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Abstract The unified modeling language (UML) developed under the coordination of
the Object Management Group (OMG) is one of the most important standards
for the specification and design of object oriented systems. This standard is
currently tuned for real time applications in the form of a new proposal, UML
for Real-Time (UML-RT), by Rational Software Corporation and ObjecTime
Limited. Because of the importance of UML-RT we are investigating its formal
foundation in a joint project between ObjecTime Limited, Technische Universität
München and the University of Bucharest. Our results clearly show that the
visual notation of UML-RT is not only very intuitive but it also has a very deep
mathematical foundation. In a previous paper (see [GBSS98]) we presented part
of this foundation, namely the theory of flow graphs. In this paper we use flow
graphs to define the more powerful theory of interaction graphs.
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1. INTRODUCTION

The specification and design of an interactive system is a complex task that has to
work out data, behavior, intercommunication, architecture and distribution aspects of
the modeled system. Moreover the specification has to assure the successful com-
munication between the customer and the software expert. In order to fulfill these
requirements, an UML-RT specification for an interactive system (see [SR98]) is a
combined visual/textual specification, called a capsule class,which is built hierarchi-
cally as shown in Figure 6.1, left.

A capsule class has associated two visual specifications: a structurespecification
and a behavior specification. The structure specification gives the architecture of
the capsule in terms of other capsules and connectors(or duplex channels) between
capsules. The connectors are typed, i.e., they have associated protocol classesdefining
the messages allowed to flow along the connectors. The types of the messages and the
protocols themselves, are defined in terms of data classesor directly in C++. The
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Figure 6.1 The layers of UML-RT and their semantic characterization

behavior of a capsule is controlled by a state transition diagram. The state variables
and the functionsoccurring in this diagram are also defined in terms of data classes or
in C++. Moreover, the detailed description of the actionsassociated to a transition are
given in C++. Hence, the UML-RT visual specifications build on top of a sequential
object oriented language.Special actions like sending a message or setting a timer
are performed by calling the run time system. Hence, UML-RT also builds upon
a communication and synchronization model. Since a sender may always send a
message this is an asynchronouscommunication model.

The semantics we currently define for UML-RT in a joint project between Ob-
jecTime Limited, Technische Universität München and the University of Bucharest,
follows a similar hierarchy, as shown in Figure 6.1, right. It consists of a structure
model, a behavior modeland a state model. Each model interprets an associated
interaction graph. These graphs closely resemble the UML-RT visual specifications.
However, they are completely formalized and this makes them an ideal candidate for
the semantics of UML-RT.

The structure model defines the structure of a capsule class in terms of other capsules
and connectors between these capsules. It also defines the synchronization between
capsules. The behavior model defines the behavior of a capsule in terms of hierarchical
states and transitions between these states. The state model is the equivalent of the
data classes and the object oriented languages. It allows us to define arbitrary data
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types and functions processing these types. Hence, it is used both by the structure
and the behavior models. In contrast to UML-RT, this is also a model for interaction
graphs. Hence, using our semantics, one can make UML-RT completely visual and
independent from any particular programming language.

Finally, interaction graphs are implemented by flow graphs.In contrast to interaction
graphs which are appropriate for high level design, the later ones are low level graphs
which make causality explicit.

In our earlier paper (see [GBSS98]) we presented the theory of flow graphs. In this
paper we use flow graphs to define the theory of interaction graphs. This theory is
characterized by three elements: a visual notation,a textual notationand a calculus.
The visual notation consists of a set of graph construction primitives presented in a
visual form. They define the user interfaceto an abstract editor for diagrams. The
textual notation consists of the same set of graph construction primitives, presented in
a textual form. They define an abstract internal representationof the above primitives.
The textual form is automatically generatedfrom the visual form, and it is usually
hidden from the user. It can be roughly understood as the program that actually runs on
the computer. Finally, the calculus is the engine that allows us to transforma diagram
into another diagram that has the same meaningbut optimizes time and/or space.
Moreover it determineswhether two diagrams are equivalent. The calculus consists of
a set of equations which identify semantically equal graphs. This immediately allows
us to compare diagrams. Orienting the equations (e.g. from left to right) one obtains
a rewriting calculus,i.e., an interpreter.

The rest of the paper is organized as follows. In Section 2 we revise the basic
elements of the theory of flow graphs. In Section 3 we first motivate the need for
interaction graphs. Then we use the theory of flow graphs to define interaction graphs
and their associated properties. Finally in Section 4 we draw some conclusions.

2. FLOW GRAPHS

Flow graphs(see [GBSS98]) are constructed by using, as shown in Figure 6.2, three
operators on nodes – sequential composition, juxtapositionand feedbackand four
connectors – identity, transposition, identificationand ramification.

The node operators and the connectors have a rich set of algebraic properties that
basically reflect our visual intuition about flow graphs. In the following we review these
properties and point out how they fit in the general setting of category theory. However,
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as Figures 6.3, 6.4 and 6.5 clearly show, no background in category theory is really
necessary to understand them and the interested reader may consult [GBSS98] for a
complete treatment. Moreover, these properties are not a prerequisite to understand the
rest of the paper. We give them here basically for reference purpose and to establish
the connection with other work in the semantics of concurrent processes. They are
also needed in the proofs of similar properties for interaction graphs.
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As shown in Figure 6.3, sequential composition is associative and has identities as
neutral elements. Hence, in mathematical terminology, nodes equipped with sequential
composition define a category. As shown in Figure 6.4, juxtaposition is defined both
on arrows and on nodes in such a way that it preserves identities and composition. In
mathematical terminology, it is a functor. Moreover, it is associative, has a neutral
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element and commutes with transposition. It therefore defines a strict symmetric
monoidal category. As shown in Figure 6.5, feedback also allows to construct loops
and its properties extend the strict symmetric monoidal category to a trace monoidal
category.

The tighteningequation allows to tighten the scope of the feedback. In mathematical
terminology one says that the feedback "CA;B is naturalin the arrowsA andB, i.e., in the
arrows that are not fed back. The slidingequation allows to slide n along the feedback
loop. In mathematical terminology the feedback operator "CA;B is natural also in the
feedback arrowC. The superposingequation says that feedback superposes over visual
attachment and the yankingequation shows how feedback relates to transposition.
Finally, the vanishingequations show how to decompose the feedback loop.
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Figure 6.5 Properties of feedback

Identification is associative, has neutral elements and commutes with transposition.
Hence, it mathematical terms, it defines a monoid structureon each arrow. Ramification
is coassociative has neutrals element and commutes with transposition. Mathematically
speaking, it defines a comonoid structureon each arrow. Moreover, identification
preserves ramification and the other way around, i.e., identification is a comonoid
morphism and ramification is a monoid morphism. Hence they define a bimonoid
structureon each arrow.
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3. INTERACTION GRAPHS

Flow graphs are a very basic formalism that allows us to describe the structure of any
interactive system. However, they are too low level to directly cope with the constructs
occuring in UML-RT. In particular they cannot directly express UML-RT protocol
types, duplex portsand duplex channels.

For example, consider the following UML-RT protocol type Tel between a tele-
phone and its associated telephone driver, defined from the point of view of the driver:

protocol Tel = f input = foffH, onH, tlk, (dig, N)g
output = fdtB, dtE, rtB, rtE, tlkgg

where offH, onH, tlk, dig, dtB, dtE, rtB and rtE stand for off hook,
on hook, talk, digit, dial tone begin/end and ring tone begin/end respectively. The
digit message contains additional data x 2 N where N = f0; : : : ; 9g. Then the
interconnection between the telephone and the driver is given in a UML-RT capsule
diagram as shown in Figure 6.6. The driver contains a duplex port d of type Tel and

driver telephone

t:Tel*d:Tel

Figure 6.6 A simple telephone architecture in UML-RT

the telephone contains a duplex port t having the dual typeTel*. By duality it is
meant that input and output are interchanged. These ports are connected by a duplex
bend channel whose ends have dual type. By convention, duplex (or bidirectional)
channels are drawn without any arrow head.
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To model this structure directly, we need a graph formalism that includes both
duality and bend connectors with dual ends. We call such a graph formalism interaction
graphs.The reason for this name is that each arrow in these graphs defines a two way
communication. In other words, it defines an interaction. As shown in Figure 6.7, the
mere introduction of duality and of bend connectors with dual ends immediately allows
to define six operators on nodes – sequential composition, juxtaposition, feedback,
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dual, curry and the higher order nodesconstructor and seven connectors – identity,
transposition, identification, ramification, bend unit, bend counitand evaluation.

As we show in the next sections, interaction graphs are implemented by flow graphs
in the same way higher order programming languages are implemented by assembler
languages. Hence, each interaction graph could be analyzed by translating it to a flow
graph. However, this analysis could be very cumbersome. It is therefore much better
to prove once and for all a set of core properties for interaction graphs which allows
to manipulate them directly in a similar way to flow graphs. In fact, all properties
of flow graphs naturally extend to interaction graphs. Moreover, the introduction of
bend connectors and dual types is the source of new graph operators and connectors
and of a rich set of new properties. They allow us to adjust the component interaction
interfaces and to dynamically manipulate both procedures and capsules.

In the following sections we show the implementation of interaction graphs in terms
of flow graphs and the new properties of interaction graphs. Both the proofs and the
properties similar to flow graphs are not given because of obvious space limitations.

3.1 ARROWS

Let X and Y be flow graph arrows. An interaction graphs arrowis defined as a pair
(X;Y ) of flow graph arrows where X has a top down orientation and Y has a bottom
up orientation. By using such pairs, interaction graphs can deal simultaneously with
three kinds of arrows: unidirectional top downarrows, unidirectional bottom uparrows
and bidirectional arrows.Unidirectional top down arrows are pairs (X;E) where E
is the flow graphs empty arrow. Unidirectional bottom up arrows are pairs (E;X) and
bidirectional arrows are pairs (X;Y ). To simplify notation and to make the connection
between the components of the pair more explicit we denote interaction graphs arrows
by A, B etc., and annotate their top down and bottom up components with a plusand
respectively a minussign. Hence we write A for (A+; A�). Visually, we distinguish
bidirectional arrows from unidirectional arrows, by drawing them without any head.
Moreover, since everything proved for bidirectional arrows also holds for unidirectional
arrows we shall work in the following sections only with bidirectional arrows.

3.2 NODES

A noden : A! B in an interaction graph maps the interaction arrowA= (A+; A�) to
the interaction arrow B = (B+; B�), as shown in Figure 6.8, middle. The interaction
arrow A is the client interface. The interaction arrow B is the server interface. Going
from flow graphs to interaction graphs is actually a switch of programming paradigm.
We abandon the input/outputparadigm in favor of the client/serverparadigm.
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However, since as in programming, each interaction graphs arrow is defined by a
pair of flow graphs arrows, for each interaction graphs node there is a corresponding
flow graphs node as shown in Figure 6.8, right. We take these flow graphs nodes as
the implementation(or representation) of the interaction graphs nodes. When looking
at the implementation of an interaction graphs connector in the next sections, keep
in mind this translation because it determines a unique interface of the corresponding
flow graphs connector.

Using this implementation, each interaction graph may be implemented by a flow
graph. Moreover, as we see later, each interaction graphs operator may be implemented
by a composition of flow graphs operators. Formally, implementing an interaction
graph node m : (A+; A�) ! (B+; B�) by a flow graphs node m : A+�B� !
A��B+ can be described by a representation function (or relation) rep such that:

rep(m : (A+; A�)! (B+; B�)) = m : A+�B� ! A��B+

Abstracting (or embedding) a flow graphs node m : A+�B� ! A��B+ to an
interaction graphs node m : (A+; A�)! (B+; B�) can be formally described by an
abstractionfunction (or relation) abs such that:

abs(m : A+�B� ! A��B+) = m : (A+; A�)! (B+; B�)

Taking abs(A) = (A;E) each flow graph may be embedded into an interaction graph
with arrows pointing only top down (with the exception of the feedback arrow). As
a consequence, each flow graph node operator and each flow graph connector has a
corresponding interaction graph node operator and connector, respectively. Instead of
inventing for each a new notation, we use the same symbols in the interaction graphs,
too. In other words, we overload the node operators and connectors. Moreover,
instead of dealing explicitly with the representation function, i.e., instead of writing
rep(m : (A+; A�) ! (B+; B�)) = m : A+�B� ! A��B+ we shall simply write
m : (A+; A�) ! (B+; B�)) =̂ m : A+�B� ! A��B+, which can be read as a
definition. Since in most cases we will not make the types explicit one should keep
in mind that the symbol on the left of the definition is an interaction graphs symbol,
whereas the same symbol on the right of the definition is a flow graphs symbol.

3.3 OPERATORS ON NODES

Sequential Composition. As shown in Figure 6.9, left, the most basic way to connect
two interaction graphs nodes is sequential composition. By this we connect the server
interface of one node to the client interface of the other node, if they have the same
type. Textually we denote this operator also by ; (hence ; is an overloaded operator).
As shown in Figure 6.9, right, given m:A!B and n:B!C we define (implement)
the interaction graphs composition m;n :A!C in terms of the flow graphs sequential
composition, transposition and feedback. As in flow graphs, the composition in
interaction graphs defines both a connectionand a containmentrelation.

Using the properties of flow graphs one can easily show that sequential composition
is associative and has the identities as neutral elements. Hence interaction graphs nodes
equipped with sequential composition define a category.
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Juxtaposition. By juxtapositionwe mean that nodes and corresponding arrows are
put one next to another, as shown in Figure 6.10, left. To obtain a textual representation
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for juxtaposition, we need therefore a juxtaposition operator defined both an arrows and
on nodes. We denote this operator also by � (hence � is an overloaded operator). Given
two arrows A1 and A2 their juxtaposition is expressed by A1�A2 and defined in terms
of flow graphs juxtaposition by (A+

1 �A
+

2 ;A
�

1 �A
�

2 ). Given two nodes m:A1!B1 and
n:A2!B2 their juxtaposition is expressed as m�n:A1�A2!B1�B2 and defined, as
shown in Figure 6.10, in terms of flow graphs juxtaposition. Similarly to sequential
composition, juxtaposition also defines a containment relation.

As with flow graphs, two nodes m and n may be visually attached in two different
ways: m�n, i.e., with m on the left or n�m, i.e., with n on the left. Since we are
mainly interested in the “one near the other” relation, these two attachments should be
equivalent modulo a transpositionisomorphism A

X
B : A�B ! B�A. We define the

interaction graphs transposition A
X
B in terms of flow graphs transposition as shown

in Figure 6.11, right.
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Figure 6.11 Interaction graphs transposition

Using the properties of flow graphs it is easy to show that juxtaposition is defined both
on arrows and on nodes such that it preserves identities and composition. Hence it
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is a functor. Moreover, it is associative, has a neutral element and commutes with
transposition. It therefore defines a strict symmetric monoidal category.

Duality and bend connectors. Each line A in the interaction graphs is defined by
a pair (A+; A�) of flow graphs arrows, with A+ pointing in top down direction and
A� pointing in bottom up direction. It makes therefore sense to think of reversing the
direction of these arrows. This is accomplished by a duality operator(:)� defined as
follows: A� = (A+; A�)� = (A�; A+). Duality is involutive since A�� = A.

In order to extend duality to nodes we need two bend connectors: the bend unit
uA : E!A�A� and the bend counittA : A��A!E . The bend unit and counit are

A+A-A+ A-*AA

A- A+

A-A+

A+A- A+ A-

= =

*A AA-

A+ A-

A+

= X AA- +

AA = X AA- +

= =

Figure 6.12 Unit and counit bends

defined, as shown in Figure 6.12, by using the flow graphs transposition connector.
It is interesting to note that uA and tA have the same definition (or implementation)
in the flow graphs category. However, their type in the interaction graphs category is
different which means that they are used in different contexts.

Nodes duality. Using the bend connectors one can extend the duality operation to
nodes. Given m : A!B we define m� : B�!A�, as shown in Figure 6.13, left. The
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Figure 6.13 Duality extended to nodes

duality on nodes is also involutive if m�� = m. As shown in Figure 6.13, this is indeed
the case if the unit (igCcc1) and counit (igCcc2) axioms in Figure 6.14 hold. This
can be easily checked by using their definition. Moreover (igCcc1) and (igCcc2) also
say that (iA�)� = iA and (iA)

� = iA� , i.e., that duality preserves identities. It is also
easy to check that the involutive duality operators preserves sequential composition.
Hence, in mathematical terminology, duality is an involutive functor. Since this
functor reverses the direction of arrows and consequently the direction of composition,
it is called a contravariantfunctor. The contravariant duality functor enriches the
interaction graphs with the structure of a compact closed category(abbreviated as
igCcc). This structure is very rich and allows us to define feedback, curry and the data
nodes constructor as derived operators.
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Nodes as Data. Using the bend connectors one can move any client arrow of an
interaction graphs node to its server side and any server arrow to its client side. In
particular, one can move all arrows either on the client side or on the server side.
Moving all arrows on the client side one obtains nodes very similar to the architecture
nodes in UML-RT. In this case, it is possible to connect two nodes only by using
the bend unit and the transposition connectors. As a consequence, the connected
arrows are requested to be dual. This is exactly what the graphical editor for UML-RT
architecture diagrams checks.
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Figure 6.15 Curry isomorphism and eval connector

Moving all the arrows of an interaction graphs node to its server side transforms this
node into a data node. Why is it a data node? Because its client interface becomes
empty and therefore no other client node may be sequentially connected to it anymore.
To use this node one needs therefore an evaluation operator, which applies the data
node to its input (or routes the data to the input). However, since changing the interface
of a node is merely a matter of convenience, the visual intuition tells us that between
real nodes and data nodes there should be a one-to-onecorrespondence.

The correspondence is given by an isomorphism �C :(A�C!B)!(C!(A��B)),
known as curry and a distinguished connector evalA;B : A�(A��B) ! B, as shown
in Figure 6.15. Their definition is as expected a straight forward use of the bend
connectors. Using the properties of these connectors, one can easily check that the
relation between curry and eval is the one shown in Figure 6.16. The �-axiom
says that bendingan input arrow of a node twice does not change the meaning of
the node. The �-axiom says that bendingan output arrow of a node twice does
not change the meaning of a node. The �-calculus equivalent for the �-axiom is
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m(a; c) = eval(a; �x:m(x; c)). Since eval(a; f) is often written as f(a) the above
equation is also written as m(a; c) = (�x:m(x; c))(a). The �-calculus equivalent of
the �-axiom is h = �x:eval(x; h) or with the above convention h = �x:h(x). The
identifier x is supposed to not occur free in h.

Higher order nodes. An element of A� �B is a data node f : E!A� �B. In order
to emphasize that A� �B contains data nodes we also use for it the arrow like notation
A��B. Hence �� maps a pair of interaction arrows A and B to an interaction arrow
A��B. But what about nodes?
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Figure 6.17 The definition of ��

Consider a pair of nodes with arrows in opposite (dual) directions, as shown in Figure
6.17, left. Textually, we denote this construction by m��n : (A��B) ! (C��D).
It takes data nodesin A��B as input and delivers data nodes in C��D as output.
Using curry and eval the meaning of m��n is defined as shown in Figure 6.17, right.
Since A��B is defined in terms of juxtaposition and duality, it inherits the properties
of both these operators, as shown in Figure 6.18. In mathematical terminology,�� is
a functorchanging the direction of arrows in the first argument (the argument where
duality is applied). This functor is a consequence of the compact closure of interaction
graphs and the structure it determines together with evaland curry on these graphs is
that of a closed category(igCc stands for interaction graphs closed category). Closed
categories are models for the �-calculus, the calculus underlying all higher order
functional programming languages.
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Figure 6.18 The functor axioms for ��

Feedback. The bend connectors allow us to define the feedback operatorfor inter-
action graphs in a very simple way as shown in Figure 6.19. Using the properties of

A,B
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= ; (*( )C *( )m * ;iiA i) BC* C*

Figure 6.19 Feedback in a compact closed category

the bend connectors it is easy to show that the interaction graphs feedback also defines
a trace monoidal categorystructure on the underlying category (see [GBSS98]).

3.4 CONNECTORS

In the previous sections we already introduced four connectors: identity iA, transpo-
sitionA

X
B , bend unituA and bend counittA. While the bend connectors are new,

the identity and transposition connectors are extensions of the analogous flow graphs
connectors to interaction graphs. A similar extension is possible for the identification
connector _A and the ramificationconnector ^A.

Identification. The definition of the interaction graphs identificationconnectors>A :
E ! A and _A : A � A ! A is shown in Figure 6.20. It is based on flow graphs
identification, ramification and transposition. Using the properties of flow graphs it is
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Figure 6.20 Interaction graphs identification

easy to show that identification is associative, has neutral element and commutes with
transposition. Hence, it defines a monoid structureon each arrow.
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Ramification. The definition of the interaction graphs ramificationconnectors?A :
A ! E and ^A : A ! A � A is shown in Figure 6.21. It is based on flow graphs
identification, ramification and transposition. Using the properties of flow graphs it
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Figure 6.21 Interaction graphs ramification

is easy to show that ramification is coassociative has neutral element and commutes
with transposition. Hence, it defines a comonoid structureon each arrow. Moreover,
identification preserves ramification and the other way around, i.e., identification is
a comonoid morphism and ramification is a monoid morphism. Hence they define a
bimonoid structureon each arrow.

4. CONCLUSIONS

The main benefits of the graph theory defined in this paper can be summarized as
follows. First, it introduces a set of graph construction primitives in a consistent
way. This diminishes the arbitrariness in the choice of these primitives. Second, it
provides a mathematically precise semanticsfor these primitives. This is very useful
as a referenceboth for tool designers and for system development engineers because it
eliminates misinterpretation.Third, it provides a calculus which allows us to compare
and to optimize designsand even to do rapid prototyping.While the visual notation is
the interface to system engineers, the textual notation is the interface to tool developers.

The calculus of flow graphs (see [GBSS98]) is a simpler, more general and more
intuitive presentation of the one given in the context of flow charts in [CS90]. Models
of flow graphs were studied independently in the context of flow charts in [CS90] and
in the context of data flow networks in [B87, GS96]. In [GSB98a] we show how to
combine these models to obtain a semantics for ROOM. This semantics is extended
for the hierarchical specification of hybrid systems in [GSB98b].

The calculus of interaction graphs is a simpler, more intuitive and more general
formulation of interaction categories (see [AGN94]) that uses ideas from [JSV96].
It is not only closer to UML-RT but, in our opinion, a better foundation for the
theory of typed concurrent systems. This was only possible by having in mind the
concrete implementation of UML-RT. A semantic model for this calculus is given in
[GBSR99]. It is also inspired by the UML-RT implementation. Since it defines a game
semantics for interaction graphs, it is very general too and it may be used to understand
concurrency.

The use of the interaction graphs theory in the context of visual formalisms, in
particular for UML-RT is new. It clearly shows that visual formalisms are not only
intuitive but also can have a deep underlying formal theory. In fact, we are using this
theory to compare, optimize and execute designs. Moreover, it is the best starting
point for verification techniques. In fact, we use this theory in the project Mocha
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(see [AHM+98]) for modular model checking. More generally, because of the deep
connection between interaction graphs and linear logic (see [A96]) other analysis and
verification techniques may be used as well.
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