
Modeling the Dynamic Behavior of Objects
On Events, Messages and Methods

(Extended Abstract)

Ruth Breu, Radu Grosu

Institut f�ur Informatik, TU M�unchen, D-80290 M�unchen
email:breur,grosu@informatik.tu-muenchen.de

Events, messages and methods are three central concepts for modeling the
dynamic behavior of objects. Communication between objects by sending mes-
sages, changes of object states caused by incoming events and interface design
based on methods are catchwords of object-oriented analysis and design.

However, in most frameworks like OMT [5], the Booch method [1] and the
new method UML [2] messages, events and methods are separate concepts used
in di�erent parts and phases of system development. The interrelation between
these concepts remains often unclear and is left to the interpretation of the
system designer.

The focus of our paper is to provide clear concepts and techniques for the
dynamic modeling of objects in concurrent environments. The central descrip-
tion technique we rely on is a powerful variant of state transition diagrams [4, 3].
In these diagrams, transitions are associated with triples consisting of a precon-
dition (the guard), a set of input/output events and a postcondition describing
the change of state.

The notion of methods we consider is more general than the notion of pro-
cedures in a programming language. In our intuition, methods model high-level
activities of objects. Examples for such methods are the transfer of money in a
bank or the reservation of a hotel room. In this view, a general model of concur-
rently acting objects is inevitable since high-level activities often are conceived
to be parallel even if their later realization is sequential.

Concerning the design steps for developing a system description based on
state transition diagrams, we propose a two-layered technique. In a �rst stage, a
purely event-based description by state transition diagrams is developed. Events
are conceived as stimuli at a point in time causing reactions of the stimulated
object. The developed state transition diagrams in this stage de�ne for each
object allowable sequences of incoming events.

In a second stage of the design, the reactions of an object initiated by
events are further speci�ed. Roughly, each such kind of reaction corresponds
to a method and the initiating event corresponds to the call of the method. We
pursue the speci�cation of methods within the framework of state transition di-
agrams. This has two reasons. First, the use of a uniform framework supports
step-by-step design. Relations between di�erent stages can be established and
checked. Second and even more important, in a general framework of concur-
rently acting objects methods generally cannot be modeled in an isolated way
but the whole object behavior has to be considered.

Our notion of an object is not limited to the view of a sequential machine re-
acting to events successively. More general, object behavior may comprise inter-
nal parallelism and simultaneous computation of methods, i.e., multiple threads.
Our object model is characterized by two important assumptions, namely that
methods are virtual objects (called clerks) and that messages sent to inexistent
objects are returned back as an error. Both assumptions are supported by many
standards for open distributed systems and serve as a prerequisite for modeling
high-level activities of objects.

We illustrate our approach by specifying the behavior of a simple bank. The
main task of a bank is to organize access to an associated set of accounts. Each
account belonging to a bank has an owner, a balance and a unique account
number ranging between 1 and 9999.

Clients can interact with a bank by opening and closing an account, by
crediting and debiting money to an account, resp., and transferring an amount
from one account to another account (possibly belonging to a di�erent bank). A
bank is a class manager for account objects. Banks handle the transactions of
the clients. In particular, they manage the access to the accounts.

A bank has as attributes the bank's owner ow, the account numbers of its
active accounts aA and the account numbers of the inactive accounts fA. The
bank's identi�er is bi.

attributes

ow ="" :Name
aA= ; : SetNat
fA= fi j 1�i�9999g : SetNat

transitions

foundedliquidated

found

credit, debit, transferliquidatecredit, debit, transfer

open, close open, close

The attributes aA and fA allow the bank to keep track of its server objects.
Step 1 { Identify input messages and specify input behavior

The bank can receive the following input messages: open(o; a) { open an ac-
count with owner o and amount a, close(k) { close the account k, credit(k; a) and
debit(k; a) { credit and debit the amount a to account k, resp., transfer(f; b; k; a)
{ transfer the amount a from account f to account k at bank b. These messages
match exactly the methods which a bank o�ers.

A (complete) state transition diagram as given above describes the input
messages the bank can accept (for brevity, the method arguments are ignored).
This speci�cation is often called life-cycle speci�cation.

Step 2.1 { Specify each method separately

In order to specify the bank reactions for each method we �rst have to de�ne the
answer messages. Moreover, we have to enhance the input messages with return
addresses indicating the object a possible answer has to be sent to. If the method
requires no answer or if the return address can be derived from other information,
the return address can be omitted. For bank objects we introduce the following
answer messages: noAcc { a new account cannot be opened, noAcc(b; k) { there
is no account number k at bank b, tansferOK { transfer has been successfully
completed.

The methods open; close; credit and debit can be speci�ed as simple annota-

tions to the corresponding transition of the life-cycle diagram developed in the
previous step. Their speci�cation is given in tabular form below.

name in pre out post

fA = ; r!noAcc
fA0 = fA n fkg;

fA 6= ;
ai;k!open(o; a; r);

aA0 = aA [fkg;open bi?open(o; a; r)
r!k

k = new(fA)

k 62 aA r!noAcc(bi; k)
aA0 = aA n fkgclose bi?close(k; r) k 2 aA ai;k!close
fA0 = fA [fkg

k 62 aA r!noAcc(bi; k)credit bi?credit(k; a; r)
k 2 aA ai;k!credit(a; r)

k 62 aA r!noAcc(bi; k)debit bi?debit(k; a; r)
k 2 aA ai;k!debit(a; r)

The methods open account and close account are class methods for the ac-
count objects. These methods change the active-accounts and the free-accounts
bank attributes and activate, respectively deactivate, the corresponding account
objects. The open method also returns the new account number k; new(fA) is
assumed to choose an element out of the set fA.

Note that the new account number k is not the identi�er of the correspond-
ing account, because the accounts are private to the bank, i.e., they cannot be
addressed directly. We use ai;k to denote the identi�er of account number k at
bank number i. The mapping a can be imagined as an encryption mechanism
which is private to the bank. Since the maximum number of active accounts is
limited in the problem statement, a call to open an account may also lead to
failure.

The methods credit and debit have a similar structure. If the given account
is not in the set of actual accounts, the message noAcc is returned. In the other
cases, the method is delegated to the corresponding object.

The methods speci�ed so far did not comprise interaction with servers and
thus could be speci�ed as simple annotations to the life-cycle diagram. The
method transfer(f; b; k; a; r), in contrast, requires communication both with
the account f from which the amount a of money should be transferred and
with the bank b to which the money has to be transferred. The transfer method
thus involves a complex process described by a separate state transition diagram
given below.

{} t?ok / B!credit(K,A,t) {}

≠{m ok} t?m / F!credit(A,R), R!m {}

{m ok}≠
t?m / R!m
{}

idle

{(F’,B’,K’,A’,R’) = (f,b,k,a,r)}

{}
{} t?ok / R!transferOk {}

t?transfer(f,b,k,a,r) / f!debit(a,t)

Conceptually, each such state transition diagram describes a clerk object with an
own state. This object is identi�ed by an identi�er variable which will be bound

in step 2.2 to the state transition diagram describing the whole object behavior.
The state of a clerk object provides the clerk with the data necessary to execute
the method.

Informally, for transferring an amount a �rst a is withdrawn from the account
f . If the withdrawal has been successful, a message to the target bank b is sent for
crediting a to the account k. If this transaction has been successful, the message
TransferOK is sent back to the object identi�ed by the return address r. In
the other case, the money is credited again to the account f . Moreover, in all
failure cases, corresponding messages are sent back to the return address r.

Step 2.2 { Specify the overall object behavior

In the last step we have to integrate the method speci�cations by de�ning the
overall object behavior. We distinguish two fundamental ways of methods inte-
gration: sequential and parallel. Sequential integration corresponds to the usual
notion of operation in programming languages and allows one method execution
at a time, while parallel integration allows arbitrary many parallel method exe-
cutions. Both techniques can be combined in a very exible way. We show below
only the parallel integration of the transfer method within the bank object by
using the organizer/clerk paradigm.

name in pre out post

fT 0 = fT n ftg
transfer bi?transfer(f; b; k; a; r) t!transfer(ai;f ; b; k; a; r) aT 0 = aT [ftg

t = new(fT)

The organizing bank delegates the computation of transfers to the clerk ob-
jects which act in parallel. This allows many transfers to be executed simulta-
neously, i.e., banks exhibit both internal concurrency and multiple threads. The
organizing bank object keeps track of the active and inactive transfer (clerk)
objects by holding the corresponding lists of identi�ers aT and fT as attributes.

In our approach concurrent behavior within a single object is modeled by
the introduction of virtual clerk objects having an own state space. That way,
attribute sharing is replaced by message passing between organizers and clerks.

References

1. G. Booch. Object Oriented Design. The Benjamin/Cummings Publishing Company,
1991.

2. G. Booch, J. Rumbaugh, and I. Jacobson. The Uni�ed Modeling Language for
Object-Oriented Development, Version 0.9, 1996.

3. M. Broy, R. Grosu, and C. Klein. Reconciling real-time with asynchronous message
passing. Will appear in FME'97 Proceedings, September 1997.

4. R. Grosu, C. Klein, B. Rumpe, and M. Broy. State Transition Diagrams. Technical
Report TUM-I9606, Technische Universit�at M�unchen, June 1996.

5. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object{

Oriented Modeling and Design. Prentice Hall, 1991.

This article was processed using the LATEX macro package with LLNCS style

