAD’99: International Conference on
Computer-aided Design, pp. 494–499, 1999.

12. T. Henzinger, S. Qadeer, and S. Rajamani. You assume, we guarantee: Method-
ology and case studies. In CAV’98: Computer-aided Verification, LNCS 1427, pp.
521–525, 1998.

13. T. Henzinger, S. Qadeer, and S. Rajamani. Assume-guarantee refinement between
different time scales. In CAV’99: Computer-aided Verification, LNCS 1633, pp.
208–221, 1999.

14. C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
15. G. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering,

23(5):279–295, 1997.
16. C. Ip and D. Dill. Verifying systems with replicated components in murϕ. In

Computer Aided Verification, LNCS 1102, 1996.
17. R. Kurshan. Computer-aided Verification of Coordinating Processes: the automata-

theoretic approach. Princeton University Press, 1994.
18. N. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.
19. N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms.

In Proceedings of the Seventh ACM Symposium on Principles of Distributed Com-
puting, pp. 137–151, 1987.

20. A. Martin. The design of a self-timed circuit for distributed mutual exclusion. In
Chapel Hill Conference on Very Large Scale Integration, pp. 245–260, 1985.

21. K. McMillan. A compositional rule for hardware design refinement. In Computer-
Aided Verification, LNCS 1254, pp. 24–35, 1997.

22. K. McMillan. Verification of an implementation of tomasulo’s algorithm by com-
positional model checking. In CAV’98: Computer-Aided Verification, LNCS 1427,
pp. 110–121, 1998.

23. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
24. D. Peled. Combining partial order reductions with on-the-fly model-checking. In

CAV’94: Computer Aided Verification, LNCS 818, 1994.
25. A. Pnueli. Applications of temporal logic to the specification and verification of

reactive systems: a survey of current trends. In Current Trends in Concurrency,
LNCS 224, pp. 510–584, 1986.

26. J. Scattergood. The semantics and implementation of machine-readable CSP. PhD
thesis, Oxford University, 1998.

27. E. Stark. A proof technique for rely-guarantee properties. In Foundations of
Software Technology and Theoretical Computer Science, LNCS 206, pp. 369–391,
1985.

