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Abstract. This paper presents a formal specification technique for mobile systems based on input/output
relations on streams. We consider networks of components communicating asynchronously via unbounded
directed channels. Mobility is achieved by allowing the components to communicate channel ports. We
distinguish between many-to-many and two variants of point-to-point communication. The communication
paradigms are semantically underpinned by denotational models. The models are formulated in the context of
timed nondeterministic dataflow networks and presented in a stepwise fashion. The emphasis is on capturing
the special kind of dynamic hiding characterizing mobile systems. We demonstrate the proposed approach
in a number of small examples.

1. Introduction

Motivated by the need to model object-oriented programming languages and openness in distributed appli-
cations, the study of mobile systems has become a very popular research area. Most of the early theoretical
research on mobility is of a rather operational nature; see for instance [HBS73, EN86, Tho89, BB90, Mes91,
MPW92]. A denotational understanding of mobility is, however, an essential prerequisite for modular de-
velopment of mobile, and consequently object-oriented reactive systems. Recently several researchers have
studied mobility in a denotational setting; see for example [JJ95, FMS96, Sta96]. These denotational ap-
proaches are all directed towards the π-calculus and use a quite involved type theory. In this paper we look
at mobility from a different angle; our objective is to build a specification formalism for mobile systems
based on streams.

As usual in the case of natural language concepts, there is some disagreement with respect to what
it actually means for a system to be mobile. In this paper we stick to the definition of Robin Milner: a
mobile system is a system in which every component may change its communication partners on the basis of
computation and interaction [Mil91]. This means, for example, that this paper is not concerned with the kind
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of mobility achieved by allowing components to communicate (migrate) components (although we believe
this can be simulated by the communication of ports).

The use of input/output relations (I/O relations) to specify computerized components is well-known.
For example, VDM [Jon90] and Z [Spi88] are both based on this approach: a specification of a sequential
component C characterizes the relationship between its initial and final states. The initial state can be
understood as the input of C produced by C ’s environment before the execution of C is initiated. The final
state can be understood as the output produced by C itself.

Interactive and purely reactive components can be specified in a similar manner. For example, the Focus
method [BS01] for formal specification and design of interactive systems is based on I/O relations: a spec-
ification of a reactive component C characterizes the relationship between its tuples of input and output
streams. A tuple of input streams represents histories of input messages sent by C ’s environment along C ’s
input channels. A tuple of output streams represents histories of output messages sent by C itself along C ’s
output channels.

The main difference between ordinary interactive systems and mobile systems is the latter’s much more
sophisticated concept of hiding. In mobile systems the scope of identifiers changes dynamically at run-time.
Hence, we need notions of hiding that, on the one hand, are sufficiently flexible to allow this kind of dy-
namic scoping, and, on the other hand, are sufficiently expressive to disallow undesirable visibility. The
notion of hiding required is highly dependent upon the underlying communication paradigm. We demon-
strate the importance of this by studying mobility with respect to three different communication paradigms:
asynchronous many-to-many (m2m) communication and two variants of asynchronous point-to-point (p2p)
communication.

In the m2m case several components may simultaneously output messages along the same channel, and
several components may simultaneously input messages from the same channel. In the p2p case we distinguish
between p2p communication with and without channel sharing.

In the case of p2p communication with channel sharing, a channel may have several receivers and also
several senders, but never at the same time: at any point in time, a channel has exactly one sender and
exactly one receiver. However, since channel ports can be forwarded from one component to another, the
identities of the sender and the receiver may change during computation; a channel port is immediately
forgotten by the forwarding component.

Ports can also be forwarded in the case of p2p communication without channel sharing. However, this
is allowed only until the communication on the channel is started up. Thus, in this case, the sender and
the receiver of a channel remain the same during the whole computation. P2p communication with channel
sharing can be understood as a special case of m2m communication. Moreover, p2p communication without
channel sharing can be understood as a special case of p2p communication with channel sharing.

As already mentioned, Focus is based on I/O relations on streams. Focus is semantically underpinned by
a denotational model expressed in the form of a timed nondeterministic dataflow network. In this respect
our approach is similar to Focus. Our approach generalizes the I/O relations of Focus to handle mobility
defined as dynamic network reconfiguration resulting from the communication of ports. We treat m2m as
well as both variants of p2p communication.

We consider networks of autonomous components communicating and interacting via directed channels
in a time-synchronous and message-asynchronous manner. Time-synchrony is achieved by using a global
clock splitting the time axis into discrete equidistant time units. Message-asynchrony is achieved by allowing
arbitrary, but finitely many messages, to be sent along a channel in each time unit. Mobility is achieved by
allowing the components to communicate ports.

We distinguish between three specification formats — one for each communication paradigm. They are
syntactically distinguished by labelling keywords. Each specification format allows a wide variety of mobile
systems to be described. The particular choice of format for a given application depends on the nature of
the application and the invariants to be maintained. To allow the reader to appreciate these differences, we
specify several variants of the mobile telephones network discussed in [Mil91]; an m2m variant in Example
3 and p2p variants in Examples 4 and 5.

The paper is organized as follows. In Section 2 we introduce some basic notions and corresponding
notation; in Section 3 we introduce the model for m2m communication and build a specification language
on top of it; in Section 4 we do the same for the two variants of p2p communication; in Section 5 we sum
up our results and relate our approach to the literature. There are also four appendices: in Appendix A we
define the underlying metrics; in Appendix B we prove some results for the m2m model; in Appendix C we
do the same for the p2p models; in Appendix D we relate the p2p and the m2m models.
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2. Basic Notions

As mentioned in the introduction, our approach is based on streams. In this section we introduce notation
for the description, manipulation, and composition of streams.

2.1. Communication Histories

A stream is a sequence of elements of some type E . E∗, E∞, and Eω are the sets of finite, infinite, and finite
as well as infinite streams over E , respectively. We model the communication histories of directed channels
by infinite streams of finite streams of messages. Each finite stream represents the communication history
within a fixed least unit of time. M is the set of all messages; hence, (M ∗)∞ and (M ∗)∗ are, respectively,
the sets of all complete and partial communication histories. In the sequel, by communication histories we
mean complete communication histories unless otherwise stated.

A port is a channel name together with an access right, which is either an input right, represented by
?, or an output right, represented by !. Hence, if N is the set of all channel names, then ?N ≡ {?i | i ∈ N }
is the corresponding set of input ports, !N ≡ {!i | i ∈ N } is the corresponding set of output ports, and
?!N ≡ ?N∪ !N is the set of all ports. We assume that ?!N ⊆ M . D ≡ M \?!N is the set of all messages not
contained in the set of ports. For any n ∈ N and S ⊆ ?!N , we define:

!̃n ≡ ?n, ?̃n ≡ !n, S ≡ ?!N \ S , S̃ ≡ {p̃ | p ∈ S}
Since components exchange ports, each component can potentially access any channel in N . For that reason
we model the input and the output histories of a component by functions of the following signature: N →
(M ∗)∞. We refer to these functions as named communication histories, or just histories. In the sequel we
use H to denote this set.

2.2. Guarded Functions

We model deterministic components by functions f ∈ H → H mapping input histories to output histories,
often referred to as stream processing functions. We model nondeterministic components by sets of such func-
tions. The functions process their inputs incrementally: at any point in time, their outputs are independent
of their future inputs. Such functions are called weakly guarded. If the outputs the functions produce in time
unit t are not only independent of future inputs — the inputs received during time unit t + 1 or later —
but also of the inputs received during time unit t , the functions are called strongly guarded. Intuitively, the
strongly guarded functions introduce a delay of at least one time unit between input and output; the weakly
guarded functions also allow zero-delay behavior.

In the following, Nat denotes the set of natural numbers and Nat+ the set Nat \ {0}. We also identify
(M ∗)∞ with the set of total functions Nat+ → M ∗. For any t ∈ Nat+ and r ∈ E∞, by r ↓ t we denote
the prefix of r consisting of exactly t elements. By r ↓0 we denote 〈〉, the empty stream. This operator is
overloaded to H in the obvious manner: for any θ ∈ H , θ↓t is obtained from θ by substituting θ(n)↓t for
θ(n) for each n ∈ N .

Definition 1 (Guarded function). A function f ∈ H → H is weakly guarded if

∀ θ, ϕ ∈ H ; t ∈ Nat : θ↓t = ϕ↓t ⇒ f (θ)↓t = f (ϕ)↓t
and strongly guarded if

∀ θ, ϕ ∈ H ; t ∈ Nat : θ↓t = ϕ↓t ⇒ f (θ)↓t+1 = f (ϕ)↓t+1

Strongly and weakly guarded functions are also known as respectively contractive and nonexpansive func-
tions with respect to the Baire metric (see [Eng77] and Appendix A). It is well-known that the functional
composition of a contractive and a nonexpansive function is a contractive function. Since by the Banach’s fix-
point theorem, each contractive function has a unique fix-point, the functional composition of a strongly and
a weakly guarded function also has a unique fixed point. As we see later, this assures that our composition
operators are well defined.
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2.3. Notational Conventions

In this section we introduce some helpful notation. For any n-tuple of elements w , stream of elements s , set
of elements A, and j ∈ Nat+:

• 〈〉 is the empty stream;
• πj (w) is the j th element of w if 1 ≤ j ≤ n;
• #s is the length of s ;
• s(j ) is the j th element of s if 1 ≤ j ≤ #s ;
• 〈a1, . . . , aj 〉 is the stream of length j starting with element a1 followed by a2, a3, and so on;
• A S© s is the stream obtained from s by removing any element in s not contained in A; for instance,
{a, b} S© 〈a, b, c, d , a〉 = 〈a, b, a〉.

The S© operator is overloaded to sets of pairs of messages X ⊆ A×B and pairs of streams (r , s) of the same
length in a straightforward manner. For each t , (r(t), s(t)) is filtered away iff it is not in X . For instance,

{(a, b), (a, a)} S© (〈a, a, b, b〉, 〈a, b, b, a〉) = (〈a, a〉, 〈a, b〉)
For any s ∈ M ∗, we define pt(s) to denote the set of all ports contained in s .

3. Many-to-Many Communication

In this section we consider m2m communication. We start by defining static networks; then we show that
mobility can be understood as a privacy preserving property of stream processing functions; finally, we define
components in terms of such functions, introduce operators for parallel composition and hiding, and build a
small specification language on the top of this formalism.

3.1. Static Many-to-Many Networks

In static m2m networks, each component interacts over a fixed, and possibly shared, set of input and output
channels. As a consequence, the channel topology of a static network does not vary over time. Considering
I and O to be sets of input and output channel names, respectively, the strongly guarded functions used to
represent static m2m networks are of the form f ∈ In → Out where In = I → (D∗)∞ and Out = O → (D∗)∞.

3.1.1. Privacy Preservation

To give a uniform treatment of static and mobile components we consider, however, strongly guarded func-
tions f ∈ H → H defined over the whole set of channel names N and require that they communicate only
over channels with names in I and O .

Definition 2 (Domain and range). For any t ∈ Nat+; I ,O ⊆ N ; θ, δ ∈ H ; the domain and range at
time t are characterized by

dmSMI ,O(θ)(i)(t) ≡
{

θ(i)(t) if i ∈ I
〈〉 otherwise

rnSMI ,O (δ)(i)(t) ≡
{

δ(i)(t) if i ∈ O
〈〉 otherwise

The restriction to the appropriate sets of channels is characterized by the following definition.

Definition 3 (Privacy preserving function). A function f ∈ H → H preserves static privacy with
respect to I ,O ⊆ N iff

∀ θ ∈ H : f (θ) = f (dmSMI ,O (θ)) = rnSMI ,O (f (θ))



Stream-Based Specification of Mobile Systems 5

O O2

1I 2I

1

1 2

θ

ψϕ

FF

Fig. 1.

Informally speaking, dmSM makes sure that f inputs only on its input ports; rnSM makes sure that f outputs
only along its output ports. We use Statm2m(I ,O) to denote the set of all strongly guarded functions that
preserve static privacy with respect to (I ,O). In the sequel we refer to such functions as static m2m functions.

Any strongly guarded function f ∈ H → H can be transformed into a static m2m function sm2mI ,O (f ) ∈
Statm2m(I ,O) as follows.

sm2mI ,O(f )(θ) = rnSMI ,O(δ) where δ = f (dmSMI ,O(θ))

3.1.2. Static Many-to-Many Components

We model static m2m components by sets of static m2m functions.

Definition 4 (Static m2m component). A static m2m component with interface (I ,O) is represented
by a nonempty set of static m2m functions F ⊆ Statm2m(I ,O).

Any pair (θ, f (θ)) such that f ∈ F is a possible input/output history of the component F ; θ(c) is the
history of all messages sent by its environment along the channel c; similarly, f (θ)(c) is the history of
all messages sent along c by the component itself. Thus, although we model m2m communication, each
component is represented by a pure input/output relation, where each input history contains only messages
sent by the environment, and each output history contains only messages sent by the component. We use
SCompm2m(I ,O) to denote the set of all static m2m components with respect to (I ,O).

3.1.3. Static Many-to-Many Composition

The parallel composition of two static m2m components F1 and F2 is illustrated by the network in Figure
1. The hollow circles denote interference points, i.e., points where output from the environment, F1, or F2

sent during the same time unit is interleaved. In our approach, interference is modeled by building copies of
a merge node into the interference points and, therefore, implicitly into the network operators. This allows
composition to be described in a very abstract and, in our opinion, intuitive manner. The merge node M

takes two named communication histories as input and yields a merge as output. Any occurrence of M is
hidden in the semantic definition of the network operators. Since we want the network operators to preserve
causality (and, in principle, also support the specification of timing constraints, although this plays no role
in this paper), M should neither add nor reduce delay. This means that the output history of M for some
channel n during time unit k must be a merge of the two finite streams characterizing the input histories
on n in time unit k . Moreover, M should not fix the interleaving. Thus, any interleaving of the messages
received within a time unit should be allowed. Hence, M is nondeterministic in the sense that a pair of input
histories may result in several (often infinitely many) different output histories.

The definition below formalizes what it means for a finite stream to be a merge of two finite streams.
The oracle p “marks” the messages in the output stream with 1 if they occurred in the first stream and with
2 if they occurred in the second stream.
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Definition 5 (Merge function on finite streams). FM is the set-valued function such that

FM ∈ M ∗ × M ∗ → P(M ∗)

FM (s1, s2) = { s ∈ M ∗ | ∃ p ∈ {1, 2}∗ : #p = #s ∧
s1 = π1[(M × {1}) S© (s , p)] ∧
s2 = π1[(M × {2}) S© (s , p)] }

where P(S ) ≡ {T | T ⊆ S ∧ T �= {}} is the set of nonempty subsets of S .

It is now straightforward to define the merge node.

Definition 6 (Merge node). M denotes the set of all functions f ∈ H × H → H such that

∀ϕ, ψ ∈ H ; n ∈ N ; t ∈ Nat+ : f (ϕ, ψ)(n)(t) ∈ FM (ϕ(n)(t), ψ(n)(t))

Note that each f ∈ M is weakly guarded since the output produced during any time unit t depends only on
the input received during the same time unit t . Note also that M is deterministic (it yields a singleton set)
if the two input histories are chosen such that

∀n ∈ N ; t ∈ Nat+ : ϕ(n)(t) = 〈〉 ∨ ψ(n)(t) = 〈〉
Now, we are ready to give the formal definition of the static m2m composition. Note the close relationship
to Figure 1.

Definition 7 (Static m2m composition). Given two static m2m components

F1 ⊆ SCompm2m(I1,O1), F2 ⊆ SCompm2m(I2,O2)

Let

I ≡ I1 ∪ I2, O ≡ O1 ∪ O2

We define the m2m composition of F1 and F2 as follows.
F1 � F2 ≡ { f ∈ H → H | ∃ f1 ∈ F1; f2 ∈ F2; m1,m2,m3 ∈ M : ∀ θ ∈ H :

f (θ) = m3(ϕ, ψ) where ϕ = f1(m1(θ, ψ)), ψ = f2(m2(θ, ϕ)) }
It follows straightforwardly from Theorem 6 that F1 � F2 is a static m2m component in SCompm2m(I ,O).

The definition of the parallel operator may seem strange in the sense that the messages that a component
sends will not be received as input by the same component. Assume for example that a component S1 has
both an input and an output port for the channel c in its initial interface. If we compose S1 with a component
S2 then the messages sent by S1 along !c can be received by S2 and the overall environment, but not by
S1 itself. The reason why � has been defined without local feedback is that in the m2m case there is no
implicit hiding when components are composed. Hence, if � had been redefined to support local feedback,
the result of composing S1 � S2 with a third component S3 would be that S1 receives each message sent by
S1 along !c not once, but twice — once through the composition with S2, and once through the composition
of S1 � S2 with S3. This is clearly not desirable. One way to avoid this problem is to define composition as
we do and in addition introduce a special operator for local feedback, as suggested in [GS96a]. In this paper
we do not consider local feedback since, as carefully explained in [GS96a], the operator for local feedback is
just a simplified version of our composition operator. A detailed treatment of this operator would therefore
not add much to the paper.

3.1.4. Explicit Hiding

To hide ports we use an explicit hiding operator. If Q is a set of channel names, then νQ .F is the component
obtained from F by deleting Q from I and O . The domain and range of the static m2m functions modeling
νQ .F are modified accordingly.

Definition 8 (Hiding). Given a static m2m component F ⊆ Statm2m(I ,O) and a set of channel names
Q . Then νQ .F is defined as below:

I ′ ≡ I \ Q , O ′ ≡ O \ Q
νQ .F ≡ {sm2mI ′,O′(f ) | f ∈ F}
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It is easy to show that that νQ .F belongs to SCompm2m(I ′,O ′).

3.2. Mobile Many-to-Many Networks

In the mobile case the domain and range of the strongly guarded functions f ∈ H → H may vary over time.

3.2.1. Privacy Preservation

In the mobile m2m case the privacy preservation property formalizes the rules for how components may
gain access to ports. We may think of this property as an invariant for mobile m2m communication. The
behavior of a privacy preserving function f can be described with respect to Figure 2 as follows. Initially, f
inputs on a designated set of input ports ?I and outputs along a designated set of output ports !O . These
two sets identify the initial interface of the component modeled by f ; we often refer to it as (I ,O). To make
sure that channels created by different components in a network have different names, the function f is also
assigned an initial set of private channel names P known only by the component modeled by f . The ports in
?!P are passive; the ports in the initial interface are active. By aMt we denote the set of active ports at time
t ; by pMt the set of passive ports at time t . Initially, we have that aM1 = ?I∪ !O and pM1 = ?!P . Obviously,
the initial set of passive ports should be disjoint from the initial set of active ports; thus, we require that
(I ∪ O) ∩ P = {}.

During the computation, the number of active ports gradually increases and the number of passive ports
gradually decreases. For example, if the function f inputs a port ?i �∈ pMt on an input port it already knows,
then it may later also input messages on ?i ; if it inputs a port !o �∈ pMt on an input port it already knows
then it may also later output messages along !o. Accordingly, whenever the function f outputs a passive
port !j ∈ pMt , it may later input on ?j what the components that received !j output along j ; whenever the
function f outputs a passive port ?k ∈ pMt , it may itself output messages along !k that eventually are input
by the components that received ?k . Hence, a port p remains passive as long as its complement port p̃ is
not known by the environment. If p̃ is not known by the environment, then the environment has no means
to interact with f along p.

Let θ and δ denote the input and output of f , respectively. The active and passive ports of f are formally
characterized below.

Definition 9 (Active and passive ports). For any I ,O ,P ⊆ N ; θ, δ ∈ H ; t ∈ Nat+; let aM and pM be
defined recursively as follows.

aM1 ≡ ?I∪ !O , pM1 ≡ ?!P , aMt+1 ≡ aMt ∪ rMt ∪ gMt , pMt+1 ≡ pMt \ gMt

where
rMt ≡ ⋃

?i∈aMt
{p | p ∈ aMt ∪ pMt ∧ p ∈ pt(θ(i)(t))}

gMt ≡ ⋃
!i∈aMt

{p | p ∈ pMt ∧ p̃ ∈ pt(δ(i)(t))}
Then the sets of active and passive ports at time t are characterized by:

aMI ,O,P (θ, δ)(t) ≡ aMt , pMI ,O,P (θ, δ)(t) ≡ pMt

The sets rMt and gMt are the sets of received and generated ports, respectively. If the sets of active and
passive ports are disjoint initially, then they are also disjoint at any later point in time. Note that

aMt+1 ∪ pMt+1 = aMt ∪ pMt ∪ rMt

In the definition of privacy preservation (Definition 11) we use the functions dmM and rnM (Definition 10)
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to constrain f to maintain the privacy invariant with respect to active and passive ports described above.
The functions dmM and rnM characterize the input and output histories that are actually considered by f .

Since the function f runs in an open environment this privacy invariant is not sufficient unless also the
environment sticks to the rules of the game. There are basically two ways the environment of f can break
the rules of the game. First, the environment can output a port p ∈ p̃Mt that it has not yet received from f
(its dual port p̃ ∈ pMt is passive). Remember that sending a private port p automatically activates its dual
p̃. In that case the environment does not yet know p because it has not yet been output by f . Second, the
environment can output along a port !i ∈ p̃Mt it has not yet received (its dual port ?i ∈ pMt is passive and,
therefore, not in aMt).

There are several ways to deal with this problem. One alternative is to use a typing discipline that
assures that the function is well typed only if the environment never breaks the rules of the game; a second
alternative is to impose an environment assumption in all definitions characterizing exactly those input
histories in which the environment sticks to the rules of the game; a third alternative, which is used in this
paper, is to constrain dmM and rnM to ignore the input messages that do not respect the privacy restrictions.

This solution is simpler than the other two and it is satisfactory because we are only interested in
environments that can be understood as components in the sense of this paper; such components will never
break the rules of the game. For that reason, the functions dmM and rnM are defined in such a way that
they, in addition to their main task of characterizing the actual domain and range of a function, also correct
environment mistakes.

Definition 10 (Domain and range). For any I ,O ,P ⊆ N ; θ, δ ∈ H ; t ∈ Nat+; the domain and range at
time t are characterized by.

dmMI ,O,P (θ, δ)(i)(t) ≡
{

(p̃Mt ∪ D) S© θ(i)(t) if ?i ∈ aMt

〈〉 otherwise

rnMI ,O,P (θ, δ)(i)(t) ≡
{

(pMt ∪ aMt ∪ D) S© δ(i)(t) if !i ∈ aMt

〈〉 otherwise

where aMt ≡ aMI ,O,P (θ, δ)(t) and pMt ≡ pMI ,O,P (θ, δ)(t).

We can now define what it means for a function to be privacy preserving in the mobile m2m case.

Definition 11 (Privacy preserving function). A function f ∈ H → H is privacy preserving with respect
to I ,O ,P ⊆ N iff

∀ θ ∈ H : f (θ) = f (dmMI ,O,P (θ, f (θ))) = rnMI ,O,P (θ, f (θ))

Informally speaking, dmM makes sure that f inputs on its active input ports only and ignores the ports
that are not known by its environment (since pMt contains passive ports, its dual p̃Mt is not known by
the environment); rnM makes sure that f outputs along its active ports only and never sends a port not
contained in its sets of active and passive ports.

Privacy preservation is intimately related to the notion of time. For each port p received (passive port p
sent) for the first time in time unit t , the function f may communicate via p (via p̃) from time unit t + 1
onwards. Note that such a causality relation cannot be expressed in an untimed input/output model.

We use Mobm2m (I ,O ,P) to denote the set of all strongly guarded functions that are privacy preserving
with respect to (I ,O ,P). In the sequel we refer to such functions as mobile m2m functions.

In Appendix B (Theorem 5) we prove that any strongly guarded function f ∈ H → H can be transformed
into a mobile m2m function m2mI ,O,P (f ) ∈ Mobm2m(I ,O ,P) as follows.

m2mI ,O,P (f )(θ) = rnMI ,O,P (θ, δ) where δ = f (dmMI ,O,P (θ, δ))

3.2.2. Mobile Many-to-Many Components

We model mobile m2m components by sets of mobile m2m functions.

Definition 12 (Mobile m2m component). A mobile m2m component with initial interface (I ,O) and
initial set of passive channel names P is represented by a nonempty set of m2m functions F ⊆ Mobm2m(I ,O ,P).

We use Compm2m (I ,O ,P) to denote the set of all mobile m2m components with respect to (I ,O ,P).
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3.2.3. Typed Channels and Tuple Messages

The mobile m2m model defines mobility in a simple and elegant way. To this end, we deliberately ignored
some practical aspects like

• typed channels and ports;
• tuple messages consisting of both ordinary messages and typed ports.

The usefulness of the first extension should be obvious; the second allows us to bind a port to a message
— for example, the message may be some request whose reply should be sent to a particular component
identified by the port. In this section we outline how the model can be extended to handle these aspects.

Let T be the set of all types. Each channel is assigned a type by the function

type ∈ N → T

This function is overloaded to ports in the obvious manner:

type(?n) ≡ type(n), type(!n) ≡ type(n)

To accommodate tuple messages, we assume that any finite tuple of messages from M is itself a member of
M ; accordingly, any finite Cartesian product of elements from T is itself an element of T . HT is the set of
communication histories that are type-correct according to type. Formally,

HT ≡ {θ ∈ H | ∀n ∈ N : θ(n) ∈ (type(n)∗)∞}
Definitions 9, 10, 11, and 12 carry over straightforwardly: dmM and rnM are redefined to look for ports
inside tuple messages. The two extensions outlined in this section are straightforward but result in more
complicated definitions thereby reducing the readability of the paper; for this reason, we work with the basic
model (without the two extensions) when we define operators for parallel composition and hiding.

3.2.4. Elementary Many-to-Many Specifications

The next step is to build a specification language on top of the model introduced above. This language is
presented in an example-driven manner. Since the m2m model is timed, we can easily handle time constraints.
Nevertheless, since this paper is concerned with the specification of mobility and not with the specification of
timing, we abstract away the timing and work with untimed streams when we write specifications. HA is the
set of all (abstract) untimed type-correct communication histories. For any θ ∈ HT , by ta(θ) we denote its
time-abstraction: the element in HA obtained from θ by concatenating the finite substreams in each infinite
stream into a stream of messages. For instance, given that � is the concatenation operator for streams, we
have

∀n ∈ N : ta(θ)(n) = θ(n)(1)�θ(n)(2)� . . .�θ(n)(j )� . . .

We start by specifying the behavior of a consultant that communicates with customers via some communi-
cation system.

Example 1. Specification of a consultant:
We consider the following scenario. A number of consultants reply to questions posed by customers; the
consultants are connected to an administrator that inputs questions and distributes them to the consultants
depending on workload, specialization and experience; each question forwarded by the administrator to a
consultant is accompanied by the output port along which the reply is to be sent. A consultant is specified,
as follows.

Con m2m

in c : (Q× !N )

con(in) = out

where ∀ o ∈ N ; q ∈ Q ; v ∈ HA :

con({c �→ (q, !o)}& v) = {o �→ r(q)}& con(v)
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Con is the name of the specification. The upper-most frame declares the initial interface. Thus, initially the
consultant has access to only one port, namely the input port ?c on which it inputs questions and their
associated output ports from the administrator. Its set of output ports is initially empty. The lower-most
frame, called the body, describes the dynamic behavior by a function con defined by the where-clause. In
any elementary specification, in ∈ HA represents the input history and out ∈ HA represents the output
history. For example, in(c) is the input history for the channel c. The function r describes the replies made
by the consultant; since this paper is concerned with communication and not with computation, the latter
is left unspecified; a consultant differs from another consultant in the choice of r . By {n �→ m}& θ we
denote the result of appending m to the head of the stream θ(n) and leaving the rest of θ unchanged. By
{n �→ m1, . . . ,mk}& θ we mean {n �→ m1}& . . . & {n �→ mk}& θ. ✷

We assume that each specification S has associated a unique, infinite set of (initially) private channel names
Ps . As shown later, in Example 5, this set is referenced by the keyword priv. The semantics of an elementary
specification S with external interface (I ,O) and body B is then defined as follows.

[[ S ]] ≡ { g ∈ Mobm2m(I ,O ,Ps) | ∀ i ′ ∈ HT : ∃ o′ ∈ HT : o′ = g(i ′) ∧ B(in, out)
where in = ta(dmMI ,O,P (i ′, o′)), out = ta(o′) }

In the above definition, the fact that g is a mobile m2m function enforces that o′ = rnMI ,O,P (i ′, o′). Hence,
it is enough to define out as the time-abstraction of o′.

Note the importance of implicitly assuring strong guardedness and privacy preservation at the semantic
level. Strong guardedness allows us to assume that input and output are properly sequenced in time with-
out having to treat time explicitly in B . Privacy preservation allows us to assume that input and output
respect the privacy requirements without having to handle them explicitly in B . This allows the specifier to
concentrate on the characteristics of the application itself.

3.2.5. Many-to-Many Composition

The parallel composition of two mobile m2m components F1 and F2 is defined in terms of the operator for
composition of static components.

Definition 13 (M2m composition). Given two mobile m2m components

F1 ⊆ Compm2m (I1,O1,P1), F2 ⊆ Compm2m(I2,O2,P2)

where P1 ∩ (P2 ∪ I2 ∪O2) = P2 ∩ (P1 ∪ I1 ∪ O1) = {}. Let

I ≡ I1 ∪ I2, O ≡ O1 ∪ O2, P ≡ P1 ∪ P2

We define the m2m composition of F1 and F2 as follows.

F1 ⊕ F2 ≡ {m2mI ,O,P (f ) | f ∈ F1 � F2}
In Appendix B (Theorem 7) we prove that F1⊕F2 belongs to Compm2m(I ,O ,P). The functions F1�F2 are
additionally constrained by dmM and rnM in order to capture interconnection information, i.e., information
local to F1 ⊕F2 but global to F1 and F2. For example, if F1 outputs one of its passive ports !c on a feedback
channel and keeps ?c to itself, then both the environment and F2 can output along !c, but only F1 is
allowed to input from ?c. In that case, the output of F2 along the port !c should not be observable by the
environment; this is ensured by rnM. Similarly, if F1 outputs one of its passive input ports ?c on a feedback
channel and keeps !c to itself, then both the environment and F2 can input on ?c, but only F1 is allowed to
output along !c. In that case, the input of F2 on ?c should contain messages sent only by F1; this is ensured
by dmM.

3.2.6. Explicit Hiding

The privacy of a port not contained in the initial interface is guaranteed by privacy preservation. To hide
ports in the initial interface, we use, similarly to the static case, an explicit hiding operator. If Q is a set of
channel names of the mobile m2m component F , then νQ .F is the m2m component obtained from F by
adding Q to the initial set of passive channel names and deleting Q from the initial interface. The domain
and range of the mobile m2m functions modeling νQ .F are modified accordingly. As a consequence, only
components receiving p̃ ∈ ?!Q as an input message can communicate with F via the port p later on.
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Definition 14 (Hiding). Given an m2m component F ⊆ Mobm2m(I ,O ,P) and a set of channel names Q .
Then νQ .F is defined as below:

I ′ ≡ I \ Q , O ′ ≡ O \ Q , P ′ ≡ P ∪ Q
νQ .F ≡ {m2mI ′,O′,P ′(f ) | f ∈ F}

In Appendix B (Theorem 8) we prove that νQ .F belongs to Compm2m(I ′,O ′,P ′). Note the role of dmM and
rnM in maintaining privacy. If p ∈ ?!Q is an input port then dmM makes sure that the behavior of νQ .F is
independent of what the environment outputs along p̃ before the environment has received p̃. If p ∈ ?!Q is
an output port then rnM makes sure that νQ .F does not output messages along p before it has sent p̃ to its
environment.

Example 2. Consultancy network:
In Example 1 we specified a consultant communicating with an administrator and a number of customers; we
now specify the administrator and a consultancy network consisting of the administrator and two consultants.
The consultancy network, whose initial configuration is illustrated graphically by Figure 3, is described by
a composite specification expressed in terms of elementary specifications, composition and hiding.

The consultancy network consists of the m2m composition of the administrator specified by Adm and
two consultants described by two instances of Con. The initial input and output ports of each specification
(instance) are renamed according to the input and output ports within the brackets to the left and right of
✄, respectively. Renaming is positional and defines a new specification.

νc1, c2 : (Q×!N ). Adm(i ✄ c1, c2) ⊕ (Con(c1 ✄) ⊕ Con(c2 ✄))

Initially, the consultancy network has one external input port ?i on which it inputs questions from customers.
Moreover, it has two local channels c1 and c2 on which the administrator distributes questions to the
consultants; the set of external output ports is empty; the output ports are input during run-time via the
input port ?i .

The administrator is described by an elementary m2m specification as follows.

Adm m2m

in i : (Q×!N )

out c1, c2 : (Q×!N )

∃ p ∈ P({c1, c2})∞ : adm(p)(in) = out

where ∀m ∈ Q× !N ; v ∈ HA; p ∈ P({c1, c2})∞ :

adm(p)({i �→ m}& v) = (
⋃

c∈ft.p{c �→ m}) & adm(rt.p)(v)

For any nonempty stream s , the operators ft and rt are defined by s = 〈ft.s〉� rt.s . The existentially quantified
variable p assigns a nonempty set of output ports to each question; this set identifies the set of consultants
that will receive a copy of this particular question. Hence, p is used as an oracle. ✷

We do not need oracles to specify nondeterminism, but the use of oracles is often convenient. As should
be clear from the semantics of elementary specifications, the body of an elementary specification may be an
arbitrary predicate. Hence, we can express nondeterminism in the same way as nondeterminism is expressed
in traditional formal methods like VDM (pre/post-condition style) and Z. [SF98] demonstrates this kind of
declarative specification style in a number of examples. In this paper, however, we have tried to write our
specifications in an applicative style based on pattern matching since we believe an algorithmic specification
style is more understandable for most specifiers. This requires the nondeterminism to be filtered out with
the help of oracles. In our opinion, by the use of oracles we get a very structured style of specification. Speci-
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fications can be understood as “functional programs” based on pattern matching where the nondeterminism
is captured by oracles.

Example 3. Mobile telephones network — m2m version:
A center is in permanent contact with two base stations; each in a different part of the country. A car with
a mobile telephone moves about the country; it should always be in contact with a base. If it gets rather far
from its current base contact, then a hand-over procedure is initiated, and as a result the car relinquishes
contact with its current base and assumes contact with the other.

The mobile m2m format allows arbitrary sharing of both input and output channels. If we do not worry
about interference, this is surely the most appropriate format; it often leads to very compact specifications.
The system, whose initial configuration is illustrated by Figure 4, is described by a composite specification
as follows.

νt1, t2 : Talk ∪ ?N ; b1, b2 : ?N ∪ {act}.
(Center(t1, t2 ✄ b1, b2) ⊕ Car(t1 ✄ o)) ⊕ (Base(b1 ✄ t1) ⊕ Base(b2 ✄ t2))

Initially, the car is in contact with the first base; between the car and the second base there is no direct link.
For simplicity, we assume that the communication between the base stations and the car is uni-directional.
The car forwards the information it inputs from the base stations to its environment via the channel o. The
car can input either talk messages m ∈ Talk ⊆ D or switch messages ?c ∈ ?N . Any talk message is forwarded
along o; the arrival of a switch message ?c forces the component to switch its input reading to ?c.

Car m2m

in t1 : Talk ∪ ?N
out o : Talk

car(t1)(in) = out

where ∀ v ∈ HA; m ∈ Talk ; c,n ∈ N :

car(n)({n �→ m}& v) = {o �→ m} & car(n)(v)

car(n)({n �→ ?c}& v) = car(c)(v)

An activated base may talk repeatedly with the car; it is activated by the receipt of the message act . If
it receives an input port on its input channel, it may transmit this port to the car and itself become idle.
Whether it ignores this input port or not is determined by the oracle p.
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Base m2m

in b : ?N ∪ {act}
out t : Talk ∪ ?N

∃ p ∈ {1, 2}∞; m ∈ Talk∞ : idle(p,m)(in) = out

where ∀ v ∈ HA; p ∈ {1, 2}∞; m ∈ Talk∞; c ∈ N :

idle(p,m)({b �→ act}& v) = act(p,m)(v)

act(1 & p,m)(v) = {t �→ ft.m} & act(p, rt.m)(v)

act(2 & p,m)({b �→ ?c}& v) = {t �→ ?c} & idle(p,m)(v)

The center knows that the car is connected to the first base station, initially. During run-time it decides
(according to information which we do not model) to transmit the input port ?t2 of the second base to
the car via the first base. Subsequently, it inspects the communication on the channel t1. When ?t2 has
been forwarded to the car along t1, it may activate the second base. Hence, t1 also plays the role of an
acknowledgment channel; it permits the center to synchronize the activity of the two base stations.

Center m2m

in t1, t2 : Talk ∪ ?N

out b1, b2 : ?N ∪ {act}

left(in) = out

where ∀ v ∈ HA; m ∈ Talk :

left(v) = {b1 �→ act , ?t2} & wait l(v)

wait l({t1 �→ m}& v) = wait l(v)

wait l({t1 �→ ?t2}& v) = right(v)

right(v) = {b2 �→ act , ?t1} & wait r(v)

wait r({t2 �→ m}& v) = wait r(v)

wait r({t2 �→ ?t1}& v) = left(v)

Note that despite of the massive use of channel sharing, the above specification guarantees that no interference
can occur on any of the channels involved. This is in accordance with the problem statement. However, the
specification format itself does not impose this invariant. This is in contrast with the formats for p2p
communication studied in the next section. ✷

4. Point-to-Point Communication

P2p communication differs from m2m communication in that different components are disallowed from
outputting along the same channel within the same time unit.

4.1. Static Point-to-Point Networks

The set SCompp2p of static p2p components is identical to the set SCompm2m of static m2m components.
Static p2p components interact only over a fixed set of communication channels with names in I and O .
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The difference compared to the m2m case is composition. In the p2p case channel interference is avoided by
making sure that the sets of names for the input and output channels are pairwise disjoint.

Definition 15 (Static p2p composition). Given two static p2p components

F1 ⊆ SCompp2p(I1,O1), F2 ⊆ SCompp2p(I2,O2)

where I1 ∩ I2 = O1 ∩ O2 = {}. Let

I ≡ (I1 \ O2) ∪ (I2 \ O1), O ≡ (O1 \ I2) ∪ (O2 \ I1)

We define the p2p composition of F1 and F2 as follows.

F1 � F2 ≡ {sm2mI ,O(f ) | f ∈ F1 � F2}
It follows straightforwardly from Theorem 6 that F1 � F2 is a static p2p component in SCompp2p(I ,O).

4.2. Mobile Point-to-Point Networks

The mobile p2p case is more subtle because it has to guarantee that different components do not output
along the same channel within the same time unit even if the sets of input, output and passive ports known
to a component vary in time. As mentioned in the introduction, we distinguish between p2p communication
with and without channel sharing. We concentrate on the first variant in Sections 4.2.1 through 4.2.5; the
second variant is treated in Section 4.2.6. To keep the presentation simple, we mainly work in an untyped
setting without tuple messages; the exception is the semantics of specifications where we assume the model
is extended in accordance with Section 3.2.3.

4.2.1. Point-to-Point Invariant

In the p2p case a network of components maintains the following invariant.

• At any given point in time, each port is known to at most one component.

This means that for any channel c, at any point in time, only two components may access c, namely the
component that knows the input port and the component that knows the output port.

We ensure this p2p invariant by local requirements on the behavior of the strongly guarded functions.
To see the need for these requirements, consider once more the m2m case, and assume that f outputs one
of its active ports (say p) to another function g; then there are two ways in which the p2p invariant can be
broken:

1. if p is an output port !o as indicated by the network on the lefthand side of Figure 5 then f and g may
output simultaneously along !o;

2. if p is an input port ?i as indicated by the network on the righthand side of Figure 5 then both f and g
may at some point in the future receive the same output port !o on i and thereafter output simultaneously
along !o.

Sending a passive port p is equally dangerous: f may at any point decide to activate p by outputting its
complement p̃. To eliminate the risk of channel interference we restrict a function to immediately forget any
port it outputs along its output channels. Thus, with respect to our example, as soon as f forwards p, it
may no longer take advantage of this port; this means that p is deleted from its set of active ports.
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Note that a function may output the same port several times if it gains access to the same port several
times. It may, however, not output the same port more than once for each time it gains access to it. For
example, if a function f initially has access to a port p, and f forwards this port, then f must postpone
retransmitting it until it has regained access to p by receiving p via one of its input ports.

In the case of p2p communication, an active port p of a function f becomes passive as soon as f inputs
its complement port p̃. After all, if f has both ports to a channel, then only f knows about this channel.
Consequently, both p and p̃ should be added to the set of passive ports for f , and p should be deleted from
its set of active ports. Accordingly, if f receives both ports for a channel they are immediately included in
its set of passive ports.

As in the m2m case, we are only interested in environments that stick to the rules of the game. We
therefore constrain our functions to ignore the input messages that do not respect the privacy restrictions
captured by the p2p invariant.

4.2.2. Formalizing the Point-to-Point Invariant

We now explain how the p2p invariant described above is captured formally. We start by reformulating
Definitions 9 and 10 for the p2p case.

Definition 16 (Active and passive ports). For I ,O ,P ⊆ N ; θ, δ ∈ H ; t ∈ Nat+; let aP and pP be
defined recursively as follows.

aP1 ≡ ?I∪ !O , pP1 ≡ ?!P

aPt+1 ≡ (aPt ∪ rPt ∪ gPt) \ (sPt ∪ hPt ), pPt+1 ≡ (pPt ∪ hPt) \ (sPt ∪ s̃Pt )

where
rPt ≡

⋃
?i∈aPt

{p | p ∈ pPt ∪ aPt ∩ pt(θ(i)(t))}, hPt ≡ {p, p̃ | p ∈ rPt ∧ p̃ ∈ (aPt \ sPt) ∪ rPt}
sPt ≡

⋃
!i∈aPt

{p | p ∈ (pPt ∪ aPt ) ∩ pt(δ(i)(t))}, gPt ≡ {p̃ | p ∈ sPt ∧ p ∈ pPt}
Then the sets of active and passive ports at time t are characterized by

aPI ,O,P (θ, δ)(t) ≡ aPt , pPI ,O,P (θ, δ)(t) ≡ pPt

rPt , sPt , gPt , and hPt are the sets of received, sent, generated and to-be-hidden ports, respectively. If the
sets of active and passive ports are disjoint initially then they are also disjoint at any later point in time.
Note that

p̃Pt = pPt , aPt+1 ∪ pPt+1 = (aPt ∪ pPt ∪ rPt ) \ sPt

Definition 17 (Domain and range). For any I ,O ,P ⊆N ; θ, δ ∈ H ; t∈Nat+; the domain and range at
time t are characterized by

dmPI ,O,P (θ, δ)(i)(t) ≡
{

(pPt ∪ aPt ∪ D) S© θ(i)(t) if ?i ∈ aPt

〈〉 otherwise

rnPI ,O,P (θ, δ)(i)(t) ≡
{

(pPt ∪ aPt ∪ D) S© δ(i)(t) if !i ∈ aPt

〈〉 otherwise

where aPt ≡ aPI ,O,P (θ, δ)(t) and pPt ≡ pPI ,O,P (θ, δ)(t).

Since a function can output the same port only once for each time it gains access to it, we consider only
named communication histories θ ∈ H in which the same port does not occur twice in the same time unit
for different channels. Such communication histories are port unique.

Definition 18 (Port uniqueness). A named communication history θ ∈ H is port unique iff

∀ t ∈ Nat+; p ∈ ?!N ; n,m ∈ N : p ∈ pt(θ(n)(t)) ∧ p ∈ pt(θ(m)(t)) ⇒ n = m

HU is the set of all port unique communication histories in H . The merge component M preserves port
uniqueness if its two arguments are without occurrences of the same port within the same time unit. More
precisely, if

pts(θ, t) ≡ {p ∈ ?!N | ∃n ∈ N : p ∈ pt(θ(n)(t))}
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we have

∀ϕ, ψ ∈ HU : (∀ t ∈ Nat+ : pts(ϕ, t) ∩ pts(ψ, t) = {}) ⇒ ∀m ∈ M : m(ϕ, ψ) ∈ HU

We can now characterize what it means for a function to be privacy preserving in the p2p case.

Definition 19 (Privacy preservation). A function f ∈ H → H is privacy preserving with respect to
I ,O ,P ⊆ N iff

∀ θ ∈ H : f (θ) = f (dmPI ,O,P (θ, f (θ))) = rnPI ,O,P (θ, f (θ))
∀ θ ∈ HU : f (θ) ∈ HU

Note that we defined the function f on H and not on HU because we want any p2p function to be an
m2m function. We use Mobp2p (I ,O ,P) to denote the set of all strongly guarded functions that are privacy
preserving with respect to (I ,O ,P) in the p2p case. In the sequel we refer to such functions as mobile p2p
functions.

As we said in the introduction, p2p communication can be understood as a particular case of m2m
communication. Informally, a mobile p2p function is a mobile m2m function that preserves port uniqueness
and forgets a port as soon as it is sent. In Appendix D (Theorem 18) we prove that this is indeed the case,
i.e., that any mobile p2p function is also m2m.

As in the m2m case, in Appendix C (Theorem 11) we prove that any strongly guarded function f ∈
H → H that preserves port uniqueness can be transformed into a mobile p2p function p2pI ,O,P (f ) ∈
Mobp2p(I ,O ,P) as follows.

p2pI ,O,P (f )(θ) = rnPI ,O,P (θ, δ) where δ = f (dmPI ,O,P (θ, δ))

4.2.3. Mobile Point-to-Point Components

We model mobile p2p components by sets of mobile p2p functions.

Definition 20 (Mobile p2p component). A mobile p2p component with initial interface (I ,O) and
initial set of passive channel names P is represented by a nonempty set of mobile p2p functions F ⊆
Mobp2p(I ,O ,P).

We use Compp2p (I ,O ,P) to denote the set of all mobile p2p components with respect to (I ,O ,P).

4.2.4. Mobile Point-to-Point Composition

Mobile p2p composition is defined similarly to the static case. However, feedback channels are in this case
hidden both statically and dynamically.

Definition 21 (Mobile p2p composition). Given two mobile p2p components

F1 ⊆ Compp2p (I1,O1,P1), F2 ⊆ Compp2p(I2,O2,P2)

where I1 ∩ I2 = O1 ∩ O2 = P1 ∩ (I2 ∪ O2 ∪ P2) = P2 ∩ (I1 ∪ O1 ∪ P1) = {}. Let

I ≡ (I1 \ O2) ∪ (I2 \ O1), O ≡ (O1 \ I2) ∪ (O2 \ I1), P ≡ P1 ∪ P2 ∪ (I1 ∩ O2) ∪ (I2 ∩ O1)

We define the p2p composition of F1 and F2 as follows.

F1 ⊗ F2 ≡ {p2pI ,O,P (f ) | f ∈ F1 � F2}
In Appendix C (Theorem 12) we prove that F1 ⊗ F2 belongs to Compp2p(I ,O ,P). As in the m2m case, the
restriction of f with dmP and rnP is necessary to capture interconnection information, i.e., information local
to F1 ⊗ F2 but global to F1 and F2. For example, if p is an active port of F1 and p̃ is an active port of F2

then the pair {p, p̃} is private to F1 ⊗ F2. However, neither F1 nor F2 can be aware of this fact.
Note that contrary to the m2m operator ⊕, the p2p operator ⊗ hides ports in the initial interface: those

channels that belong to the initial interface of both components are automatically hidden (see the definition
of I , O and P); an additional hiding operator is, therefore, not needed. Hence, in the p2p case we do not
need a hiding operator of the kind introduced for m2m communication since at any given point in time, each
port is known to at most one component.
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4.2.5. Point-to-Point Specifications

The p2p model is just a special case of the mobile m2m model. Hence, we may still use the specification
formats for m2m communication. This requires, however, the specifiers to explicitly capture the hiding
invariants for p2p communication; this results in unnecessarily complex specifications. Specification formats
specially tuned towards p2p communication are therefore desirable.

Syntactically, elementary p2p specifications differ from elementary m2m specifications in only one respect:
the label m2m is replaced by p2p. The semantics of an elementary p2p specification S with initial interface
(I ,O), initial set of passive channel names Ps , and body B is defined as follows.

[[ S ]] ≡ { g ∈ Mobp2p(I ,O ,Ps) | ∀ i ′ ∈ HTU : ∃ o′ ∈ HTU : o′ = g(i ′) ∧ B(in, out)
where in = ta(dmPI ,O,P (i ′, o′)), out = ta(o′) }

By HTU we denote the type-correct subset of HU . HAU is the corresponding set of untimed typed commu-
nication histories. Note the role of the time-abstraction operator in the definition of in and out.

Example 4. Mobile telephones — p2p version:
The mobile p2p model constrains a component to forget a port p as soon as it is sent; the component regains
access to p if p is later input via one of its input ports. In the specification of the mobile telephones network
considered in this example, we make strong use of this feature. The specification demonstrates switching as a
process of gaining and losing access to an output port. This network, whose initial configuration is illustrated
by Figure 6, is specified by the following composite specification.

(Center(✄ b1, b2, t) ⊗ Car(t ✄ o)) ⊗ (Base(b1 ✄) ⊗ Base(b2 ✄))

Initially there is no direct or indirect communication link from the base stations to the car. The center is
connected to the car via the channel t . The center itself does not communicate via t : during run-time it
transmits the port !t to and from the two base stations via the channels b1 and b2.

The specification of the car is very simple: the external interface does not change and the input from t
is just forwarded along o with an arbitrary delay. Formally,

Car p2p

in t : Talk

out o : Talk

out(o) = in(t)

A base station is initially idle; it remains idle until it inputs an output port !k on its input port ?b; then it
communicates via !k until it inputs a second output port !l on ?b. The base station responds to the second
output port by halting the communication on !k and sending both output ports back along !l . Thereafter it
remains idle until the whole procedure is restarted by the receipt of another output port on ?b. Note that
the amount of talking is underspecified by the oracle p ( & is redefined for streams in the obvious manner).
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Base p2p

in b : !N

∃ p ∈ {1, 2}∞; m ∈ Talk∞ : idle(p,m)(in) = out

where ∀ k , l ∈ N ; v ∈ HAU ; p ∈ {1, 2}∞; m ∈ Talk∞ :

idle(p,m)({b �→ !k}& v) = act(k)(p,m)(v)

act(k)(1 & p,m)(v) = {k �→ ft.m} & act(k)(p, rt.m)(v)

act(k)(2 & p,m)({b �→ !l}& v) = {l �→ !k , !l} & idle(p,m)(v)

Finally, we specify the center: as already mentioned, it manages the transmission of t to and from the two
base stations.

Center p2p

out b1, b2 : !N ; t : Talk

∃ q ∈ priv : left(q)(in) = out

where ∀ v ∈ HAU :

left(v) = {b1 �→ !t , !q} & wait l(v)

wait l({q �→ !t , !q}& v) = right(v)

right(v) = {b2 �→ !t , !q} & wait r(v)

wait r({q �→ !t , !q}& v) = left(v)

Both !t and !q are used repeatedly by the base stations, i.e., they are shared. They are, however, never used
simultaneously; each time a base station returns !t and !q back to the center it loses access to these ports.
By sending the private port !q ∈ priv (remember that priv denotes the initial set of passive ports), the center
automatically gets access to the port ?q. By receiving the port !q back, the center has access to both ?q and
!q, i.e., q becomes passive once more. ✷

4.2.6. Restrictive Point-to-Point Communication

So far we have introduced two specification formats; one for m2m communication and one for p2p commu-
nication. Of course, we may also define formats specially tuned towards other communication paradigms. In
this section we strengthen the privacy invariant for p2p communication to disallow channel sharing. Let θ†n
denote the history obtained from θ by hiding the information sent along the channel n, i.e.,

θ †n (m) ≡
{ 〈〉∞ if n = m

θ(m) otherwise

Restrictive p2p communication guarantees that forwarded ports are not used for communication purposes
by the forwarding component. The privacy invariant of mobile p2p functions guarantees that ports are not
used after they have been forwarded. Hence, it is enough to restrict the behavior until a port is forwarded.

Definition 22 (Restrictive p2p component). A p2p component F is a restrictive p2p component if for
all f ∈ F ; n, o ∈ N ; t ∈ Nat+; θ ∈ H :

?n ∈ pt(f (θ)(o)(t)) ⇒ f (θ)↓t = f (θ†n)↓t , !n ∈ pt(f (θ)(o)(t)) ⇒ f (θ)↓t = (f (θ)†n)↓t
Consequently, channel sharing is no longer possible; for example, this excludes the shared use of the chan-
nels t and q in Example 4. The set of restrictive p2p components with respect to (I ,O ,P) is denoted by
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Compr p2p(I ,O ,P). In Appendix C (Theorem 13) we prove that the p2p composition of two restrictive p2p
components yields a restrictive p2p component.

The specification formats for p2p communication are redefined for restrictive p2p communication in the
obvious manner. To demonstrate the potential of having additional specification formats, we once more
specify a variant of the mobile telephone network.

Example 5. Mobile telephones — restrictive p2p version:
Contrary to earlier, the center employs only new channels to connect the base stations to the car: at each
communication switch, both the car and the activated base station receives a port to a completely new
channel. The network, whose initial configuration is illustrated by Figure 7, is specified as follows.

(Center(t1, t2 ✄ b1, b2, t) ⊗ Car(t ✄ o)) ⊗ (Base(b1 ✄ t1) ⊗ Base(b2 ✄ t2))

The specification of the car is identical to that of Example 3 with the exception that its label is replaced
by r p2p. The specification of the center is similar to the m2m version. However, in this case, for each new
channel the center must take care to send the input port to the car and the output port to the corresponding
base.

Center r p2p

in t1, t2 : {ok}
out b1, b2 : ?!N ; t : Talk ∪ ?N

∃ p ∈ priv∞ : left(t & p)(in) = out

where ∀ v ∈ HAU ; n ∈ priv; p ∈ priv∞ :

left(n & p)(v) = {b1 �→ !n, ?ft.p} & wait l(p)(v)

wait l(p)({t1 �→ ok}& v) = right(p)(v)

right(n & p)(v) = {b2 �→ !n, ?ft.p} & wait r(p)(v)

wait r(p)({t2 �→ ok}& v) = left(p)(v)

Note that the r p2p constraint enforces (as desired) that all ports generated from p are distinct. Hence, we
do not have to write down this requirement.
The specification of the base differs from the m2m version in that the base receives the new output channel
instead of act and that the forwarding of the output port is signaled by an ok.
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Base r p2p

in b : ?!N

out t : {ok}

∃ p ∈ {1, 2}∞; m ∈ Talk∞ : idle(p,m)(in) = out

where ∀ v ∈ HAU ; c, e ∈ N ; p ∈ {1, 2}∞; m ∈ Talk∞ :

idle(p,m)({b �→ !e}& v) = act(e)(p,m)(v)

act(e)(1 & p,m)(v) = {e �→ ft.m} & act(e)(p, rt.m)(v)

act(e)(2 & p,m)({b �→ ?c}& v) = {e �→ ?c, t �→ ok} & idle(p,m)(v)

✷

5. Discussion

In this paper we have defined a denotational model for mobile systems, i.e., for systems in which every
component may change its communication partners on the basis of computation and interaction. This model
allows a more profound understanding of mobility as a particular privacy invariant that is maintained
by the mobile system. We analyzed privacy with respect to three communication paradigms: many-to-
many communication (m2m), point-to-point communication with channel sharing (p2p), and point-to-point
communication without channel sharing (r p2p).

For each of these paradigms we defined a specification format that supports the maintenance of the
associated invariant by imposing it implicitly via the semantic mapping. By relieving the specifier from the
burden of stating the invariants explicitly in each specification these formats allow “high level” specifications
of mobile systems. The models and their associated specification formats were defined in a stepwise manner
from the most liberal m2m model to the most restrictive r p2p model. We showed that each of them is
obtained from the previous one by strengthening its privacy invariant.

Based on this, when should which format be used? The general rule is to use the most restrictive format
that fits the communication paradigm of the component you consider. Hence, if you have a component
based on restrictive p2p communication then you may in principle use all three formats, but the format for
restrictive p2p communication is recommended since it imposes all the required communication invariants
implicitly via the semantics — invariants that otherwise have to be specified explicitly if any of the two other
formats are used.

We also believe there are situations where p2p communication could be useful to give an abstract view
of m2m systems. The reason is quite simply the very controlled form of interference guaranteed by the
p2p formats, which has a simplifying effect on formal reasoning. This requires, however, flexible refinement
paradigms allowing specifications based on p2p communication to be refined into specifications based on
m2m communication. We believe such refinement paradigms can be formulated, but this is an issue of
further research.

Since our specification formats suppress the guardedness and privacy constraints by imposing them
implicitly via the semantics, an interesting question is to what extent reasoning is possible without unwinding
the definitions. The answer is “to a large extent”. For example, with respect to guardedness and time
abstraction this issue is investigated in [BS94] which proposes a rule for feedback that is complete in a
certain sense with respect to the kind of components that can be fully characterized by relations on untimed
streams, which is a large and in practice important class of untimed dataflow components. In the timed case,
we may prove many properties — but, of course, not all — without referring to guardedness. When the body
of the specification itself is not sufficiently strong to deduce a property depending on guardedness we may use
an adaptation rule to strengthen the specification with guardedness. The need for adaptation rules is well-
known from other kinds of proof calculi for computer programs (see for instance [Hoa71, LGH+78, GL80]).

In the case of privacy the situation is as for guardedness: many proofs can be carried out without
additional privacy information. In those cases where this is not possible, we use an adaptation rule to
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make the specification sufficiently strong. By using adaptation rules in this sense we are able to keep the
specifications simple and at the same time obtain full proof power when this is required.

This paper considers neither refinement nor program verification. Reasoning in the context of streams
is, however, well-documented in the literature [Ste97]. [Stø96], which gives a complete solution to the RPC-
Memory Specification Problem, demonstrates reasoning in the context of an oracle-based specification style.
The reasoning techniques of [Stø96] can be adapted to the various specification formats introduced above in
the form of specialized deduction rules. The actual formulation of such rules that are both simple to use and
sufficiently powerful is a matter of further research.

The exact relationship between our model and more operational models for mobile systems like for
instance the π-calculus [Mil91] and the actor-based approaches [AMST92] is an interesting area for future
research. For example, we believe that our model can be used to give a denotational semantics for the
asynchronous π-calculus. We also believe that the actor languages can be smoothly integrated within our
formalism.

Our approach is related to the work of Kok [Kok87, Kok89]. The major difference is that Kok does not
deal with mobility. Moreover, the handling of nondeterminism differs from ours. In [Kok89], where a metric on
relations is used, basically only bounded nondeterminism can be handled. In [Kok87], which is not based on
metric spaces, an automaton is used to generate the behavior of basic agents. This guarantees the existence
of fix-points. We use sets of strongly guarded functions for the same purpose. Another important difference
with respect to [Kok87] is that we do not consider time abstraction (at the semantic level). The reasons are
quite simple. First, we want to model reactive systems and for such systems time plays an important role.
Second, in an untimed input/output model one cannot define and understand the privacy invariant.

Our main contribution is that we have formalized mobility in the context of streams and functions on
streams. In this respect our work is in the tradition of Kahn [Kah74, KM77]. The close relationship between
stream-based models and models based on traces1 as for example advocated by Jonsson [Jon89], is well-
known. Hence, it makes sense to ask why we use a stream-based model and not one based on traces? Well,
we think that each model has its own merits, and it is hard to classify one as better than the other. Each
model was pursued in different schools, and each school prefers its own model. This might be also a matter
of tradition. We are not aware of work on mobility within the framework of [Jon89]. How our approach to
mobility should be reformulated in a trace-based setting, and whether this reformulated trace-based version
would be simpler or more elegant than the one presented in this paper, is a matter of further research.

We think that the trace-based automata-like models are closer to logic, whereas the stream-based func-
tional models are closer to engineering. The second class of models promotes thinking in terms of blocks,
sequential composition, parallel composition and feedback — concepts long used and validated in other en-
gineering disciplines (e.g., control theory). Moreover, it promotes the use of paradigms already developed in
the (sequential) programming languages community, like subtyping, parametric polymorphism, higher-order
types, etc. In fact, these days there is intensive work on the unification of these two approaches. Among
these efforts, probably the best known is the work of Samson Abramski on interaction categories [Abr96].

Mathematical modeling involves abstraction, and abstraction means leaving something out. As high-
lighted by the Greek philosopher Zenon more than 2400 years ago, when something is left out we may get
some strange effects — often referred to as anomalies. Two very famous anomalies known from stream-based
models for concurrent systems is the merge anomaly [Kel78] and the Brock/Ackermann anomaly [BA81].
They can be summarized as follows.

• A fair merge component merging two untimed streams into a third untimed stream containing all the
messages of the argument streams cannot be represented by a prefix-monotonic function.

• Relations on untimed streams are not sufficiently expressive to distinguish all observationally different
dataflow components.

As explained carefully in [BS94], the fair merge anomaly occurs because in the case of untimed streams
there is no way to distinguish a finite incomplete input history with exactly n messages from a complete
input history consisting of exactly the same sequence of messages. In our model, we consider only complete
communication histories which means that this problem cannot occur even in the case of time-abstraction.

1 A stream is a sequence representing the communication history of a channel; a trace is a sequence representing the com-
munication history of a component run; in a trace the streams of the input/output channels are interleaved into a single
history.
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On the other hand, our specification formats seem to suffer from the Brock/Ackermann anomaly because
they are all based on time abstraction which means that a specification is basically a relation on untimed
streams. However, this is only seemingly so, because the underlying model is timed, and we can of course
define similar formats without time-abstraction that are well-known to be sufficiently expressive (see [BS94]).
Hence, we use a format with time-abstraction when we describe a component for which the untimed format
is sufficiently expressive; otherwise, we use a timed format. The timed format is of course in any case needed
to specify components with time constraints. We have not considered timed specification formats in this
paper, because it is not required for the examples we consider. [Stø96, SF98, BS01] are all based on the idea
originally suggested in [BS94] of distinguishing between timed and untimed formats for the specification of
dataflow networks. Note that although the Brock/Ackermann anomaly is an interesting theoretical challenge,
it is seldom a problem in practice. The fact that the merge nodes used in the definition of composition are
undelayed has no impact in the context of Brock/Ackermann since they are weakly guarded and used in
such a way that the resulting network is guaranteed to be strongly guarded2.

[Gro94] defines a stream-based semantic model for mobile deterministic dataflow networks. This model is,
however, higher-order and mobility is achieved by communicating channels and functions instead of ports.
[Bro95, Gro94] give also an equational characterization of dynamic reconfiguration. Mobility in the more
general framework of nondeterministic systems where reconfiguration is achieved by sending ports is studied
in [GS95, GS96a, GS96b, GSB97], and this paper unifies and summarizes this work. Our formalism has been
applied successfully to give a formal high-level specification of the kernel functionality of an operating system
[HS96, Spi98]. In this specification, mobility represents resource allocation and recursion represents process
creation. The m2m model was also successfully used in [Hin98] to give a formal semantics for the object-
oriented extension of the ITU standardized specification and description language SDL [Z.100]. [GS97, Stø99]
study m2m mobility in a purely relational setting. [Stø99] defines the semantic mapping without recursive
characterizations of domain and range.
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A. Metrics on Streams and Named Stream Tuples

Definition 23 (Metric of streams). The metric of streams (E∞, d) is defined as follows.

E∞ ≡ ×t∈NatE , d(r , s) ≡ inf {2−t | r↓t = s↓t}
This metric is also known as the Baire metric [Eng77].

Theorem 1. The metric space of streams (E∞, d) is complete.

Proof See [Eng77]. ✷

Definition 24 (Metric of named stream tuples). The metric of named stream tuples (I → E∞, d) over
a countable set of names I is defined as follows.

d(θ, ϕ) ≡ inf {2−t | θ↓t = ϕ↓t}
Theorem 2. The metric space of named stream tuples (I → E∞, d) is complete.

Proof The metric of named stream tuples is equivalent to the Cartesian product metric ×i∈IE∞ which is
complete because E∞ is complete (see [Eng77]). ✷

B. Proofs — Mobile M2m Case

Theorem 3. The functions pM and aM are strongly guarded, and the functions dmM and rnM are weakly
guarded.

Proof pMI ,O,P (θ, δ)(t) and aMI ,O,P (θ, δ)(t) depend only on θ↓ t−1 and δ↓ t−1. dmMI ,O,P (θ, δ)(i)(t) and
rnMI ,O,P (θ, δ)(i)(t) depend only on θ↓t and δ↓t . ✷

Theorem 4. The functions dmM and rnM satisfy the following properties.
dmMI ,O,P (θ, δ) = dmMI ,O,P (dmMI ,O,P (θ, δ), δ)

= dmMI ,O,P (θ, rnMI ,O,P (θ, δ))
rnMI ,O,P (θ, δ) = rnMI ,O,P (dmMI ,O,P (θ, δ), δ)

= rnMI ,O,P (θ, rnMI ,O,P (θ, δ))

Proof The proof is based on the inductive definitions of aM and pM. To save space we drop the I ,O ,P
subscripting. We do similar simplifications in later proofs.

Induction hypothesis:

aM(θ, δ)(n) = aM(dmM(θ, δ), δ)(n) = aM(θ, rnM(θ, δ))(n)
pM(θ, δ)(n) = pM(dmM(θ, δ), δ)(n) = pM(θ, rnM(θ, δ))(n)

To simplify the notation we define:

aMn ≡ aM(θ, δ)(n), aM′
n ≡ aM(dmM(θ, δ), δ)(n), aM′′

n ≡ aM(θ, rnM(θ, δ))(n)
pMn ≡ pM(θ, δ)(n), pM′

n ≡ pM(dmM(θ, δ), δ)(n), pM′′
n ≡ pM(θ, rnM(θ, δ))(n)

Base Case: aM1 = aM′
1 = aM′′

1 = ?I∪ !O and pM1 = pM′
1 = pM′′

1 = ?!P .

Induction Step: By the induction hypothesis aMn = aM′
n = aM′′

n and pMn = pM′
n = pM′′

n . By the definition
of aM and pM:

aMn+1 = aMn ∪ ⋃
?i∈aMn

{c | c ∈ aMn ∪ pMn ∧ c ∈ pt(θ(i)(n))} ∪⋃
!i∈aMn

{c | c ∈ pMn ∧ c̃ ∈ pt(δ(i)(n))}
aM′

n+1 = aM′
n ∪ ⋃

?i∈aM′
n
{c | c ∈ aM′

n ∪ pM′
n ∧ c ∈ pt(dmM(θ, δ)(i)(n))} ∪⋃

!i∈aM′
n
{c | c ∈ pM′

n ∧ c̃ ∈ pt(δ(i)(n))}
aM′′

n+1 = aM′′
n ∪ ⋃

?i∈aM′′
n
{c | c ∈ aM′′

n ∪ pM′′
n ∧ c ∈ pt(θ(i)(n))} ∪⋃

!i∈aM′′
n
{c | c ∈ pM′′

n ∧ c̃ ∈ pt(rnM(θ, δ)(i)(n))}
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pMn+1 = pMn \ ⋃
!i∈aMn

{c | c ∈ pMn ∧ c̃ ∈ pt(δ(i)(n))}
pM′

n+1 = pM′
n \ ⋃

!i∈aM′
n
{c | c ∈ pM′

n ∧ c̃ ∈ pt(δ(i)(n))}
pM′′

n+1 = pM′′
n \ ⋃

!i∈aM′′
n
{c | c ∈ pM′′

n ∧ c̃ ∈ pt(rnM(θ, δ)(i)(n))}
By the definition of dmM and rnM:

dmM(θ, δ)(i)(n) = (p̃Mn ∪D) S© θ(i)(n) if ?i ∈ aMn = aM′
n = aM′′

n

rnM(θ, δ)(i)(n) = (pMn ∪ aMn ∪ D) S© δ(i)(n) if !i ∈ aMn = aM′
n = aM′′

n

The first union in the definition of aMn+1, aM′
n+1, and aM′′

n+1 is over ?i ∈ aMn = aM′
n = aM′′

n . As a
consequence

dmM(θ, δ)(i)(n) = (p̃Mn ∪ D) S© θ(i)(n)

holds inside this union. It is enough to show that

c ∈ pt(θ(i)(n)) ⇔ c ∈ pt((p̃Mn ∪ D) S© θ(i)(n))

under the assumptions that c �∈ aMn and c ∈ pMn . This follows since c̃ ∈ pM1 ⇔ c ∈ pM1 and the two
assumptions imply that c �∈ p̃Mn .

The second union in the definition of aMn+1, aM
′
n+1, and aM′′

n+1 is over !i ∈ aMn = aM′
n = aM′′

n . As a
consequence

rnM(θ, δ)(i)(n) = (pMn ∪ aMn ∪ D) S© δ(i)(n)

holds inside this union. It is enough to show that

c̃ ∈ pt(δ(i)(n)) ⇔ c̃ ∈ pt((pMn ∪ aMn ∪ D) S© δ(i)(n))

under the assumption that c ∈ pMn . This follows since c̃ ∈ pM1 ⇔ c ∈ pM1 and the assumption imply
that c̃ ∈ pMn ∪ aMn . This proves that aMn+1 = aM′

n+1 = aM′′
n+1. That pMn+1 = pM′

n+1 = pM′′
n+1 follows

accordingly. Finally, because of these equalities, dmM(θ, δ)(i)(n) simplifies to θ(i)(n) and rnM(θ, δ)(i)(n)
simplifies to δ(i)(n) inside the definitions of dmM and rnM. This immediately proves the theorem. ✷

Theorem 5. If g ∈ H → H is a strongly guarded function then m2mI ,O,P (g) ∈ Mobm2m(I ,O ,P).

Proof Let us abbreviate m2mI ,O,P (g) by f . Then by the definition of m2mI ,O,P we have

f (θ) = rnM(θ, δ) where δ = g(dmM(θ, δ))

The function f is well defined and strongly guarded because g is strongly guarded, and dmM and rnM are
weakly guarded. That f is privacy preserving follows from the following two lemmas.

Lemma 1. f (θ) = f (dmM(θ, f (θ))).

Proof The idea of the proof is to transform f (dmM(θ, f (θ))) to f (θ) by using the equalities from Theorem
4. By definition, f (dmM(θ, f (θ))) is equal to

rnM(dmM(θ, f (θ)), γ) where γ = g(dmM(dmM(θ, f (θ)), γ))

By Theorem 4 and definition of f we have

dmM(θ, f (θ)) = dmM(θ, rnM(θ, δ)) = dmM(θ, δ)

Hence, the recursive equation in γ reduces to

γ = g(dmM(dmM(θ, δ), γ))

But by Theorem 4 and definition of f , δ is a fix-point of the above equation

g(dmM(dmM(θ, δ), δ)) = g(dmM(θ, δ)) = δ

Since fix-points are unique it follows that δ = γ. Now, using again Theorem 4 and the above result we obtain

rnM(dmM(θ, f (θ)), γ) = rnM(dmM(θ, rnM(θ, δ)), δ) = rnM(θ, δ)

Hence, f (dmM(θ, f (θ))) = f (θ). ✷
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Lemma 2. f (θ) = rnM(θ, f (θ)).

Proof
rnM(θ, f (θ)) =
rnM(θ, rnM(θ, δ)) = {by the definition of f }
rnM(θ, δ) = {by Theorem 4}
f (θ) {by the definition of f }

✷

This completes the proof. ✷

Theorem 6. F1 � F2 is a nonempty set of strongly guarded functions if F1 and F2 are nonempty sets of
strongly-guarded functions.

Proof Since F1, F2, and M are nonempty we may find functions f1 ∈ F1, f2 ∈ F2 and m1,m2,m3 ∈ M. Based
on these functions we construct a function f which is strongly guarded and satisfies the recursive equation
in Definition 7. Let g be defined as follows.

g ∈ (H × H ) × H → H × H
g((ϕ, ψ), θ) = (f1(m1(θ, ψ)), f2(m2(θ, ϕ))

The way g is defined in terms of strongly and weakly guarded functions imply that g is strongly guarded.
Thus µ g is well defined, in which case it follows that µ g is strongly guarded. That the function f defined
below is also strongly guarded follows accordingly.

f ∈ H → H
f (θ) = m3(ϕ, ψ) where (ϕ, ψ) = (µ g)(θ)

By the definition of � it follows that f ∈ F1 � F2. ✷

Theorem 7. F1 ⊕ F2 is a mobile m2m component if F1 and F2 are mobile m2m components.

Proof Follows from Theorems 5 and 6. ✷

Theorem 8. νx .F is a mobile m2m component if F is a mobile m2m component.

Proof Follows from Theorem 5. ✷

C. Proofs — Mobile P2p Case

Theorem 9. The functions pP and aP are strongly guarded, and the functions dmP and rnP are weakly
guarded.

Proof The proof is identical to that of Theorem 3. ✷

Theorem 10. The functions dmP and rnP satisfy the following properties.

dmPI ,O,P (θ, δ) = dmPI ,O,P (dmPI ,O,P (θ, δ), δ)

= dmPI ,O,P (θ, rnPI ,O,P (θ, δ))

rnPI ,O,P (θ, δ) = rnPI ,O,P (dmPI ,O,P (θ, δ), δ)

= rnPI ,O,P (θ, rnPI ,O,P (θ, δ))

Proof The proof is similar to that of Theorem 4. ✷

Theorem 11. If g ∈ H → H is a strongly guarded function preserving port uniqueness then p2pI ,O,P (g) ∈
Mobp2p(I ,O ,P).

Proof The proof of privacy preservation is similar to the one for the m2m case except that it uses Theorem
10, the p2p equivalent of Theorem 4. That p2pI ,O,P (g) preserves port uniqueness follows trivially because
dmP and rnP only remove messages. ✷
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Theorem 12. F1 ⊗ F2 is a mobile p2p component if F1 and F2 are mobile p2p components.

Proof That F1 ⊗ F2 is well defined and privacy preserving follows from Theorems 6 and 11. We only have
to show that each f ∈ F1 ⊗ F2 also preserves port uniqueness. With respect to f1, f2,m1,m2,m3 and θ of
Definition 7 this amounts to proving

m3(ϕ, ψ) ∈ HU

under the assumption that θ ∈ HU and θ = dmP(θ,m3(ϕ, ψ)). The proof is by induction; the induction
hypothesis is formalized by the following lemma. Let

aP1
n = aPI1,O1,P1(m1(θ, ψ), ϕ)(n), pP1

n = pPI1,O1,P1
(m1(θ, ψ), ϕ)(n)

aP2
n = aPI2,O2,P2(m2(θ, ϕ), ψ)(n), pP2

n = pPI2,O2,P2
(m2(θ, ϕ), ψ)(n)

aPn = aPI ,O,P (θ,m3(ϕ, ψ))(n), pPn = pPI ,O,P (θ,m3(ϕ, ψ))(n)

Lemma 3. For all n ∈ Nat+:

(1) (aP1
n ∪ pP1

n) ∩ (aP2
n ∪ pP2

n) = {}
(2) aP1

n ∪ pP1
n ∪ aP2

n ∪ pP2
n = aPn ∪ pPn

(3) ϕ, ψ are port unique until time n
(4) pts(ϕ,n) ∩ pts(ψ,n) = {}

Proof
Base Case: By definition

aP1
1 = ?I1 ∪ !O1, aP2

1 = ?I2 ∪ !O2, aP1 = ?(I1 \ O2)∪ ?(I2 \ O1)∪ !(O1 \ I2)∪ !(O2 \ I1)
pP1

1 = ?!P1, pP2
1 = ?!P2, pP1 = ?!(P1 ∪ P2 ∪ (I1 ∩O2) ∪ (I2 ∩ O1))

The constraints imposed on I1,O1,P1, I2,O2, and P2 by Definition 21 imply the validity of (1) and (2). (3)
follows since f1 and f2 are strongly guarded and preserves port uniqueness. (4) follows from (1) since f1 and
f2 are privacy preserving.

Induction step: Expanding the definitions of aP and pP we obtain

aP1
n+1 = (aP1

n ∪ rP1
n ∪ gP1

n) \ (sP1
n ∪ hP1

n), pP1
n+1 = (pP1

n ∪ hP1
n) \ (sP1

n ∪ s̃P1
n)

aP2
n+1 = (aP2

n ∪ rP2
n ∪ gP2

n) \ (sP2
n ∪ hP2

n), pP2
n+1 = (pP2

n ∪ hP2
n) \ (sP2

n ∪ s̃P2
n)

aPn+1 = (aPn ∪ rPn ∪ gPn) \ (sPn ∪ hPn), pPn+1 = (pPn ∪ hPn) \ (sPn ∪ s̃Pn)

where

rP1
n =

⋃
?i∈aP1

n
{c | c ∈ pP1

n ∪ aP1
n ∩ pt(m1(θ, ψ)(i)(n))}

rP2
n =

⋃
?i∈aP2

n
{c | c ∈ pP2

n ∪ aP2
n ∩ pt(m2(θ, ϕ)(i)(n))}

rPn =
⋃

?i∈aPn
{c | c ∈ pPn ∪ aPn ∩ pt(θ(i)(n))}

sP1
n =

⋃
!i∈aP1

n
{c | c ∈ (pP1

n ∪ aP1
n) ∩ pt(ϕ(i)(n))}

sP2
n =

⋃
!i∈aP2

n
{c | c ∈ (pP2

n ∪ aP2
n) ∩ pt(ψ(i)(n))}

sPn =
⋃

!i∈aPn
{c | c ∈ (pPn ∪ aPn) ∩ pt(m3(ϕ, ψ)(i)(n))}

gP1
n = {c̃ | c ∈ sP1

n ∧ c ∈ pP1
n}, hP1

n = {c, c̃ | c ∈ rP1
n ∧ c̃ ∈ (aP1

n \ sP1
n) ∪ rP1

n}
gP2

n = {c̃ | c ∈ sP2
n ∧ c ∈ pP2

n}, hP2
n = {c, c̃ | c ∈ rP2

n ∧ c̃ ∈ (aP2
n \ sP2

n) ∪ rP2
n}

gPn = {c̃ | c ∈ sPn ∧ c ∈ pPn}, hPn = {c, c̃ | c ∈ rPn ∧ c̃ ∈ (aPn \ sPn) ∪ rPn}
(1) holds by the induction hypothesis for n. Any port

p ∈ (aP1
n+1 ∪ pP1

n+1) \ (aP1
n ∪ pP1

n)
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is by definition contained in one of the following two sets.

pts(θ,n) ∩ aPn ∪ pPn , pts(ψ,n)

In the first case the assumptions on θ and the assumption that (2) holds for n imply that p �∈ aP2
n+1∪pP2

n+1.
In the second case we may deduce the same since the fact that f2 is privacy preserving implies that by
definition

sP2
n = pts(ψ,n), sP2

n ∩ (aP2
n+1 ∪ pP2

n+1) = {}
That any new port p contained in aP2

n+1 ∪ pP2
n+1 is not contained in aP1

n+1 ∪ pP1
n+1 follows accordingly.

Hence, (1) holds for n + 1.
To see that (2) holds for n + 1, first remember that by definition

aP1
n+1 ∪ pP1

n+1 = (aP1
n ∪ pP1

n ∪ rP1
n) \ sP1

n

aP2
n+1 ∪ pP2

n+1 = (aP2
n ∪ pP2

n ∪ rP2
n) \ sP2

n

aPn+1 ∪ pPn+1 = (aPn ∪ pPn ∪ rPn) \ sPn

Since (2) holds for n it follows from the definitions of sP1
n , sP2

n , and sPn that

sP1
n ∪ sP2

n = sPn

Similarly, we have that

rP1
n \ (aP2

n ∪ pP2
n) ∪ rP2

n \ (aP1
n ∪ pP1

n) = rPn

Hence, (2) holds for n + 1.
That m1(θ, ϕ) and m2(θ, ψ) are port unique until n follows straightforwardly from the assumptions that (2)
and (3) holds for n, the assumptions on θ, and the fact that f1 and f2 are privacy preserving. But then the
fact that f1 and f2 are strongly guarded and preserves port uniqueness implies that (3) holds for n + 1.
By the induction hypothesis (4) holds for n. This implies that (4) also holds for n + 1 since (1) holds for
n + 1 and f1 and f2 are privacy preserving. ✷

This completes the proof. ✷

Theorem 13. F1 ⊗ F2 is a restrictive p2p component if F1 and F2 are restrictive p2p components.

Proof Let f ∈ F1 ⊗ F2. Since f is privacy preserving we may assume that θ = dmPI ,O,P (θ, f (θ)). Suppose
?n ∈ pt(f (θ)(o)(t)). With respect to Definition 7 there are restrictive p2p functions f1 ∈ F1, f2 ∈ F2 and
histories ψ, ϕ such that

?n ∈ pt(f1(m1(θ, ψ))(o)(t)) or ?n ∈ pt(f2(m2(θ, ϕ))(o)(t))

Suppose that

?n ∈ pt(f1(m1(θ, ψ))(o)(t))

Since f1 is a restrictive p2p function it follows that

f1(m1(θ, ψ))↓t = f1(m1(θ, ψ)†n)↓t = f1(m1(θ†n , ψ†n))↓t
Moreover, since ?n belongs to f1 at time t − 1 and F1 ⊗ F2 is a p2p component, it follows that ?n is not
among the ports of f2 at time t − 1. Hence, either ?n has never been a port of f2 or it has been forwarded
by f2 to another component. In either case, since f2 is a restrictive p2p function it follows that

f2(m2(θ, ϕ))↓t = f2(m2(θ, ϕ)†n )↓t = f2(m2(θ†n , ϕ†n))↓t
Hence f (θ)↓t = f (θ†n)↓t . If ?n belongs to f2 at time t − 1 the proof is similar.

Suppose that !n ∈ pt(f (θ)(o)(t)). Then

!n ∈ pt(f1(m1(θ, ψ))(o)(t)) or !n ∈ pt(f2(m2(θ, ϕ))(o)(t))

Suppose that

!n ∈ pt(f1(m1(θ, ψ))(o)(t))
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Since f1 is a restrictive p2p function it follows that

f1(m1(θ, ψ))↓t = (f1(m1(θ, ψ))†n )↓t
Moreover, since !n belongs to f1 at time t − 1 and F1 ⊗ F2 is a p2p component, it follows that !n is not
among the ports of f2 at time t − 1. Hence, either !n has never been a port of f2 or it has been forwarded
by f2 to another component. In either case, since f2 is a restrictive p2p function it follows that

f2(m2(θ, ϕ))↓t = (f2(m2(θ, ϕ))†n)↓t
Hence, f (θ)↓t = (f (θ)†n)↓t . If !n belongs to f2 at time t −1 the proof is similar. Thus, F1 ⊗F2 is a restrictive
p2p component. ✷

D. Proofs — P2p Implies M2m

Theorem 14. For all n ∈ Nat+ and θ, δ ∈ H :

(1) aP(θ, δ)(n) ⊆ aM(θ, δ)(n)

(2) ˜pM(θ, δ)(n) ⊆ aP(θ, δ)(n) ∪ pP(θ, δ)(n)
(3) aP(θ, δ)(n) ∪ pP(θ, δ)(n) ⊆ aM(θ, δ)(n) ∪ pM(θ, δ)(n)

Proof The proof is by induction on n.
Base Case:

(1) aP1 = ?I∪ !O ⊆ aM1

(2) p̃M1 = ?!P ⊆ aP1 ∪ pP1

(3) aP1 ∪ pP1 = ?!P∪ ?I∪ !O = aM1 ∪ pM1

Induction Step: To prove (1) for n + 1 there are three cases to consider:

(a) p ∈ aPn

(b) p ∈ rPn \ hPn

(c) p ∈ gPn

That (1) holds for n + 1 in the case of (a) follows from the definition of aMn+1 and the assumption that (1)
holds for n.
The assumption that (2) holds for n and the definitions of rPn , hPn , and rMn imply that rPn \ hPn ⊆ rMn .
Hence, (1) holds for n + 1 in the case of (b) since by definition rMn ⊆ aMn+1.
It follows from the assumption that (3) holds for n and the definitions of gPn and gMn that any port in gPn
is also an element of aMn ∪ gMn . Hence, (1) holds for n + 1 also in the case of (c).
To prove that (2) holds for n + 1 remember that pMn+1 = pMn \ gMn . Hence,

˜pMn+1
def
= p̃Mn \ g̃Mn

def ,hyp

⊆ (aPn ∪ pPn) \ sPn

def

⊆ aPn+1 ∪ pPn+1

That (3) holds for n + 1 follows straightforwardly as follows.

pPn+1 ∪ aPn+1
def
= (pPn ∪ aPn ∪ rPn) \ sPn

def ,hyp

⊆ aMn ∪ pMn ∪ rMn
def
= pMn+1 ∪ aMn+1

✷

Theorem 15. For all n ∈ Nat+ and θ, δ ∈ H :

(1) aP(θ, δ)(n) ⊆ aM(θ, rnP(θ, δ))(n)

(2) ˜pM(θ, δ)(n) ⊆ aP(θ, rnP(θ, δ))(n) ∪ pP(θ, rnP(θ, δ))(n)
(3) aP(θ, δ)(n) ∪ pP(θ, δ)(n) ⊆ aM(θ, rnP(θ, δ))(n) ∪ pM(θ, rnP(θ, δ))(n)

Proof The proof is almost the same as for Theorem 14. ✷

Theorem 16. The functions dmP and dmM satisfy the following property.

dmPI ,O,P (θ, δ) = dmPI ,O,P (dmMI ,O,P (θ, δ), δ)
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Proof The proof quite similar to the proofs of the Theorems 4 and 10; it is based on the inductive definitions
of aP, pP, aM and pM. The difference is that in this case we have to relate the sets of active and passive ports
in the m2m and p2p paradigms. As before, to simplify the notation, we define:

aPn ≡ aPI ,O,P (θ, δ)(n), aP′
n ≡ aPI ,O,P (dmM(θ, δ), δ)(n)

pPn ≡ pPI ,O,P (θ, δ)(n), pP′
n ≡ pPI ,O,P (dmM(θ, δ), δ)(n)

The induction hypothesis is that aPn = aP′
n and pPn = pP′

n .

Base Case: aP1 = aP′
1 = ?I∪ !O and pP1 = pP′

1 = ?!P .

Induction Step: By induction hypothesis aPn = aP′
n and pPn = pP′

n . By definition:

aPn+1 = (aPn ∪ rPn ∪ gPn) \ (sPn ∪ hPn), pPn+1 = (pPn ∪ hPn) \ (sPn ∪ s̃Pn)

aP′
n+1 = (aP′

n ∪ rP′
n ∪ gP′

n) \ (sP′
n ∪ hP′

n), pP′
n+1 = (pP′

n ∪ hP′
n) \ (sP′

n ∪ s̃P′
n)

By induction hypothesis, aPn = aP′
n and pPn = pP′

n . This implies:

rPn =
⋃

?i∈aPn
{p | p ∈ pPn ∪ aPn ∩ pt(θ(i)(n))}

rP′
n =

⋃
?i∈aPn

{p | p ∈ pPn ∪ aPn ∩ pt(dmMI ,O,P (θ, δ)(i)(n))}
Moreover,

hPn = {p, p̃ | p ∈ rPn ∧ p̃ ∈ (aPn \ sPn) ∪ rPn}, hP′
n = {p | p ∈ rP′

n ∧ p̃ ∈ (aPn \ sP′
n) ∪ rP′

n}
and

sPn = sP′
n =

⋃
!i∈aPn

{p | p ∈ (pPn ∪ aPn) ∩ pt(δ(i)(n))}
gPn = gP′

n = {p̃ | p ∈ sPn ∧ p ∈ pPn}
As a consequence, we only have to prove that rPn = rP′

n . By the definition of dmM:

dmM(θ, δ)(i)(n) = (p̃Mn ∪ D) S© θ(i)(n) if ?i ∈ aMn

By Theorem 14 it follows that dmM(θ, δ)(i)(n) = θ(i)(n) inside rP′
n . Hence, aPn+1 = aP′

n+1 and pPn+1 =
pP′

n+1. ✷

Theorem 17. The functions rnM and rnP satisfy the following property.

rnP(θ, δ) = rnM(θ, rnP(θ, δ))

Proof To simplify the notation, we define:

aM′
n ≡ aMI ,O,P (θ, rnP(θ, δ))(n), pM′

n ≡ pMI ,O,P (θ, rnP(θ, δ))(n)

Unfolding the definition of rnM(θ, rnP(θ, δ)) we obtain:

((aM′
n ∪ pM′

n) ∩ (aPn ∪ pPn)) ∪ D S© δ(i)(n) if !i ∈ aM′
n ∩ aPn

〈〉 otherwise

So we need to show that:

aPn ⊆ aM′
n , aPn ∪ pPn ⊆ aM′

n ∪ pM′
n

This follows immediately from Theorem 15. ✷

Theorem 18. If f ∈ Mobp2p (I ,O ,P) then f ∈ Mobm2m(I ,O ,P).

Proof We split the proof in two lemmas.

Lemma 4. rnM(θ, f (θ)) = f (θ)

Proof rnM(θ, f (θ))
hyp
= rnM(θ, rnP(θ, f (θ))) Thm 17= rnP(θ, f (θ))

hyp
= f (θ) ✷

Lemma 5. f (dmM(θ, f (θ))) = f (θ)
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Proof By the hypothesis f (θ) satisfies

f (θ) = rnP(θ, δ) where δ = f (dmP(θ, δ))

Since f is p2p, f (θ) = δ is the unique fix-point of the above recursive equation. Let γ be such that

f (dmM(θ, f (θ))) = rnP(θ, γ) where γ = f (dmP(dmM(θ, δ), γ))

It follows that δ satisfies the recursive equation in γ

f (dmP(dmM(θ, δ), δ)) Thm 16= f (dmP(θ, δ))
hyp
= f (θ) = δ

Since γ is the unique fix-point, it follows that δ = γ. Hence,

f (dmM(θ, f (θ))) = rnP(θ, δ) = f (θ)

✷

This completes the proof. ✷


