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ABSTRACT
We present the Spiral Classification Algorithm (SCA), a
fast and accurate algorithm for classifying electrical spiral
waves and their associated breakup in cardiac tissues. The
classification performed by SCA is an essential component
of the detection and analysis of various cardiac arrhythmic
disorders, including ventricular tachycardia and fibrillation.
Given a digitized frame of a propagating wave, SCA con-
structs a highly accurate representation of the front and the
back of the wave, piecewise interpolates this representation
with cubic splines, and subjects the result to an accurate
curvature analysis. This analysis is more comprehensive
than methods based on spiral-tip tracking, as it considers
the entire wave front and back. To increase the smooth-
ness of the resulting symbolic representation, the SCA uses
a weighted overlapping of adjacent segments which increases
the smoothness at join points. To significantly speed up SCA
computation time, we develop a GPU-CUDA implementa-
tion of SCA. SCA has been applied to several representative
types of spiral waves, and for each type, a distinct curvature
evolution in time (signature) has been identified. Moreover,
distinguished signatures have been also identified for spiral
breakup. This represents a significant first step in automat-
ically determining parameter ranges for which a computa-
tional cardiac-cell network accurately reproduces ventricular
fibrillation. The connection between parameters and physi-
ological entities would then lead to an understanding of the
root cause of the disorder and enable the development of
personalized treatment strategies.

1. INTRODUCTION
An estimated number of eighty one million American adults,
that is more than one in three adults, have one or more
types of cardio-vascular disorders [7]. Among these disor-
ders, ventricular tachycardia and especially fibrillation, may
have devastating consequences (see Figure 1 and [3]).

Determining the physiological conditions responsible for a
cardiac disorder is a grand challenge whose answer may lead
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Figure 1: Emergent behavior in cardiac-cell net-
works. Top: Electrocardiogram. Middle and bot-
tom: Simulation and experimental mappings of spi-
ral waves of electrical activity occurring in the heart
during tachycardia and fibrillation.

to personalized treatment strategies. An important aid to
this quest is the mathematical modeling, analysis and simu-
lation of cardiac-cell networks [2]. Among the myriad of ex-
isting mathematical models, differential-equation models of
reaction-diffusion type (DEMs) are arguably the most pop-
ular. In the context of DEMs the above challenge can be
reformulated as follows: For what parameter ranges does a
DEM network accurately reproduce the cardiac disorder?

The past two decades have witnessed the development of in-
creasingly sophisticated DEMs [4], ranging from 4 to 67 state
variables and from 27 to 94 parameters [1, 10, 14, 16, 6]. The
increase in the number of state variables reflects the techno-
logical advances in capturing the intrinsic ionic mechanisms
more accurately. The increase also leads to a simplification
of the differential equations. For example, most of the equa-
tions of the 67 variables DEM in [6] are of multi-affine type
and were obtained using the law of mass action.

Unfortunately, the increase in the number of state variables,
inevitably leads to an increase in simulation time. In par-
ticular, the simulation of the 67 variables DEM is so slow,
that its authors only performed it in 1D (in a cable). In an
accompanying paper, we present a CUDA-GPU implemen-
tation of the above-cited DEMs, on both Tesla and Fermi
cards, with a dramatic reduction in simulation time. This
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Figure 2: Parameters τ−w /τ+
w : (a) Wave forms.

(b) Tip movement and regions of fibrillation.

allows us to perform for the first time on a desktop a 2D (on
a surface) simulation of the 67 variables DEM.

Despite of the difference in the number of state variables, the
above DEMs are in some sense equivalent. Like in genetic
regulatory networks (GRNs), the reduction in the number
of variables can be understood as the result of a reaction
(or time-scale) abstraction [13]. Akin to GRNs Michaelis-
Menten or Hill-function abstractions, they reduce the num-
ber of state variables, at the expense of more complicated,
sigmoidal dependencies among the remaining variables.

The lowest-dimensional DEM reproducing the experimen-
tally mesoescopic behavior of cardiac cells with great accu-
racy, is the 4 variables minimal model (MDM) of co-author
Fenton [1]. The CUDA-GPU implementation of the MDM
is so fast, that it allows the real time simulation of an 500 by
500 grid of cells: One second of the MDM simulation time

is approximately equal to one second of real time.

This increase in the MDM simulation speed, enables a sys-
tematic exploration of its associated parameter space. For
example, in a CMACS (Computational Modeling and Anal-
ysis of Complex Systems) workshop, organized this Spring
at the Lehman College, we used “crowd sourcing” (CS), to
explore pairs of parameter ranges that lead to fibrillation:
Given a spiral-initiation protocol, the students were asked
to simulate the MDM on each node of a 2D grid of param-
eter values, capture the generated waves and track the tip
movement of their spirals. The results obtained, for example
for MDM parameters τ−w /τ+

w , are shown in Figure 2.

CS provided very encouraging initial results. However, CS is
not likely to scale up to the exploration of parameter spaces
involving more than two parameters. Such exploration re-
quires at least two ingredients: 1) A principled way of par-
titioning the parameter space, and 2) A fast and accurate
algorithm for classifying spiral waves and their breakup.

In a recent paper [5], we present a hybrid-automaton (MHA)
approximation of the MDM, which reproduces the MDM be-
havior with high accuracy. In each of its modes, the MHA
is multiaffine in the state variables and affine in the pa-
rameters. This allows a bifurcation analysis of the MHA
which results in a partitioning of its parameter space into
behaviourally-equivalent hypercubes. Each face (hyperplane)
of the hypercubes separates the positive and negative ranges
of the derivative of one of the MHA state variables. Hence,
for simulation and analysis purpose, it is enough to select
one parameter vector from each hypercube.

In this paper we present a fast and accurate algorithm (SCA)
for classifying spiral waves and their associated breakup.
Given a digitized frame of a propagating wave, the SCA
constructs a highly accurate representation of the front and
the back of the wave, piecewise interpolates this representa-
tion with cubic splines, and subjects the result to an accu-
rate curvature analysis. This analysis is more comprehensive
than spiral-tip tracking, as it considers the entire front and
back of a wave. To increase the smoothness of the resulting
symbolic representation, the SCA uses a weighted overlap-
ping of adjacent segments which increases the smoothness
at join points. To speed up the SCA computation time, we
employ a GPU-CUDA implementation. The SCA has been
applied to several representative types of spiral waves gener-
ated with the MHA, and for each type a distinct curvature
evolution in time (signature) has been identified. Moreover,
distinguished signatures have been also identified for spiral
breakup. This gives us hope that a fully automatic answer
to the grand challenge stated at the beginning of this section
is within reach: For what parameter ranges does an MDM
network accurately reproduce ventricular fibrillation? Using
the connection between parameters and physiological enti-
ties would then allow to understand the root cause of the
disorder and develop personalized treatment strategies.

The rest of the paper is organized as follows. In Section 2
we discuss how to obtain the wavefront from a digitized
frame. Section 3 discusses isopotential curvature estima-
tion. Section 4 discusses our Bezier fitting algorithm which
is improved in Section 5. Section 6 explains the symbolic
evaluation of the curvature along the isopotentials. Finally,
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Figure 3: Marching squares.

Section 7 discusses our case studies results and directions of
future work.

2. ISOPOTENTIAL RECONSTRUCTION
The simulation data obtained by executing an N×N grid of
MHAs, or the experimental data obtained by optically map-
ping a cardiac tissue, with resolution N×N , is a sequence
of digital frames Ft of dimension N×N . Each frame Ft is
the snapshot at time t, with resolution N×N , of the trans-
membrane electrical potential V , of the cardiac tissue.

The wave-fronts (wave-backs) of Vt, are the regions of Vt

where each cell is in the activation (recovery) phase, that
is their electrical potential Vt(x, y) equals -30mV, and their
derivative dV (x, y)/dt is positive (negative). The two fronts
define together the isopotentials I−30 of Vt. These are curves
of constant voltage in Vt, that never intersect each other.
For simplicity, when there is no danger of confusion, we will
subsequently drop the subscript t occurring in Ft and Vt.

For any value v, the isopotentials Iv of V are smooth curves,
whereas the isopotentials Iv of F are not. This is a conse-
quence of the N×N resolution. The isopotential reconstruc-
tion problem (IRP) is therefore defined as follows: Given a
frame F , and a voltage value v, reconstruct the smooth Iv

isopotentials of V . As we will see in the following sections,
smoothness is essential for an accurate curvature analysis

(CA) of the wave-fronts and wave-backs. The IRP remains
the same when V is generalized to an arbitrary scalar field.

The isopotentials reconstruction algorithm (IRA) is the key
component of SCA, as it consumes most of the memory and
time resources of the SCA. Hence, IRA has to be designed
very carefully, and run on an appropriate hardware platform,
to make the SCA a success. Nowdays, the CUDA-GPUs of
the NVIDIA’s Fermi or Tesla video cards, are an amazing
such platform, which allows one to run a supercomputer
on one’s own laptop! We take advantage of these cards to
implement a new parallel, CUDA-based IRA (PIRA). To the
best of our knowledge, this is the first algorithm of this kind.

PIRA belongs to a novel, CUDA-breed of algorithms, which
minimize the amount of synchronization, they require to re-
construct global information, from a frame F . To achieve
this goal, it divides its work in three parts: PMS) A fully
parallel, local-information-computation procedure; PIE) A
hierarchically parallel, global-information-computation pro-
cedure; and SOG) An optional, sequential to random-access,
global-information-computation procedure.

Parallel marching squares (PMS).. The fully parallel,
local-information-computation procedure PMS uses an adap-
tation of the marching squares algorithm. Given a frame F ,
PMS considers in parallel, that is in a different thread of
a CUDA block, each 2×2 square s, of an adjacency-based
(N−1)×(N−1) partition of F . Each thread, locally and ac-
curately computes the intersection points of zero, one or two
lines, with s. The number of lines and their crossing pattern
with s depends on the values in the corners of s (type of s).

To determine the type of each square s of F , frame F is first
subjected, in parallel, to the test Fi,j ≥ v, for each index
(i, j). The result of the test is stored in a boolean matrix
B. The boolean value of the corners of s in B, traversed
say in clockwise order, determine 16 possible intersection
cases. These cases are shown in Figure 3. In summary:
1) If all corners of s in B have the same value, there is
no line crossing at all. 2) Otherwise, if diagonal corners
have the same value, there are two ambiguous line crossings.
Ambiguity is removed by averaging the value in all corners
in s and comparing it with v. 3) Otherwise precisely one
line is crossing s. Our adaptation, also associates each line
a direction, by requiring that the 0 corners of square s only
occur to its left.

An isoline intersects s only between two corners that have
opposite boolean value in B. In other words, one corner has
a value less than v and the other has a value which is greater
than v. The intersection points, which also represent the
starting and the ending points of a directed, one-segment-
long polyline, are computed via linear interpolation. For
example, suppose that the corners of s at position (i, j) in
B, result in bitvector 0111. Then, the line segment crossing
s has the points ((x0, y0), (x1, y1)) defined as follows:

x0 = j, y0 = i + (v − Fi,j) / (Fi+1,j − Fi,j)
y1 = i, x1 = j + (v − Fi,j) / (Fi,j+1 − Fi,j)

This information is stored in the corresponding one segment-
polyline at position (i,j), in an N ×N matrix S of squares.
The starting and ending polylines of the open polylines list
are initialized to the location of this polyline. If there are



two polylines, the first one is the first in the list and the sec-
ond one, the second. The list of closed polylines is initialized
to null. The number of polyline segments and the number
of open/closed polylines is also appropriately initialized.

struct Point // typed points
{

int type; // 0 = row crossing, 1 column crossing
float x,y; // x and y coordinates
float y; // y coordinate

}

struct PolyLine // directed polylines
{

int type; // 17 types
int number; // number of segments
Point start, end; // start and end points
PolyLine * next; // ptr to next polyline

}

To speedup the interpolation process, the case analysis of
the square type is efficiently pre-stored in a lookup table T ,
allocated in the constant memory of the GPU card.

struct Square // Data Structure for Squares
{

int num of opl; // number of open polylines
int num of cpl; // number of closed polylines
PolyLine * opl start; // pointer to first open polyline
PolyLine * opl end; // ptr to the last open polyline
PolyLine * cpl start; // ptr to the first closed polyline
PolyLine * cpl end; // ptr to the last closed polyline
PolyLine poly lines[2]; // storage allocated on leaf level

}

For each square type t and for each one-segment polyline
p, the table consists of the following entries: Two line co-
efficients and four coordinate displacements. For the above
example, where t = 7, p = 0, table Tt,p contains:

Tt,p = {{a = 0, b = 0, i1 = 0, j1 = 0, i0 = 0, j0 = 0},
{a = 1, b = 0, i1 = 1, j1 = 0, i0 = 0, j0 = 0},
{a = 1, b = 0, i1 = 0, j1 = 1, i0 = 0, j0 = 0},
{a = 0 b = 0, i1 = 0, j1 = 0, i0 = 0, j0 = 0}}

Denote Tt,0 and Tt,0 withe the corresponding field names, in-
dexed by subscripts 0 and 1. Then the one-segment-polyline
starting coordinate can be computed uniformly, as follows:

x0 = j + b0 + a0(v−Fi+i00,j+j00 ) / (Fi+i01,j+j01−Fi+i00,j+j00 )
y0 = i + b1 + a1(v−Fi+i10,j+j10 ) / (Fi+i11,j+j11−Fi+i10,j+j10 )

Parallel isoline extraction (PIE).. Using PMS one can
readily plot the isolines of V . However, there is no global in-
formation available yet, despite of the fact that we know the
isoline segments, their orientation, and their linking. How-
ever, we do not know: 1) What is the belonging of seg-
ments to particular isolines? 2) How many isolines are in
V ? 3) How many segments they contain? and 4) What is
their starting and ending point. It is only our brain that
connects segments in a meaningful way!

The public contour function of Octave uses a sequential, re-
cursive algorithm, to obtain global information. This works
as follows: 1) Traverse a matrix of interpolated segments,
row by row and column by column, and pick the first un-
marked one. 2) Then recursively follow matching segments
in a meaningful way, until the border or the starting point
is reached again (no direction is readily available as in our
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Figure 4: Isopotential extraction.

PMS). During this process, dump all points traversed in a
dynamic array, and mark all the segments as visited. 3) Once
an entire isoline is found, search for the next unmarked seg-
ment, until the last row and column is reached.

Recursion and the sequential traversal of the entire matrix of
segments is however prohibitive, for a fast curvature anal-
ysis. The isoline function available at [12], is sequential,
but not recursive. It: 1) Uses the marching squares al-
gorithm to compute all (unoriented) segments and dump
them, in no particular order, in a dynamically allocated ar-
ray. 2) Then, it extracts the first unmarked segment, and
repeatedly searches the entire array for an unmarked, match-
ing continuation. Its time complexity is therefore, compara-
ble with the one of the recursive algorithm.

To obtain a fast algorithm, we take advantage of the GPU
cards. This imposes however, several important restrictions
on PIE: 1) It cannot be recursive; 2) It cannot dynami-
cally allocate memory; 3) It can only contain for-loops, with
known upper bound. As shown in Figure 4, the main idea
of PIE is to to organize the squares S passed by PMS, in
a quad-tree fashion, such that, at every level in the tree
hierarchy, sibling nodes (and their immediate children) are
processed in parallel, by a different CUDA thread. Hence,
global information is computed sequentially, in log4N steps.

During this process, a parent either collects or pastes to-
gether the polylines of its children, if they have matching
start and end points. A particular problem during this pro-
cess is dynamic memory allocation. In the CUDA core, such
allocation is not possible. Moreover, there is no way to pre-
dict in advance, without gross overestimation, the amount
of memory needed in each node, to store the list of polylines
it has identified so far, and the polylines themselves.

Our solution is to reuse the memory already allocated in the
leaf squares, for their two one-segment-long polylines, during
the upwards sweep of the quad-tree. Each time, when infor-
mation is collected from the 4 children, the result is stored
in child 0. This information is later on passed upwards in
the hierarchy. Child 0’s information gets therefore lost.

Whenever the parent process matches the ending point of
polyline p of child c, with the starting point of polyline q of
child d, it updates the starting and end points of polyline pq
in p, and removes q from the polyline list of child d. It then
continues from a copy of q to find the next match. The total
number of matches, is bound by the number of polylines
in all children, and this is used in a find-next-match for-
loop. This loop is the equivalent of the recursive match-



Figure 5: Block diagram for curvature estimation

next-segment search in contour or isoline, but it is limited
to the polylines of the parent’s children. This dramatically
decreases the time complexity of the recursive search.

Whenever, the parent process collects the polyline lists of
the children, it appends these lists to the lists of child 0.
For this purpose, the Square structure has the start/end
fields of the list of open/closed polylines, and each polyline
has a next polyline field. The number of polylines, and the
number of segments, are also updated accordingly.

In order to efficiently match the end point of a polyline p
of a child c with the starting point of a polyline q, it is
important to know what sabling of c might have such a q.
For this purpose, we classify the polylines according to their
starting and ending faces in c, as shown in Figure 4. This
leads to a classification of polylines, that is similar to the one
for squares. In contrast to squares however, polylines may
start and end up on the same face, or they may be closed,
that is, they are completely contained in c. The second case
does not require further processing. Similarly, if a polyline
of square c, starts and ends on a face that is not adjacent to
any of the c’s siblings, no processing is required at this level
either. To enable this kind of analysis, a type field is added
to the polyline data structure, too.

The downside of reusing the squares while collecting and
propagating information, is that the linking information of
one-segment-long polylines is lost. Consequently, one has
to store this information in a different place. For simplicity
and speedup reasons, we allocate two hash tables X and Y
of size N×N : the first is indexed by the integer value of hor-
izontal intersection points, the second by the integer value
of vertical intersection points. Each entry of X and Y stores
the destination point and a bit classifying it as a horizontal
or vertical intersection. This allows to determine whether
to choose the X or the Y hashtable next. In general, unless
the isolines are fractals, the number of segments is orders
of magnitude smaller than N×N . Hence, more information
acquired about the kind of isolines to expect, may improve
the size allocation, by choosing an M << N for these tables.

Output generation procedure (SOG).. The optional SOG
procedure selects the isolines of interest according to some
given criterion, for example the longest isoline, and stores
the points of these isolines in an array, sorted by their traver-
sal order. The size of the isolines, their starting point, and
their ending point are available at the root of the quadtree.
This information is used to dynamically allocate the corre-
sponding arrays, outside of the CUDA core. The X and
Y hash tables are then used to traverse the associated iso-

Figure 6: Weighted-average-based smoothing

line and dump the points traversed in the array. This pro-
cess transforms the local, sequential-linking information, in
a global, random-access information, where entry i+1 is
known to be the successor point of entry i.

We have reconstructed the isolines of 10 000 frames, both
with PIRA and the contour function of Matlab. The first
took 1.65 seconds while the second took 720 seconds. Hence,
PIRA had a 444.444 fold speedup compared to contour ! The
rest of SCA has not been parallelized yet. However, this is
easily accomplished as we describe in the next sections.

3. CURVATURE ESTIMATION
After obtaining the wavefront and waveback isopotentials,
as produced by SOG from a sequence of frames, we proceed
to estimate the curvature of these isopotentials.

The curvature characterizes the shape of the isopotential
and thus guides the detection of arrhythmias. As discussed
in [8], the wave propagates at higher speed if the wavefront
is concave, and at lower speed if the wavefront is convex. At
particular levels of convexity, the wave stops propagating.

In order to facilitate the detection of arrhythmias, any me-
thod estimating curvature must satisfy two requirements:
1) The technique must be accurate; and 2) The method em-
ployed must provide curvature values continuously along the
perimeter of the isopotential. Thus the method must be in-
dependent of the spatial resolution at which the isopotential
is estimated or the grid on which the cardiac model is solved.

Our technique of curvature estimation can be represented by
the block diagram of Figure 5. The isopotential obtained in
the previous section is a series of points on R2. Starting from
this, our method of obtaining a smooth curvature estimate
involves the following steps:

1. Preprocessing. Divides the isopotential obtained from
SOG into overlapping strips of constant length.

2. Bézier curve fitting. Fits each strip with a third
degree Bézier curve, thus obtaining a piecewise degree-
3-polynomial fit of overlapping Bézier curves.

3. Curvature estimation. The Curvature is computed
along the Bézier curves using symbolic techniques.

4. Overall curvature estimation. Obtains a smooth
estimate of the curvature along the entire isopotential.

First, we divide the isopotential Iv into overlapping seg-
ments, we call strips. The length of each strip is controlled
by the parameter STRIP LENGTH. The percentage overlap
among them is controlled by OVERLAP. This is the initial
pre-processing done before polynomial fitting. The following
sections describe each of the remaining steps in detail.



(a)Numerical Simulation (b)Contour evolution

(c)Curvature Trend

Figure 7: Results for Case Study 1: Re-entry with circular core

4. PIECEWISE BÉZIER FITTING
Most of the formalisms of curvature in R2 involve second
order derivative terms. This motivates a need to obtain at
least a degree-3 polynomial approximation to the isopoten-
tial. We fit the isopotential with overlapping cubic Bézier
curves in a piece-wise manner, thus satisfying the above re-
quirements of curvature estimation.

Given a strip Iv,j , we want to obtain a Bézier curve that
approximates this strip upto a certain degree of L2 error.
A Bézier curve approximation for Iv,j will have the form
below, where parameter t varies in the range [0, 1]:

Xj(t) = (1− t)3P 0
j + 3t(1− t)2P 1

j + 3t2(1− t)P 2
j + t3P 3

j (1)

Yj(t) = (1− t)3Q0
j + 3t(1− t)2Q1

j + 3t2(1− t)Q2
j + t3Q3

j (2)

Here, P 0
j –P 3

j and Q0
j–Q3

j are the control points of the Bézier
curves that approximate the curve along x and y axis, re-
spectively. To sample from this curve, we evaluate the above
expressions over the interval t ∈ [0, 1].

P 0
j , P 3

j , Q0
j and Q3

j are the terminal control points which
coincide with the data. The fitting procedure adapted from
[9] and [15] optimizes the intermediate control points P 1

j , P 2
j ,

Q1
j and Q2

j to minimize the least squares error. We assume
a uniform parametrization of t in [0, 1] for each segment.
Thus, the error functions, while fitting Iv,j are:

Ex =

SLX
i=1

[xi −Xj(ti)]
2, Ey =

SLX
i=1

[yi − Yj(ti)]
2

Replacing equations (1) and (2) in (3) and (4), respectively,

we obtain the following set of equations:

Ex =
SLX
i=1

[xi − (1− ti)
3P 0

j + 3t(1− ti)
2P 1

j + 3t2i (1− ti)P
2
j + t3i P 3

j ]2

Ey =
SLX
i=1

[yi − (1− ti)
3Q0

j + 3ti(1− ti)
2Q1

j + 3t2i (1− ti)Q
2
j + t3i Q3

j ]2

The following calculations are shown only for Ex. For Ey

the expressions follow from those for Ex. P 1
j and P 2

j can be
obtained at the minimum value of Ex by usin:

∂Ex

∂P 1
j

= 0,
∂Ex

∂P 2
j

= 0

Solving the above two equations we obtain the following
expressions for P 1

j and P 2
j :

P 1
j =

αj
2β

j
1 − αj

3β
j
2

αj
1α

j
2 − αj

3

2 , P 2
j =

αj
1β

j
2 − αj

3β
j
1

αj
1α

j
2 − α2

3
j

where α1, α2, α3, β1 and β2 for each segment are given by:

α1 = 9

SLX
i=1

[t2i (1− ti)
4]

α2 = 9
SLX
i=1

[t4i (1− ti)
2], α3 = 9

SLX
i=1

[t3i (1− ti)
3]

β1 = 3

SLX
i=1

[ti(xi − (1− ti)
3P0 − t3i P3)(1− ti)

2]
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Figure 8: Results for Case Study 2: Re-entry with hypocycloidal core

β2 = 3

SLX
i=1

[t2i (xi − (1− ti)
3P0 − t3i P3)(1− ti)]

The above procedure explains how cubic Bézier curves are
fit on one strip of the isopotential. To make the curvature
estimates smooth, we fit the curves on overlapping segments.

5. WEIGHTED-AVERAGE IMPROVEMENT
The fitting procedure described above is seqential in nature.
However, for every strip selected, one can run this procedure
in parallel, by using a different CUDA-thread on the CPU-
cards. Although we did not do this yet, this is a simple
adaptation of this algorithm.

After each strip is fit the data with cubic Bézier curves as
explained above, we improve the smoothness of the overall
fit. A pure piece-wise fitting approach would create discon-
tinuities in the derivative of the isopotentials at the points
where the curves meet. We ensure that derivatives upto
second order are well defined everywhere on the iso-line, by
smoothening the overlapping strips. Parameter OVERLAP
determines the percentage overlap between adjacent strips.

Consider a part of the isopotential that has two adjacent
overlapping strips with indices j and j+1. To define the
Bézier curve fit for this part of the iso-line, we use a weighted
average based method. Suppose the curves describing the
two strips are fj and fj+1, then the fit for the two strips is
given by wjfj(tj) + wj+1fj+1(tj+1), where wj+1 + wj = 1.
In essence, the influence of the adjacent curves on the fit
is gradually varied in the region of overlap. In the region
where there is no overlap, the fit is completely described by

the only Bézier curve corresponding to that strip. As one
enters the region of overlap, the fit is a weighted average of
the two Bézier curves corresponding to adjacent strips. The
weights are varied linearly in our scheme as shown in Fig-
ure 6. The same weighted average smoothing is performed
for the derivatives and curvature values.

It should be noted that this smoothing results in a fit that is
C2 continuous. Each Bézier curve is a third degree polyno-
mial. In the overlapping region, the fit is a weighted average
of two cubic polynomial functions. Thus even in the over-
lapping region the fit is C2 smooth. Using this weighted
average based fitting on overlapping strips, we proceed to
estimate curvature in the next section. Smoothening can
also be performed in parallel for every overlap.

6. SYMBOLIC CURVATURE ESTIMATION
We use symbolic computations in MATLAB to evaluate the
curvature along the isopotential. This constitutes step 2 of
our method listed above. The fitting procedure described
above provides smooth Bézier functions that describe the
isopotentials. As these are closed form expressions, they can
be manipulated symbolically. MATLAB’s symbolic toolbox
provides the facility to declare symbolic variables, construct
functions out of them and operate on those functions. Once
the operations yield the expressions of interest, they can be
evaluated at arbitrary resolution by suitably specifying the
interval for the symbolic variables.

In our case, we obtain the functions Xj(t) and Yj(t) for
each strip. The curvature of this strip of the isopotential is
derived using elementary calculus:
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Figure 9: Results for Case Study 3: Re-entry with linear core

κj(t) =
|r′j(t)× r′′j (t)|

|r′j(t)|3
(3)

where rj(t) = [Xj(t), Yj(t)] is the position vector described
by the Bézier curve. The important point to note is that
Xj(t), Yj(t) and thus rj(t) are managed as symbolic ex-
pressions which are functions of the symbolic variable t.
Thus κj(t) is obtained in closed form as an expression in
t. Symbolic operations on rj(t) is performed using MAT-
LAB’s symbolic math toolbox. [11]

After obtaining closed form expressions for curvature, their
continuity ensures that we can evaluate them at any resolu-
tion of the parameter t. This translates to obtaining contin-
uous estimate of curvature along the perimeter of the isopo-
tential. Note that one can precompute the symbolic form of
coefficients, which can be thereafter instantiated according
to the sampled data. Hence the symbolic Matlab tool-box
is not indispensable.

Step 3 of our method evaluates these curvature functions
along the isopotential using the weighted approach tech-
nique described in the previous subsection. Currently we
maintain uniform resolution for t along all the strips. Adapt-
ing this to the shape of the iso-line, is part of our future
work. In particular, the information stored in the quad-tree
of PIE, for example the filling factor of the area associated
to its nodes. might facilitate a fast and accurate breakup of
the isoline in isoline-strips, improving on the idea in [8].

The runtime of the curve-fitting and curvature-calculation
routines depends on the length of the isopotential. The ex-
traction process checks each grid square for a possible point
of the isopotential. The number of edges on a n×n grid can
be calculated by solving the following recurrence:

E(n) = E(n− 2) + 4n + 4(n− 3) + 8 E(1) = 4, E(2) = 8
(4)

The solution is given by

E(n) = −2(−1)n + 2n(n + 1)− 2 (5)

Hence the maximum length of the iso-line is O(n2), which
bounds the number of operations in the fitting and curvature
routines to O(n2)

7. CASE STUDIES
We apply the above methods of isopotential reconstruction
and curvature estimation on four case studies that simulate
different forms of arrhythmia. For each case, we extract the
isopotential in every frame and fit it using the weighted av-
erage based Bézier curve method. In the following figures,
we show both the fit and the original isopotential only for
the first and last step of evolution. Curvature trends along
time that characterize the different arrhythmia are calcu-
lated. We discuss our results in the following subsections.

1. Re-entry with circular core.. Re-entrant spiral waves
in atrial chambers are precursors for ischemic stroke and fib-
rillation. In this case study we simulated the Barkley model
on a tissue of 514×514 cells. Time scale used was 10ms.
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Figure 10: Results for Case Study 4: Spiral Break-up

The core of the spiral-shaped-excitation waves traces a cir-
cular trajectory. After initial excitation, the spiral-shaped
isopotentials were extracted at a scaled level of 0.7.

The results are shown in the Figure 7. Subfigure (b) shows
the fit and the original iso-line for the first and last time
step. As the spiral rotates, its tip traces a circular tra-
jectory, the basic shape of the spiral isopotential does not
change. Thus we obtain a curvature trend that remains al-
most same along time. The region of maximum curvature
corresponds to the spiral tip which remains around the cen-
ter of the iso-potential throughout the simulation. The rest
of the isopotential shows a relatively lower curvature.

2:. Re-entry with Hypocycloidal core. As we see in Fig-
ure 8, the curvature of the iso-potential is similar to that
in case study 1. The difference is due to the motion of the
spiral. In this case study, a tissue of size 1024×1024 was sim-
ulated using the MHA model. The tip of the spiral traces
a hypocycloidal trajectory. The isopotential was extracted
again for 0.7 and the time scale of the simulation was 10ms.

As the tip rotates, the length of the wavefront changes and at
times, the tip is not the center of the isopotential. The turn
of the spiral is evident in the curvature trend of Figure 8(c).
As the length of the spiral changes, the region of highest
curvature shifts on the curvature trend. Thus, the trend
of morphological features like curvature, can capture the
dynamics of cardiac arrhythmia.

3. Re-entry with Linear Core. This case study further
exemplifies and reinforces the idea of capturing tachycaridia
dynamics using curvature. For this case study, a tissue of
1024×1024 cells was simulated under the minimal model at
a time scale of 10ms. Isopotential extraction was done for a
scaled level of 1.0. This study analyses curvature of cardiac
excitation in the case of an obstacle. Any resistance in the
path of electrical propagation can result in the spiral tip to
start following a linear trajectory. The results obtained are
shown in Figure 9.

The basic shape of the spiral in this case contains three re-
gions of high curvature. The highest curvature is found at
the separation of the wavefront and waveback. As the tip
moves along the linear path, the separation between cur-
vature peaks, corresponding to the high curvature regions,
changes. The highest peak starts near to the left peakm that
corresponds to the first high curvature bend of the isopoten-
tial. With time, as the tip moves down to the other end of
the linear path, the central curvature peak shifts towards
the right peak.

4. Spiral Wave Breakup. In this case we study the onset of
fibrillation. The spatio-temporal definition of myocardium
fibrillation involves the break-up of re-entrant waves. This
breakup creates daughter spirals which interact to produce
emergent behaviour. Thus predicting the spiral break-up is
crucial to the problem of predicting fibrillation. A tissue
of 1024×1024 cells was simulated using the Beeler-Reuter
model. Spiral break-ups occur at a very short time scale.



This the model was simulated at 1ms time scale to allow for
detection of abrupt changes in isopotential morphology.

Subigure 10(a) shows one simulation frame where the first
breakup has already occurred. We track the isopotential of
value 4.0 till the first breakup occurs. As we approach the
moment of detachment, the isopotential shows a dent near
the site of break-up. Thus change in shape translates to
creation of a high curvature region. The changing shape of
isopotential is shown in Subigure 10(a). Again, the isopo-
tential and the polynomial fit is shown for the first and last
step and intermediate steps are shown in dashed lines.

Subigure 10(c) shows the trend of the curvature as the isopo-
tential evolves towards breakup. Just before detachment,
we see high curvatures corresponding to the evolving site of
break-up. This shows that tracking curvature can provide
clues for predicting onset of possibly fatal fibrillation.

8. CONCLUSIONS
The technological developments within the graphical-processors
community, NVIDIA in particular, coupled with the theo-
retical advances in the computer-aided verification commu-
nity, have set the stage for fast simulation, powerful analysis
and accurate prediction of complex biological processes. In
this paper we have present the basic components of such
a combination: 1) Model checking-based parameter-space
partitioning, for efficient and principled parameter selection;
2) Parallel simulation algorithms; and 3) Parallel curvature-
analysis algorithms, of the frames generated thorough sim-
ulation or optical mapping. Our algorithms take advantage
of the NVIDIA’s graphical cards Tesla and Fermi, and the
associated CUDA architecture. Our results show a 444.444
speedup of isopotential reconstruction compared to Matlab-
based contour algorithm. Our case studies identified promis-
ing signatures, of various forms of cardiac disorders, which
may be used to predict their onset. We are currently working
to parallelize the rest of our spiral-waves-classification algo-
rithm (SCA) and to expand the variety of our case studies.
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