
Monte Carlo Analysis of Security Protocols:

Needham-Schroeder Revisited∗

R. Grosu, X. Huang, S.A. Smolka, P. Yang

Department of Computer Science
State University of New York at Stony Brook

grosu,xhuang,sas,pyang@cs.sunysb.edu

Abstract

We apply Monte Carlo model checking to the Needham-Schroeder public key authentication protocol.
The Monte Carlo approach uses random sampling of “lassos” (reachable cycles) to compute an estimate
of the weighted expectation that a system S satisfies an LTL formula ϕ within a factor of 1 ± ε with
probability at least 1 − δ. It does so using a number of samples N that is optimal to within a constant
factor, and in expected time O(N · D) and expected space O(D), where D is the recurrence diameter
of the directed graph representing the product of S’s state transition graph and the Büchi automaton
for ¬ϕ. Our results indicate that Monte Carlo model checking can find attacks in security protocols like
Needham-Schroeder when traditional model checkers fail due to state explosion; and that the weighted
expectation that Needham-Schroder is attack-free increases linearly with the nonce range (number of
rounds).

1 Introduction

The Needham-Schroeder public-key authentication protocol, first published in 1978 [16], initiated a large
body of work on the design and analysis of cryptographic protocols. In 1995, Lowe published an attack on
the protocol that had apparently been undiscovered for the previous 17 years [12]. The following year, he
showed how the flaw could be discovered mechanically by model checking [13], and this has been followed by
many papers on model checking and automated verification of similar protocols [15, 1, 8, 17, 7, 4, 14, e.g.].

In this paper, we describe how the recently discovered technique of Monte Carlo model checking [9] can
be used for this purpose. The Monte Carlo approach uses random sampling of “lassos” (reachable cycles) to
compute an estimate of the weighted expectation that a system S satisfies an LTL formula ϕ within a factor
of 1± ε with probability at least 1− δ. It does so using a number of samples N that is optimal to within a
constant factor, and in expected time O(N · D) and expected space O(D), where D is the diameter of the
directed graph representing the product of S’s state transition graph and the Büchi automaton for ¬ϕ [18].

Our results will show that Monte Carlo model checking can find attacks in security protocols like
Needham-Schroeder when traditional model checkers fail due to state explosion; and that the weighted ex-
pectation that Needham-Schroder is attack-free increases linearly with the nonce range (number of rounds).

The intent of the Needham-Schroeder protocol is to establish mutual authentication between principals
A and B in the presence of an intruder who can intercept, delay, read, copy, and generate messages, but
who does not know the private keys of the principals. The fragment of the protocol that is subject to the
attack discovered by Lowe [12] is specified as follows:

1. A → B : {NA, A}KB

2. B → A : {NA, NB}KA

3. A → B : {NB}KB

Principal A begins by sending to B an encrypted message containing a nonce (a previously unused and
∗R. Grosu and X. Huang were partially supported by the NSF Faculty Early Career Development Award CCR01-33583.

1

unpredictable identifier) NA and its own identity. The encryption uses B’s public key and can be decoded
by B using its private key, but is indecipherable to all other participants.

B responds with a similar message to A, including the nonce received from A and a new nonce of its
own, which is readable only by A. A examines the second message and concludes that it really is from B
(since only B could have discovered the nonce NA) and that it is not a replay (because NA is current). It
then returns nonce NB to B under B’s public key. On receipt of this message, B uses similar reasoning to
determine that it really is from A, and is current, and so both principals have authenticated the other.

The flaw discovered by Lowe uses an interleaving of two runs of the protocol, as shown below. A initiates
a run with principal I, who is corrupt (i.e., an intruder). I then initiates a run with B, purporting to be A
and using the nonce provided by A. B replies with a message encrypted for A that I uses unchanged in a
message of its own to A. A decrypts this to discover B’s nonce (thinking it is I’s) and sends it to I under
I’s public key. I now knows B’s nonce and can complete its run with B. At this point, B believes it has
authenticated A, but it is actually talking to I.

1a. A → I : {NA, A}KI

1b. I(A) → B : {NA, A}KB

2b. B → I(A) : {NA, NB}KA

2a. I → A : {NA, NA}KA

3a. A → I : {NB}KI

3b. I(A) → B : {NB}KB

Here, I(A) indicates I masquerading as A, and the suffices a and b on the message numbers indicate which
run of the protocol they belong to.

As shown by Lowe in [13], the protocol is easily fixed by including the identity of the responder (B) in
the second message (preventing the replay of 2b in 2a).

2′. B → A : {B,NA, NB}KA

In order to demonstrate the effectiveness of Monte Carlo model checking at uncovering attacks in the
presence of increasingly larger state spaces, we shall show how this technique can be applied to a specification
of Needham-Schroeder that permits an arbitrary number of runs to be captured.

The rest of the paper develops along the following lines. Section 2 reviews MC2, our Monte Carlo model-
checking algorithm of [9]. Section 3 describes our encoding of Needham-Shroeder in our jMocha [2] imple-
mentation of MC2. Section 4 summarizes our experimental results. Section 5 contains our conclusions and
directions for future work.

2 Monte Carlo Model Checking

In this section, we review our randomized approach to LTL model checking presented in [9]. MC2, our
Monte Carlo model-checking algorithm, is based on the DDFS double depth-first search algorithm used in
automata-theoretic model checking, and on the OAA optimal approximation algorithm of [6] for Monte Carlo
estimation.

2.1 LTL Model Checking

LTL (Linear Temporal Logic) is a well-studied temporal logic for defining correctness properties of concurrent
systems. The set of well-formed LTL formulas is constructed from a finite set of atomic propositions AP ,
the standard boolean connectives, and the temporal operators “neXt state” (X) and “Until” (U).

In automata-theoretic LTL model checking, the problem of deciding S |= ϕ, for system S and LTL
formula ϕ is reduced to the language emptiness problem for finite automata over infinite words [18]. The

2

reduction involves modeling S and ¬ϕ as Büchi automata BS and B¬ϕ, respectively, taking the product
B = BS × B¬ϕ, and checking whether the language L(B) of B is empty.1

Checking (non-)emptiness of L(B) is equivalent to finding a strongly connected component of B that is
reachable from an initial state and contains an accepting state. Due to the acceptance condition for Büchi
automata, however, this reduces to finding a reachable accepting cycle. Looking for such a cycle is usually
done by using the double depth-first search algorithm DDFS of [5, 10]. DDFS interleaves two depth-first searches
DFS1 and DFS2. When DFS1 is ready to backtrack from an accepting state after completing the search of its
successors, it starts DFS2 in search of a cycle through this state. If DFS2 fails to find such a cycle, it resumes
DFS1 from the point it was interrupted.

One can avoid the explicit construction of BS by generating its initial and successor states on demand
and performing the test for acceptance symbolically. This on-the-fly approach considerably improves the
space requirements of DDFS, since it constructs only the reachable part of BS .

2.2 Optimal Monte Carlo Estimation

Many engineering and computer-science applications require the computation of the mean value µZ for a
random variable Z distributed in [0, 1]. When an exact computation of µZ proves intractable, being, for
example, NP-hard, Monte Carlo methods are often used to compute an (ε, δ)-approximation of this quantity.
The main idea is to use N independent random variables (or samples) Z1, . . . , ZN identically distributed
according to Z with mean µZ , and to take µ̃Z = (Z1 + . . . + ZN)/N as the approximation of µZ .

An important issue in such an approximation scheme is determining the value for N . Let σ2
Z be the

variance of Z. The generalized zero-one estimator theorem of [6] states that if N is proportional to

Υ =
{

4 ln(2/δ)/µZε if σ2
Z ≤ εµZ

4 ln(2/δ)/µZε2 otherwise

then µ̃Z approximates µZ with absolute error ε and with probability 1− δ. More precisely:

Pr[µZ(1− ε) ≤ µ̃Z ≤ µZ(1 + ε)] ≥ 1− δ

Thus, if the variance of Z is small relative to εµZ , then 1
ε fewer samples are needed to compute an (ε, δ)-

approximation of µZ . In practice, this observation can result in substantial computational savings.

To apply the generalized zero-one estimator theorem, one requires the values of the unknown quantities
µZ and σ2

Z . This problem can be circumvented by finding an upper bound κ for ρZ/µZ , where ρZ =
max{σ2

Z , εµZ}, and using κ to compute N . Finding a tight upper bound is however in most cases very
difficult, and a poor choice of κ leads to a prohibitively large value for N .

To avoid the problem encountered with the generalized zero-one estimator theorem, the authors of [6]
have proposed the OAA optimal approximation algorithm. OAA uses the outcomes of previous experiments to
decide when to stop iterating, a technique known as sequentail analysis. OAA relies critically on the Stopping
Rule Algorithm (SRA), which has the following property: when E[Z] = µZ > 0 and ΣiZi ≥ Υ, the expected
number of samples taken by SRA with respect to Z on input ε and δ is given by the second clause of the
defining equation for Υ. Essentially, SRA computes a running sum of the Zi, terminating when this sum
reaches Υ. By also keeping track of how many samples Zi are taken in the process, the desired value of N
is determined.

The OAA algorithm consists of three steps, the first of which calls the SRA algorithm with parameters
(
√

ε, δ/3) to get an estimate µ̂Z of µZ . The choice of parameters is based on the assumption that ρZ = εµZ ,

1The rationale behind this reduction is as follows:

S |= ϕ iff L(BS) ⊆ L(Bϕ) iff L(BS) ∩ L(Bϕ) = ∅ iff L(BS) ∩ L(B¬ϕ) = ∅ iff L(BS × B¬ϕ) = ∅

3

and ensures that SRA takes 3/ε less samples than would otherwise be the case. The second step uses µ̂Z to
get an estimate of ρ̂Z . The third step uses ρ̂Z to get the desired value µ̃Z . Should the assumption ρZ = εµZ

fail to hold, the second and third steps will compensate by taking an appropriate number of additional
samples. As shown in [6], OAA runs in an expected number of experiments that is within a constant factor of
the minimum expected number.

2.3 The Monte Carlo Model-Checking Algorithm

Our MC2 algorithm uses the OAA algorithm of [6] to compute an (ε, δ)-approximation of a certain weighted
expectation that S |= ϕ. The samples taken by MC2 are the reachable cycles or “lassos” of a Büchi automaton
B that the DDFS algorithm has been desisgned to search for.2 Should B be the product automaton BS ×B¬ϕ,
then a lasso containing a final state of B (an “accepting lasso”) can be interpreted as a counter-example to
S |= ϕ. A lasso of B is sampled via a random walk through B’s transition graph, starting from a randomly
selected initial state of B.

Definition 1 (Sample space) Given a Büchi automaton B, a finite run s0x0 . . . snxnsn+1 of B is called a
lasso if s0 . . . sn are pairwise distinct and sn+1 = si for some 0 ≤ i ≤ n. The sample space U of B is the set
of all lassos of B. ✷

Definition 2 (Run probability) The probability Pr[σ] of a finite run σ = s0x0 . . . sn−1xn−1sn of a Büchi
automaton B is defined inductively as follows: Pr[s0] = k−1 if |Q0| = k and Pr[s0x0 . . . sn−1xn−1sn] =
Pr[s0x0 . . . sn−1] · π[sn−1xn−1sn] where π[s x t] = m−1 if (s, x, t) ∈ δ and |δ(s)| = m. ✷

Proposition 1 (Probability space) Given a Büchi automaton B, the pair (P(U),Pr) defines a discrete
probability space.

Definition 3 (Random variable) The random variable Z associated with the probability space (P(U),Pr)
of a Büchi automaton B is defined as follows: Pr[Z = 0] =

∑
λa∈U Pr[λa] and Pr[Z = 1] =

∑
λn∈U Pr[λn]

where λa is an accepting lasso and λn is a non-accepting lasso. ✷

The expectation (or weighted mean) µZ = 0 ·Pr[Z = 0]+1 ·Pr[Z = 1] of Z is equal to Pr[Z = 1]. It provides
a measure of the number of counter-examples (accepting lassos) in B, weighted by their probability. Since
an exact computation of µZ is often intractable due to state explosion, we compute an (ε,δ)-approximation
µ̃Z of µZ using the OAA algorithm. We then use µ̃Z to derive a Monte Carlo decision procedure we call
MC2 (Monte Carlo Model Checking) for the LTL model-checking problem. MC2 works as follows: (1) Take
independent random samples (lassos) Zi and Z ′

i, each identically distributed according to Z with mean µZ

as required by OAA. (2) If an accepting lasso is encountered, break and return the lasso as a counterexample.
(3) If all samples are non-accepting, conclude that µZ is 1 with error margin ε and confidence ratio δ.

Our use of OAA thus yields a one-sided-error decision procedure for the LTL model-checking problem as
MC2 correctly decides false if µ̃Z < 1. A similar approach is possible for the DNF satisfiability problem: use
the Monte Carlo algorithm of [11] to estimate the ratio of satisfying truth assignments for a given DNF
formula and decide true if µ̃Z > 0. This yields a randomized algorithm for DNF SAT belonging to the
complexity class RP: if the correct answer is YES, then it returns YES with probability at least 1

2 , and if
the correct answer is NO, then it always returns NO. In contrast, MC2 can be seen as belonging to the class
co-RP (see also Theorem 1): if the correct answer is NO, then it returns NO with probability at least 1

2
(assuming δ ≤ 1

2), and if the correct answer is YES, then it always returns YES.

The pseudo-code for MC2 is now given, where acc(s,B)=(s ∈ F), rInit(B)=random(S0), rNext(s,B)= τ.t

and τ =random({(s,α,t) | (s,α,t)∈ δ}). The main routine consists of a single statement in which the OAA

algorithm is called with parameters ε, δ, and the random accepting cycle variable (RACV) routine, which
generates the random variables (samples) Zi and Z ′

i used in OAA on demand as follows. A random lasso

2We assume without loss of generality that every state of a Büchi automaton B has at least one outgoing transition, even if
this transition is a self-loop.

4

MC2 algorithm
input: Büchi automaton B = (Σ, Q, Q0, δ, F);
input: Error margin ε and confidence ratio δ with 0 < ε ≤ 1 and 0 < δ ≤ 1.
output: Either counterexample or estimation eµZ with Pr[µZ (1 − ε) ≤ eµZ ≤ µZ(1 + ε)]≥ 1 − δ

(1) try {eµZ = OAA(ε, δ, RACV(B)); return eµZ;} catch(e) { return e;}

RACV algorithm
input: Büchi automaton B;

output: Samples a random cycle of B; throws HashTbl if cycle is accepting; returns 1 otherwise.

(1) s := rInit(B); i := 1; f := 0;

(2) while (s
∈ HashTbl) {
(3) HashTbl(s) := i;

(4) if (acc(s,B)) f := i;

(5) s := rNext(B,s); i := i+1; }
(6) if (HashTbl(s)≤ f) throw(HashTbl) else return 1;

is generated using the randomized init (rInit) and randomized next (rNext) routines. To determine if the
generated lasso is accepting, we store the index i of each encountered state s in HashTbl and record the
index of the most recently encountered accepting state in f. When we find a cycle, i.e., the state returned
by rNext(M,s) is in HashTbl, we check if HashTbl(t)≤ f; the cycle is an accepting cycle if and only if this is
the case.

As with DDFS, given a succint representation S of a Büchi automaton B, one can avoid the explicit
construction of B by generating random states rInit(B) and rNext(s,B) on demand and performing the test
for acceptance acc(s,B) symbolically. In the next section we present such a succint representation and show
how to efficiently generate random initial and successor states.

Theorem 1 (MC2 correctness) Given a Büchi automaton B, error margin ε, and confidence ratio δ, µ̃Z ,
the (ε,δ)-approximation of µZ computed by MC2 is such that if µ̃Z < 1 then L(B) �= ∅, and if µ̃Z = 1 then
the wighted expectation µZ that L(B) = ∅ satisfies Pr[1/µZ − 1 ≥ ε] ≤ δ.

MC2 is very efficient in both time and space. The recurrence diameter of a Büchi automaton B is the longest
initialized loop-free path in B. Also, observe that the number of samples taken by OAA when all Zi, Z ′

i return
1 has a well-defined value for each (ε, δ) pair.

Theorem 2 (MC2 expected complexity) Let B be a Büchi automaton, D its recurrence diameter and N
be the number of samples taken by OAA when all Zi and Z ′

i return 1, for a given ε, δ. Then, MC2 takes expected
time O(N · D) and uses expected space O(D).

MC2 can also be run in “estimator mode”, where it does not halt upon finding a counter-example but rather
continues sampling until the computation of µ̃Z is completed. By virtue of its reliance on the OAA algorithm,
MC2 in estimator mode may not terminate if the number of initialized non-accepting cycles in B is less than
Υ1. Should this not be the case, however, MC2 provides an estimate of how “false” is the judgement S |= ϕ,
a useful statistical measure.

3 Implementation

We have implmented the DDFS and MC2 algorithms as an extension to jMocha [2], a model checker for
synchronous and asynchronous concurrent systems specified using reactive modules [3]. An LTL formula
¬ϕ is specified in our extension of jMocha as a pair consisting of a reactive module monitor and a boolean
formula defining its set of accepting states. By selecting the new enumerative or randomized LTL verification

5

option, one can check whether S |= ϕ: jMocha takes their composition and applies MC2 on-the-fly to check
for accepting lassos.

Using jMocha, we specified the Needham-Schroeder protocol as a reactive module such that all communi-
cations between the principals go through the intruder and the intruder behaves according to the Dolev-Yao
model: it can perform normal communication and intercept, overhear, or fake messages.

A nonce is uniquely represented as a pair consisting of a value and an id. Initially, the value is set to 0
and subsequently incremented by 1 each time principal A or B generates a nonce. This ensures that A and
B generate fresh nonces each time one is needed. We have also explicitly specified the range of nonces. The
intruder I generates a nonce using the jMochanondet command, which randomly generates an integer value
within this range. This technique allows the intruder to generate a fresh nonce, or possibly a nonce used
previously by A or B.

Having nonce ranges allows us to model multiple runs of the protocol in that they determine the maximum
number of runs for which the protocol can execute. The larger the nonce range, the more runs the protocol
can execute. Our Monte Carlo model checker terminates a random walk if: (i) all the nonces in the range
are used up; (ii) an attack is found; or (iii) the system enters an invalid state (for instance, the intruder fakes
a message and sends it to a principal, but the principal discards the message since the message is not the
one it expects).

The authenticity property is specified as correspondence assertion [19], i.e., a pair, consisting of a reactive
module monitor and a state predicate. When A initiates a run with B, it emits an event rqB which triggers a
change in the state ms of the monitor from normal NRM to requested RQS. When B commits to communicate
with A, it emits an event cmB, which changes the monitor state back to NRM if the current state is RQS, and
to committed CMM otherwise. An attack on B is then expressed with the predicate ms = CMM, which means
that there exists a path along which B commits to A without a corresponding initiation.

A fragment of the Needham-Schroeder reactive module is shown below. It consists of a collection of typed
variables partitioned into external (input), interface (output) and private. For this example, the interface
variables id, pk, fr, to, va, rq and cm represent the network state and denote the id, public key, from,
to, value, request and commit, respectively. The pair (id1, va1) stores a unique nonce and the pair (id2, 0)
stores an id. The private variables pc, li, lv, uv lp, ac and r2 constitute a A and B’s state and denote
the program counter, last identifier, last value, used value, last public key, action and random selector,
respectively. The process states IDL, INT and RES denote idle, initiated and responded, respectively.

type IdType is {Z,IDA,IDB,IDI}; ProcState is {IDL,INI,RES}; Value is (0..60);

module NeedhamSchroeder is

interface id1,id2,pk,fr,to:IdType; va1,va2:Value; rqA,rqB,cmA,cmB:event;

private pcA,pcB:ProcState; liA,liB,lpA,lpB:IdType; lvA,lvB:Value; ac:(0..28); r2:(0..1);

atom Random controls r2

initupdate
[] true -> r2′:= nondet;

atom NextAction controls ac reads pcA,pcB,fr,to,pk

init
[] true -> ac′:= 0;

update
...

// message #1

[] fr = Z & to = Z & pcA = IDL -> ac′:= 1;
[] fr = Z & to = Z & pcB = IDL -> ac′:= 9;

// about to commit authentication

[] fr = IDI & to = IDA & pcA = RES & pk = IDA -> ac′:= 4;

[] fr = IDI & to = IDB & pcB = RES & pk = IDB -> ac′:= 8;

...

atom Send

6

controls id1,id2,va1,va2,pk,pcA,pcB,fr,to,liA,liB,lvA,lvB,lpA,lpB,uvA,uvB,rqA,rqB,cmA,cmB
reads id1,id2,va1,va2,pk,fr,to,liA,liB,lvA,lvB,lpA,lpB,uvA,uvB
awaits ac,r2

init
[] true -> id′1:= Z; id′2:= Z; va′1:= 0; va′2:= 0; pk′:= Z; fr′:= Z; to′:= Z; pc′A:= IDL; pc′B:= IDL;

li′A:= Z; li′B:= Z; lv′A:= 0; lv′B:= 0; lp′A:= Z; lp′B:= Z; uv′A:= 0; uv′B:= 0;
update
...

[] ac′ = 1 & r2′ = 1 -> id′1:= IDA; va′1:= uvA; id′2:= IDA; va′2:= 0; pk′:= IDB;
lp′A:= IDB; pc′A:= INI; li′A:= IDA; lv′A:= uvA; fr′:= IDA; to′:= IDI; rqB!

[] ac′ = 8 & liB = id1 & lvB = va1 & lpB = IDA -> id′1:= Z; id′2:= Z; va′1:= 0; va′2:= 0;
pk′:= Z; lp′B:= Z; li′B:= Z; lv′B:= 0; pc′B:= IDL; fr′ := Z; to′ := Z; uv′B:=uv

′
B+1; cmB!

...

Variables change their values in a sequence of rounds. The first is an initialization round; the subsequent
are update rounds. Initialization and updates of controlled (interface and private) variables are specified by
actions defined as a set of guarded parallel assignments. Moreover, controlled variables are partitioned into
atoms : each variable is initialized and updated by exactly one atom.

The initialization round and all update rounds are divided into subrounds, one for the environment
and one for each atom A. In an A-subround of the initialization round, all variables controlled by A are
initialized simultaneously, as defined by an initial action. In an A-subround of each update round, all
variables controlled by A are updated simultaneously, as defined by an update action.

In a round, each variable x has two values: the value at the beginning of the round, written as x and
called the read value, and the value at the end of the round written as x′ and called the updated value. Events
are modeled by toggling boolean variables. For example rqB?

def
= rq′B �= rqB and rqB!

def
= rq′B := ¬rqB. If

a variable x controlled by an atom A depends on the updated value y′ of a variable controlled by atom B,
then B has to be executed before A. We say that A awaits B and that y is an awaited variable of A. The
await dependency defines a partial order � among atoms.

type MonitorState is {NRM,RQS,CMM}
module Monitor is

external rq,cm:event; interface ms:MonitorState;

atom Watch controls ms reads ms awaits cm,rq

init
[] true -> ms’ := NRM;

update
[] ms = NRM & rq? -> ms’ := RQS;

[] ms = RQS & cm? -> ms’ := NRM;

[] ms = NRM & cm? -> ms’ := CMM;

module System is NeedhamSchroeder ‖ Monitor[rq,cm,ms:=rqA,cmA,msA] ‖ Monitor[rq,cm,ms:=rqB,cmB,msB]

predicate NoCommitWoRequest is (msA
= CMM & msB
= CMM)

judgment NoFlaw is System |= NoCommitWoRequest

Operators on modules include renaming, hiding of output variables, and parallel composition. The latter is
defined only when the modules update disjoint sets of variables and have a joint acyclic await dependency.
In this case, the composition takes the union of the private and interface variables, the union of the external
variables (minus the interface variables), the union of the atoms, and the union of the await dependencies. For
example, the module System is the parallel composition of the Needham-Schroeder module and the renamed
monitors for A and B, respectively. The safety property is given by the predicate NoCommitWoRequest.

7

rNext algorithm
input: Reactive module M; Current state s;

output: Random next state s.all′.

(1) s.extl′ := random(Q.M.extl);
(2) for all (A∈L

M) {
(3) for (m := |A.upd|; m≥ 0; m--) {
(4) i := random(m);

(5) if (A.upd(i).grd(s)) break else remove(A.upd,i); }
(6) if (m = 0) s.ctrl′ := s.ctrl; else s.ctrl′ := random(A.upd(i).ass(s)); }
(7) return s′;

A feature of our MC2 implementation in jMocha is that the next state s′ = rNext(s,M) of M along a random
walk in search of an accepting lasso is generated randomly both for the external variables M.extl and for
the controlled variables M.ctrl. For the external variables we randomly generate a state s.extl′ in the set
of all input valuations Q.M.extl. For the controlled variables we proceed for each atom A in the linear order
�L

M compatible with �M as follows: first we randomly choose a guarded assignment A.upd(i) with true guard
A.upd(i).grd(s), where i is less than the number |A.upd| of guarded assignments in A; then we randomly
generate a state s.ctrl′ among the set of all states possibly returned by its parallel (nondeterministic)
assignment A.upd(i).ass(s). If no guarded assignment is enabled we keep the current state s.ctrl. The
routine rInit is implemented in a similar way.

4 Experimental Results

We compared the performance of DDFS and MC2 on Needham-Shroeder using our implementation of these al-
gorithms in jMocha. Specifically, we checked whether the Reactive-Module System, encoding the Needham-
Schroeder protocol, composed with the monitors satisfies the predicate NoCommitWoRequest.

The results are shown in Table 1(a) and were obtained on a PC equipped with an Athlon 2100+ MHz
processor and 1GB RAM running Linux 2.4.18 (Fedora Core 1). The nonce column represents the range of
nonces; this determines the maximal number of runs the protocol can execute. For DDFS, the time column
represents the time in seconds taken to detect an attack and the entries column represents the corresponding
number of entries in the hash table. For MC2, the time column represents the time in seconds required by
MC2 to run in estimator mode on all N random samples (lassos). The MC2 exp column is the time when the
first counter-example (attack) is expected to appear, calculated as MC2 (time)/(counter) where counter is
the number of counter-examples. The avg column represents the average length of an MC2 lasso which is the
same as the average number of entries in the hash table. For MC2, we used ε = δ = 0.1.

DDFS MC2

nonce time entries time exp avg

(0..1) 1 31 20 1 12

(0..4) 1 607 33 2 29

(0..8) 2 2527 34 9 30

(0..20) 11 24031 34 12 30

(0..32) 32 85279 70 24 30

(0..36) 46 118111 141 37 30

(0..60) – oom 4200 467 29

MC2

nonce satisf. counter. eµZ

(0..1) 2915 171 0.9445

(0..4) 2955 18 0.9939

(0..8) 2969 4 0.9986

(0..20) 2970 3 0.9989

(0..32) 6288 3 0.9995

(0..36) 12975 3 0.9997

(0..60) 194937 9 0.9999

Table 1: (a) Time and space requirements for DDFS and MC2. (b) Variation of µ̃Z for MC2.

The quantitative information computed by MC2 is shown in Table 1(b) where the satisf column is the
number of lassos that do not contain attacks, the counter column is the number of lassos that are attacks
(counter-examples), and µ̃Z is the (ε, δ)-approximation of µZ , the weighted expectation that an attack does

8

not occur. Observe that there are far more lassos that do not contain attacks than those containing attacks.
For instance, when the range of nonces is 60, there are only 9 lassos containing an attack among 194946
lassos traversed. Note also that the probability of an attack decreases as the nonce range increases. This
observation is fairly obvious in retrospect, but to our knowledge has not been reported previously in the
model checking literature.

Table 1(a) shows that when the number of states is small, the DDFS checker, which uses a form of partial-
order reduction, is faster than MC2. When the number of states is large, however, MC2 outperforms DDFS.
For example, when the nonce range is (0..32), the expected time that the first counter-example appears is
24 seconds while the enumerative model checker takes 32 seconds. When the nonce range is (0..60), the
enumerative model checker runs out of memory whereas MC2 finds the first counter-example in expected time
467 seconds. Moreover, after 4200 seconds and 194946 lassos traversed, MC2 is also able to provide the desired
quantitative information.

5 Conclusions

We applied Monte Carlo model checking to the Needham-Schroeder authentication protocol, a well-established
benchmark in the field of security-protocol analysis. Our results indicate that the Monte Carlo technique
may be more effective than traditonal approaches in discovering attacks, expecially in terms of scalability.

Further experimentation is required to draw any definitive conclusions about the power of Monte Carlo
model checking in analyzing secutiry protocols, for example, on other protocol benchmarks, and in compar-
ison with other analysis techniques, such as those cited in the Introduction.

As future work, we also plan to improve the time and space efficiency of our jMocha implementation of
MC2 by “compiling” it into a BDD representation. More precisely, we plan to encode the current state, hash
table, and guarded assignments of each atom in a reactive module as BDDs, and to implement the next-state
computation and the containment (in the hash table) check as BDD operations.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. In Fourth ACM
Conference on Computer and Communications Security, pages 36–47. ACM Press, 1997.

[2] R. Alur, L. de Alfaro, R. Grosu, T. A. Henzinger, M. Kang, C. M. Kirsch, R. Majumdar, F. Mang, and
B. Y. Wang. jMocha: A model checking tool that exploits design structure. In Proceedings of the 23rd
international conference on Software engineering, pages 835–836. IEEE Computer Society, 2001.

[3] R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design, 15(1):7–48, July
1999.

[4] B. Blanchet. From secrecy to authenticity in security protocols. In 9th International Static Analy-
sis Symposium, volume 2477 of Lecture Notes on Computer Science, pages 242–259, Madrid, Spain,
September 2002. Springer Verlag.

[5] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algorithms for the
verification of temporal properties. Formal Methods in System Design, 1(2-3):275–288, 1992.

[6] P. Dagum, R. Karp, M. Luby, and S. Ross. An optimal algorithm for Monte Carlo estimation. SIAM
Journal on Computing, 29(5):1484–1496, 2000.

[7] F. J. Thayer Fabrega, J. C. Herzog, and J. D. Guttman. Strand Spaces: Proving security protocol
correct. Journal of Computer Security, 7:191–230, 1999.

9

[8] R. Focardi and R. Gorrieri. The compositional security checker: A tool for the verification of information
flow security properties. Transactions on Software Engineering, pages 550–571, 1997.

[9] R. Grosu and S. A. Smolka. Monte Carlo model checking. Technical report, Department of Computer
Science, SUNY Stony Brook, 2004. http://www.cs.sunysb.edu/∼sas/papers/GS04.pdf.

[10] G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. pages 23–32, 1996.

[11] R. Karp, M. Luby, and N. Madras. Monte-Carlo approximation algorithms for enumeration problems.
Journal of Algorithms, 10:429–448, 1989.

[12] G. Lowe. An attack on the Needham-Schroeder public-key authentication protocol. Information Pro-
cessing Letters, pages 131–133, 1995.

[13] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In Proceedings of
the Second International Workshop on Tools and Algorithms for Construction and Analysis of Systems,
pages 147–166. Springer-Verlag, 1996.

[14] W. Mackw M. Kurkowski. Using backward strategy to the Needham-Schroeder public key protocol
verification. Artificial Intelligence and Security in Computing Systems, pages 249–259, 2003.

[15] C. Meadows. Analyzing the Needham-Schroeder public-key protocol: A comparison of two approaches.
In ESORICS: European Symposium on Research in Computer Security. LNCS, Springer-Verlag, 1996.

[16] R. Needham and M. D. Schroeder. Using encryption for authentication in large networks of computers.
Communications of the ACM, (12):993–999, 1978.

[17] L. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Computer Security,
6:85–128, 1998.

[18] M. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In
Proc. IEEE Symposium on Logic in Computer Science, pages 332–344, 1986.

[19] Woo and Lam. A semantic model for authentication protocols. In RSP: IEEE Computer Society
Symposium on Research in Security and Privacy, 1993.

10

