Abstract

Chapter 6
WHAT IS BEHIND UML-RT?

Radu Grosu
Institut fir Informatik, TU Minchen, D-80290 Minchen
grosu@in.tum.de

Manfred Broy
Institut fur Informatik, TU Minchen, D-80290 Minchen
broy@in.tum.de

Bran Selic
ObjecTime Limited, K2K 2E4 Kanata, Ontario
bran@ObjecTime.com

Gheorghe Stefanescu
Faculty of Mathematics, University of Bucharest, RO-70109 Bucharest
ghstef@stoilow.imar.ro

The unified modeling language (UML) developed under the coordination of
the Object Management Group (OMG) is one of the most important standards
for the specification and design of object oriented systems. This standard is
currently tuned for real time applications in the form of a new proposal, UML
for Real-Time (UML-RT), by Rational Software Corporation and ObjecTime
Limited. Because of the importance of UML-RT we are investigating its formal
foundation in ajoint project between ObjecTime Limited, Technische Universitét
Miinchen and the University of Bucharest. Our results clearly show that the
visual notation of UML-RT is not only very intuitive but it aso has a very deep
mathematical foundation. In aprevious paper (see [GBSS98]) we presented part
of this foundation, namely the theory of flow graphs. In this paper we use flow
graphs to define the more powerful theory of interaction graphs.

74 Chapter 6

1 INTRODUCTION

The specification and design of an interactive system is a complex task that has to
work out data, behavior, intercommunication, architecture and distribution aspects of
the modeled system. Moreover the specification has to assure the successful com-
munication between the customer and the software expert. In order to fulfill these
requirements, an UML-RT specification for an interactive system (see [SR98]) is a
combined visual/textual specification, called acapsule classyhich is built hierarchi-
cally asshownin Figure 6.1, l€ft.

A capsule class has associated two visual specifications. a structurespecification
and a behavior specification. The structure specification gives the architecture of
the capsule in terms of other capsules and connectorgor duplex channels) between
capsules. The connectorsaretyped, i.e., they have associated protocol classedefining
the messages allowed to flow along the connectors. The types of the messages and the
protocols themselves, are defined in terms of data classer directly in C++. The

has capsule-class has component model
‘ structure m behavior ‘ W’m behavior-model
USes | Uses | uses USes | Uses | uses models | uses uses | models
data-class state-model
encoded models

‘ c++or rpl ‘ ‘ interaction-graphs ‘

| embedded | implemented

‘ run-time system ‘ ‘ flow-graphs ‘

Figure 6.1 Thelayersof UML-RT and their semantic characterization

behavior of a capsule is controlled by a state transition diagram. The state variables
and the functionsoccurring in this diagram are also defined in terms of data classes or
in C++. Moreover, the detail ed description of the actionsassociated to atransition are
givenin C++. Hence, the UML-RT visual specifications build on top of a sequential
object oriented languageSpecial actions like sending a message or setting a timer
are performed by calling the run time system. Hence, UML-RT aso builds upon
a communication and synchronization model. Since a sender may aways send a
message this is an asynchronousommunication model.

The semantics we currently define for UML-RT in a joint project between Ob-
jecTime Limited, Technische Universitat Miinchen and the University of Bucharest,
follows a similar hierarchy, as shown in Figure 6.1, right. It consists of a structure
mode| a behavior modebnd a state model. Each model interprets an associated
interaction graph These graphs closely resemble the UML-RT visual specifications.
However, they are completely formalized and this makes them an ideal candidate for
the semantics of UML-RT.

Thestructuremodel definesthe structure of acapsuleclassin termsof other capsules
and connectors between these capsules. It also defines the synchronization between
capsules. The behavior model definesthe behavior of acapsulein termsof hierarchical
states and transitions between these states. The state model is the equivalent of the
data classes and the object oriented languages. It allows us to define arbitrary data

What is Behind UML-RT? 75

Thenode operators

Ay A, A

B B B
sequential composition juxtaposition feedback

The connectors

A A B A A A
A l B >< A A\K A)\ A
identity transposition identification ramification

Figure 6.2 Flow graphs

types and functions processing these types. Hence, it is used both by the structure
and the behavior models. In contrast to UML-RT, thisis also amodel for interaction
graphs. Hence, using our semantics, one can make UML-RT completely visua and
independent from any particular programming language.

Finally, interaction graphsareimplemented by flow graphs.In contrast tointeraction
graphswhich are appropriate for high level design, the later ones are low level graphs
which make causality explicit.

In our earlier paper (see [GBSS98]) we presented the theory of flow graphs. Inthis
paper we use flow graphs to define the theory of interaction graphs. This theory is
characterized by three elements. a visual notationa textual notatiorend a calculus.
The visual notation consists of a set of graph construction primitives presented in a
visual form. They define the user interfaceto an abstract editor for diagrams. The
textual notation consists of the same set of graph construction primitives, presented in
atextual form. They define an abstract internal representationf the above primitives.
The textua form is automatically generatefrom the visual form, and it is usually
hidden fromthe user. It can beroughly understood as the program that actually runson
the computer. Finally, the calculusisthe engine that allows usto transformadiagram
into another diagram that has the same meanindput optimizes time and/or space.
Moreover it determinesvhether two diagrams are equivalent. The calculus consists of
a set of equations which identify semantically equal graphs. Thisimmediately allows
us to compare diagrams. Orienting the equations (e.g. from left to right) one obtains
arewriting calculusj.e., an interpreter.

The rest of the paper is organized as follows. In Section 2 we revise the basic
elements of the theory of flow graphs. In Section 3 we first motivate the need for
interaction graphs. Then we use the theory of flow graphsto define interaction graphs
and their associated properties. Finaly in Section 4 we draw some conclusions.

2. FLOW GRAPHS

Flow graphs(see [GBSS98]) are constructed by using, as shown in Figure 6.2, three
operators on nodes — sequential compositigrjuxtapositionand feedbackand four
connectors— identity, transposition, identificatioand ramification

The node operators and the connectors have a rich set of algebraic properties that
basically reflect our visual intuition about flow graphs. Inthefollowing wereview these
propertiesand point out how they fit in the general setting of category theory. However,

76 Chapter 6

(cat): Associativity of ; (catp): Unitof ;
A
A
:))
B
B
m(mp) = (mn);p = m;n;p ixm = mig = m

Figure 6.3 Properties of sequential composition

as Figures 6.3, 6.4 and 6.5 clearly show, no background in category theory is really
necessary to understand them and the interested reader may consult [GBSS98] for a
completetreatment. Moreover, these propertiesare not aprerequisiteto understand the
rest of the paper. We give them here basically for reference purpose and to establish
the connection with other work in the semantics of concurrent processes. They are
also needed in the proofs of similar propertiesfor interaction graphs.

(ssmcy): preservescomposition (ssmcy): preservesidentities

A B A B

(Pa)* (P a)=(/,*py):(a,*a) intig = i
(ssmc;): Associativity (ssmc,): Unit
T Alte gln A
LU0 @)@
5, B B, B, B, B, Bl 1e €l s B
m* (n* p) = (m*n)*p m*ig = ie*m = m
(ssmc;): Commutativity (ssmcg): X and E (ssmc;): X and A*B

A2‘><‘A1 Al A,

— E A A ABC AB C
O - @) -1 A\ X
BZXBl U AE A CA B CAB

A.XAz;(n*m) By B = m*n BA = i AByC - (iA*BXC):(AXC*iB)

Figure 6.4 Properties of visua attachment

As shown in Figure 6.3, sequential composition is associative and has identities as
neutral elements. Hence, in mathematical terminol ogy, nodes equi pped with sequential
composition define a category As shown in Figure 6.4, juxtaposition is defined both
on arrows and on nodesin such away that it preservesidentities and composition. In
mathematical terminology, it is a functor. Moreover, it is associative, has a neutral

What is Behind UML-RT? 77

element and commutes with transposition. It therefore defines a strict symmetric
monoidal category As shown in Figure 6.5, feedback also allows to construct loops
and its properties extend the strict symmetric monoidal category to atrace monoidal
category

Thetighteningeguation allowsto tighten the scope of thefeedback. In mathematical
terminol ogy one saysthat thefeedback Ti gisnaturalinthearrows Aand B, i.e., inthe
arrowsthat are not fed back. The sliding equation allowsto slide n along the feedback
loop. In mathematical terminology the feedback operator Ti g isnaturalalso in the
feedback arrow C'. Thesuperposingquation saysthat feedback superposesover visua
attachment and the yankingequation shows how feedback relates to transposition.
Finally, the vanishingequations show how to decompose the feedback loop.

(tmcy): Tightening (tmcy): Sliding
A A
C D
C@
D = Cc
(m
Cc D
B B
(M*idin;(P*idtie = mi(tg:p Mol Mgy = ("M :imig,
(tmcy: Superposing (tmcy): Yanking
Ai A, A A A A
c Cr '
] | =[G -
C A A
B1 B, Biv B2
m* (€) = M* 1S, 0 pes X =
(tmcg): Vanishing on C*D (tmcg): Vanishingon E
A A A A
—
(2 I
B B B B
cD - c D E _
mixe (mtapBD)tAB miasg = m

Figure 6.5 Properties of feedback

I dentification is associative, has neutral elements and commuteswith transposition.
Hence, it mathematical terms, it definesamonoid structuren each arrow. Ramification
iscoassociative has neutral sel ement and commuteswith transposition. Mathematically
speaking, it defines a comonoid structuren each arrow. Moreover, identification
preserves ramification and the other way around, i.e., identification is a comonoid
morphism and ramification is a monoid morphism. Hence they define a bimonoid
structureon each arrow.

78 Chapter 6

3. INTERACTION GRAPHS

Flow graphs are avery basic formalism that allows us to describe the structure of any
interactive system. However, they aretoo low level to directly copewith the constructs
occuring in UML-RT. In particular they cannot directly express UML-RT protocol
types, duplex portand duplex channels

For example, consider the following UML-RT protocol type Tel between atele-
phone and its associated telephone driver, defined from the point of view of the driver

protocol Tel ={ input ={offH, onH tlk, (dig, N}
output ={dtB, dtE, rtB, rtE, tlk}}

whereof fH, onH, tlk, dig, dtB, dtE, rtBandrt Estandforoff hook,
on hook, talk, digit, dial tone begin/end and ring tone begin/end respectively. The
digit message contains additional data € N where N = {0,...,9}. Then the
interconnection between the telephone and the driver is given in a UML-RT capsule
diagram as shown in Figure 6.6. The driver contains a duplex port d of type Tel and

d:Te t:Tel*

Figure 6.6 A simple telephone architecturein UML-RT

the telephone contains a duplex port t having the dual typeTel *. By duality it is
meant that input and output are interchanged. These ports are connected by a duplex
bend channel whose ends have dual type. By convention, duplex (or bidirectional)
channels are drawn without any arrow head.

The node operators
A *
Ay A, B © A} A,
QI [
Bs B2 B Al Al TB B B,
juxtaposition feedback dual curry higher order
The connectors
A S Y N I N
A B A A A A A A B
id. transp. identif. ramif. bend unit bend counit evaluation

Figure 6.7 The node operators and the connectors

To model this structure directly, we need a graph formalism that includes both
duality and bend connectorswith dual ends. Wecall such agraphformalisminteraction
graphs.Thereason for this nameis that each arrow in these graphs defines a two way
communication. In other words, it defines an interaction Asshownin Figure 6.7, the
mereintroduction of duality and of bend connectorswith dual endsimmediately allows
to define six operators on nodes — sequential compositiguxtaposition, feedback,

What is Behind UML-RT? 79

A A" A A" B
B B* B A B
mA-B & m:A%B — AxB’

Figure 6.8 Trandation of interaction graphs nodes to flow graph nodes

dual, curryand the higher order nodegonstructor and seven connectors — identity,
transposition, identification, ramification, bend unit, bend coanit evaluation

Aswe show in the next sections, interaction graphs are implemented by flow graphs
in the same way higher order programming languages are implemented by assembler
languages. Hence, each interaction graph could be analyzed by trandating it to a flow
graph. However, this analysis could be very cumbersome. It is therefore much better
to prove once and for al a set of core properties for interaction graphs which allows
to manipulate them directly in a similar way to flow graphs. In fact, all properties
of flow graphs naturally extend to interaction graphs. Moreover, the introduction of
bend connectors and dual types is the source of new graph operators and connectors
and of arich set of new properties. They allow us to adjust the component interaction
interfaces and to dynamically manipulate both procedures and capsules.

In thefollowing sectionswe show theimplementation of interaction graphsin terms
of flow graphs and the new properties of interaction graphs. Both the proofs and the
properties similar to flow graphs are not given because of obvious space limitations.

31 ARROWS

Let X and Y be flow graph arrows. An interaction graphs arrows defined as a pair
(X,Y) of flow graph arrows where X has atop down orientation and Y~ has a bottom
up orientation. By using such pairs, interaction graphs can deal simultaneously with
threekindsof arrows:. unidirectional top dowrmrrows, unidirectional bottom uprrows
and bidirectional arrows. Unidirectional top down arrows are pairs (X, E) where E
isthe flow graphs empty arrow. Unidirectional bottom up arrowsare pairs (E, X)) and
bidirectional arrowsarepairs (X, Y'). To simplify notation and to make the connection
between the components of the pair more explicit we denoteinteraction graphsarrows
by A, B etc., and annotate their top down and bottom up componentswith a plusand
respectively a minussign. Hence we write A for (A*, A™). Visualy, we distinguish
bidirectional arrows from unidirectional arrows, by drawing them without any head.
Moreover, sinceeverything proved for bidirectional arrowsalso holdsfor unidirectional
arrowswe shall work in the following sections only with bidirectional arrows.

3.2 NODES

Anoden : A — Binaninteraction graph mapstheinteractionarrow A = (A*, A7) to
theinteraction arrow B = (B*, B™), asshown in Figure 6.8, middle. Theinteraction
arrow A isthe client interface Theinteraction arrow B isthe server interface Going
from flow graphsto interaction graphsis actually a switch of programming paradigm.
We abandon the input/outputparadigm in favor of the client/servemparadigm.

80 Chapter 6

However, since as in programming, each interaction graphs arrow is defined by a
pair of flow graphs arrows, for each interaction graphs node there is a corresponding
flow graphs node as shown in Figure 6.8, right. We take these flow graphs nodes as
the implementatiorfor representation) of the interaction graphs nodes. When looking
at the implementation of an interaction graphs connector in the next sections, keep
in mind this trandation because it determines a unique interface of the corresponding
flow graphs connector.

Using this implementation, each interaction graph may be implemented by a flow
graph. Moreover, aswe seelater, each interaction graphsoperator may beimplemented
by a composition of flow graphs operators. Formally, implementing an interaction
graph node m : (AT,A™) — (B*,B™) by aflow graphsnode m : AT™«B~ —
A~xB can be described by a representation function (or relation) rep such that:

rep(m: (AT,A7) = (B",B7)) = m: A"xB~ — A «B*

Abstracting (or embedding) a flow graphs node m : At«xB~ — A=xB* to an
interaction graphsnodem : (A+, A=) — (BT, B~) can be formally described by an
abstractionfunction (or relation) abs such that:

abs(m : ATxB~ — A xB") = m: (AT,A") - (B",B")

Taking abs(A) = (A, E) each flow graph may be embedded into an interaction graph
with arrows pointing only top down (with the exception of the feedback arrow). As
a consequence, each flow graph node operator and each flow graph connector has a
corresponding interaction graph node operator and connector, respectively. Instead of
inventing for each a new notation, we use the same symbols in the interaction graphs,
too. In other words, we overloadthe node operators and connectors. Moreover,
instead of dealing explicitly with the representation function, i.e., instead of writing
rep(m : (AT, A7) = (BT,B7)) =m : At*B~ — A~ «B™ we shal smply write
m: (AT A7) - (BY,B7)) =m : At¥*xB~ — A xB*, which can beread as a
definition. Since in most cases we will not make the types explicit one should keep
in mind that the symbol on the left of the definition is an interaction graphs symbol,
whereas the same symbol on the right of the definition is a flow graphs symbol.

3.3 OPERATORS ON NODES

Sequential Composition. AsshowninFigure6.9, |eft, the most basic way to connect
two interaction graphs nodesis sequential compositiorBy thiswe connect the server
interface of one node to the client interface of the other node, if they have the same
type. Textually we denote this operator also by ; (hence; is an overloaded operator).
As shown in Figure 6.9, right, given m:A— B and n:B—C we define (implement)
the interaction graphs composition m;n : A—C' in terms of the flow graphs sequentia
composition, transposition and feedback. As in flow graphs, the composition in
interaction graphs defines both a connectiorand a containmentelation.

Using the properties of flow graphsone can easily show that sequential composition
isassociativeand hastheidentitiesas neutral elements. Henceinteraction graphsnodes
equipped with sequential composition define a category

What is Behind UML-RT? 81

A" | C
A ATAT ATA
B B ><
& m = IS
" A ATAT AAT
A C
min 2 ((Iar O man) sp 2% ic) (* POXWR o ia 2 AXA

Figure 6.9 Sequential composition and identity

Juxtaposition. By juxtapositionwe mean that nodes and corresponding arrows are
put one next to another, asshownin Figure 6.10, left. To obtain atextual representation

Al AE‘ |B1| B>
a m n
AlAl [BlB;

mrn o2 (i X) mrn); (it BX i)
Figure 6.10 Juxtaposition

for juxtaposition, we need thereforeajuxtaposition operator defined both an arrowsand
on nodes. We denotethisoperator also by * (hence x isan overloaded operator). Given
two arrows A; and A, their juxtapositionis expressed by A;*A> and defined in terms
of flow graphsjuxtaposition by (A *AF,A; A5). Given two nodesm:A; — B, and
n:As— By their juxtaposition is expressed as mxn: A, xAx— By *Bo and defined, as
shown in Figure 6.10, in terms of flow graphs juxtaposition. Similarly to sequential
composition, juxtaposition also defines a containment relation.

Aswith flow graphs, two nodes m and n may be visually attached in two different
ways. msxn, i.e., with m on the left or nxm, i.e., with n. on the left. Since we are
mainly interested in the “one near the other” relation, these two attachments should be
equivalent modulo a transpositionisomorphism X : AxB — BxA. We define the
interaction graphs transposition 4X2 in terms of flow graphs transposition as shown
in Figure 6.11, right.

A" B* B A

A" B* A B
A s W N
O }g
B* A* B A
A B B* A*
AxB a (A'XB'* B XA) B'*Ava'*B'

Figure 6.11 Interaction graphs transposition

Using the properties of flow graphsit is easy to show that juxtaposition is defined both
on arrows and on nodes such that it preserves identities and composition. Hence it

82 Chapter 6

is a functor. Moreover, it is associative, has a neutral element and commutes with
transposition. It therefore defines a strict symmetric monoidal category.

Duality and bend connectors. Each line A in the interaction graphs is defined by
apar (AT, A7) of flow graphs arrows, with A™ pointing in top down direction and
A~ pointing in bottom up direction. It makes therefore sense to think of reversing the
direction of these arrows. This is accomplished by a duality operator(.)* defined as
follows: A* = (AT, A7)* = (A~, A"). Dudity isinvolutivesince A** = A.

In order to extend duality to nodes we need two bend connectors. the bend unit
M4 : E— AxA* and the bend counitl, : A**A—E. The bend unit and counit are

A AT

AHA’ : A+A"—‘A'A+ AuA) M ><

AT A AT A
Ma

A AT

1>

o A'XA’

15

Ua A XA

Figure 6.12 Unit and counit bends

defined, as shown in Figure 6.12, by using the flow graphs transposition connector.
It isinteresting to note that M4 and LI 4 have the same definition (or implementation)
in the flow graphs category. However, their type in the interaction graphs category is
different which means that they are used in different contexts.

Nodes duality. Using the bend connectors one can extend the duality operation to
nodes. Given m : A—B wedefinem* : B*— A*, asshown in Figure 6.13, left. The

me = (g« [1a); (g * mxiy); (Ugxin)

Figure 6.13 Duality extended to nodes

duality on nodesisasoinvolutiveif m** = m. AsshowninFigure6.13, thisisindeed
the case if the unit (igCcc;) and counit (igCccy) axioms in Figure 6.14 hold. This
can be easily checked by using their definition. Moreover (igCcc;) and (igCccs) dso
say that (ia«)* =ia and (i4)* = ia-, i.e., that duaity preservesidentities. It isaso
easy to check that the involutive duality operators preserves sequential composition.
Hence, in mathematical terminology, duality is an involutive functor Since this
functor reversesthe direction of arrows and consequently the direction of composition,
it is caled a contravariantfunctor. The contravariant duality functor enriches the
interaction graphs with the structure of a compact closed categoigbbreviated as
igCcc). Thisstructureisvery rich and allows us to define feedback, curry and the data
nodes constructor as derived operators.

What is Behind UML-RT? 83

(igCccy) : Unit axiom (igCcc,) : Counit axiom (igCccy) : Sequential composition

A A A A*
A A A" A*
(Maxia); (iax Upa) = ia (ia* M) (Uaxia) = ia (m;n)y = n;om

Figure 6.14 Functor properties of duality

Nodes as Data. Using the bend connectors one can move any client arrow of an
interaction graphs node to its server side and any server arrow to its client side. In
particular, one can move al arrows either on the client side or on the server side.
Moving all arrows on the client side one obtains nodes very similar to the architecture
nodes in UML-RT. In this case, it is possible to connect two nodes only by using
the bend unit and the transposition connectors. As a consequence, the connected
arrows are requested to be dual. Thisis exactly what the graphical editor for UML-RT
architecture diagrams checks.

C C A A'B A A'B
A" B A" B B B
Acm) = (MMax ic); (ig* m) evalag S Uy * g

Figure 6.15 Curry isomorphism and eval connector

Moving all the arrows of an interaction graphs node to its server side transforms this
node into a data node Why is it a data node? Because its client interface becomes
empty and therefore no other client node may be sequentially connected to it anymore.
To use this node one needs therefore an evaluation operator, which applies the data
nodetoitsinput (or routesthe datato theinput). However, since changing theinterface
of anodeis merely a matter of convenience, the visual intuition tells us that between
real nodes and data nodes there should be a one-to-onecorrespondence.

The correspondenceis given by an isomorphism A¢:(AxC— B)—(C—(A*xB)),
known as curry and a distinguished connector eval 4 g : Ax(A*xB) — B, asshown
in Figure 6.15. Their definition is as expected a straight forward use of the bend
connectors. Using the properties of these connectors, one can easily check that the
relation between curry and eval is the one shown in Figure 6.16. The -axiom
says that bendingan input arrow of a node twice does not change the meaning of
the node. The n-axiom says that bendingan output arrow of a node twice does
not change the meaning of a node. The A-calculus equivalent for the 3-axiom is

84 Chapter 6

(igCcy) - P reduction (igCc) - n reduction
A C
A C C
B B A‘x B A B
m = (ip *Ac(m));evalpg h = Ac(ip* h)evapg)

Figure 6.16 The curry-eval axioms

m(a,c) = eval(a, \xz.m(z,c)). Since eval(a, f) is often written as f(a) the above
equation is also written asm(a, c) = (Az.m(z,c))(a). The A-calculus equivalent of
the n-axiom is h = Az.eval(x, h) or with the above convention h = Az.h(z). The
identifier = is supposed to not occur freein h.

Higher order nodes. Anelement of A* x B isadatanode f : E— A* x B. In order
to emphasizethat A* « B contains datanodeswe also use for it the arrow like notation
A—oB. Hence —o maps apair of interaction arrows A and B to an interaction arrow
A—oB. But what about nodes?

m—-n = m *n = Apep(Mrip.p); evalyg;n)

Figure 6.17 The definition of —o

Consider apair of hodes with arrowsin opposite (dual) directions, as shown in Figure
6.17, left. Textually, we denote this construction by m—on : (A—B) — (C'—oD).
It takes data nodesn A—oB as input and delivers data nodes in C— D as output.
Using curry and eval the meaning of m—on isdefined as shownin Figure 6.17, right.
Since A—oB is defined in terms of juxtaposition and duality, it inherits the properties
of both these operators, as shown in Figure 6.18. In mathematical terminology, —o is
a functor changing the direction of arrows in the first argument (the argument where
duality isapplied). Thisfunctor isaconsequence of the compact closure of interaction
graphs and the structure it determines together with evaland curry on these graphsis
that of aclosed categoryigCc stands for interaction graphs closed category). Closed
categories are models for the A-calculus, the calculus underlying all higher order
functional programming languages.

What is Behind UML-RT? 85

(igCcy: — preserves composition (igCcy): — preservesidentities
Al Az
Al Az
(qip) —=(pig) = (pr—pd; (r—) in,—a, = iaoa,

Figure 6.18 The functor axioms for —o

Feedback. The bend connectors allow us to define the feedback operataior inter-
action graphsin avery simple way as shown in Figure 6.19. Using the properties of

A

B
mfﬁvB =iy * M) (Mmwic);(ig xUg)
Figure 6.19 Feedback in acompact closed category

the bend connectorsit is easy to show that the interaction graphs feedback al so defines
atrace monoidal categorstructure on the underlying category (see [GBSS98]).

3.4 CONNECTORS

In the previous sections we already introduced four connectors: identityi 4, transpo-
sition 4X&, bend unit,4 and bend counitl4. While the bend connectors are new,

the identity and transposition connectors are extensions of the analogous flow graphs
connectorsto interaction graphs. A similar extension is possible for the identification
connector V , and the ramificationconnector A%,

Identification. Thedefinition of theinteraction graphsidentificationconnectorsT 4 :
E— AandVv, : Ax A — Aisshownin Figure 6.20. It is based on flow graphs
identification, ramification and transposition. Using the properties of flow graphsit is

A*Y AT A A

AVA V N \)/Q T T }4

A A A N A AT A A*

Va B (Var AN ATXATA Ta & (Tarin) s X5 (1 i)
Figure 6.20 Interaction graphs identification

easy to show that identification is associative, has neutral element and commuteswith
transposition. Hence, it defines amonoid structureon each arrow.

86 Chapter 6

Ramification. The definition of the interaction graphs ramificationconnectors 1.4 :
A— EandA? : A — Ax Aisshownin Figure 6.21. It is based on flow graphs
identification, ramification and transposition. Using the properties of flow graphs it

AT A A A*
A * A \/ A At A %
A A AT AT A A A At A A
M2 (/\A’* Vo) A’*A‘XA' 1A 2 (ip* Ta): ATy A D (ia* LA')

Figure 6.21 Interaction graphs ramification

is easy to show that ramification is coassociative has neutral element and commutes
with transposition. Hence, it defines a comonoid structuren each arrow. Moreover,
identification preserves ramification and the other way around, i.e., identification is
a comonoid morphism and ramification is a monoid morphism. Hence they define a
bimonoid structuren each arrow.

4. CONCLUSIONS

The main benefits of the graph theory defined in this paper can be summarized as
follows. Fird, it introduces a set of graph construction primitives in a consistent
way. This diminishes the arbitrariness in the choice of these primitives. Second, it
provides a mathematically precise semanticir these primitives. Thisis very useful
asareferenceboth for tool designersand for system devel opment engineers because it
eliminates misinterpretationThird, it providesa calculuswhich alowsusto compare
and to optimize designand even to do rapid prototyping.While the visual notationis
theinterfaceto system engineers, thetextual notationistheinterfaceto tool developers.

The calculus of flow graphs (see [GBSS98]) is a smpler, more general and more
intuitive presentation of the one given in the context of flow chartsin [CS90]. Models
of flow graphswere studied independently in the context of flow chartsin [CS90] and
in the context of data flow networks in [B87, GS96]. In [GSB98a] we show how to
combine these models to obtain a semantics for ROOM. This semantics is extended
for the hierarchical specification of hybrid systemsin [GSB98b)].

The calculus of interaction graphsis a simpler, more intuitive and more general
formulation of interaction categories (see [AGN94]) that uses ideas from [JSV96].
It is not only closer to UML-RT but, in our opinion, a better foundation for the
theory of typed concurrent systems. This was only possible by having in mind the
concrete implementation of UML-RT. A semantic model for this calculusis givenin
[GBSR99]. Itisasoinspired by the UML-RT implementation. Sinceit definesagame
semanticsfor interaction graphs, it isvery general too and it may be used to understand
concurrency.

The use of the interaction graphs theory in the context of visua formalisms, in
particular for UML-RT is new. It clearly shows that visual formalisms are not only
intuitive but also can have a deep underlying formal theory. In fact, we are using this
theory to compare, optimize and execute designs. Moreover, it is the best starting
point for verification techniques. In fact, we use this theory in the project Mocha

What is Behind UML-RT? 87

(see [AHM198]) for modular mode! checking. More generally, because of the deep
connection between interaction graphs and linear logic (see [A96]) other analysis and
verification techniques may be used as well.

References

[A96]

[AGN94]

S. Abramsky. Retracing some pathsin process algebra. In Seventh Inter-
national Conference on Concurrency Theory (Concur'96), Lecture Notes
Computer Science 105pages 21-33, 1996.

S. Abramsky, S. Gay, and R. Nagargjan. Interaction categories and the
foundations of typed concurrent programming. To appear in Proc. Mark-
toberdorf Summer School, 1994.

[AHMT98] R. Alur, T. A. Henzinger, F.Y.C. Mang, S. Qadeer, S. K. Rgjamani, and

[B87]
[CS90]
[GBSR99]

[GBSS98]

[GS96]

[GSB984]

[GSBI8H]

[JSV96]

[SR98]

S. Tasiran. Mocha: Modularity in model checking. To appear in the
Proceedings of the Tenth International Conference on Computer-aided
Verification (CAV 1998), Lecture Notes in Computer Science, Springer-
Verlag, 1998.

M. Broy. Semantics of finite and infinite networks of concurrent commu-
nicating agents. Distributed Computing2:13-31, 1987.

V.E. Cazanescu and Gh. Stefanescu. Towards a new algebraic foundation
of flowchart schemetheory. Fundamenta Informatica&3:171-210, 1990.

R. Grosu, M. Broy, B. Selic, and B. Rumpe. A formal foundation for
UML-RT. To Appear, July 1999.

R. Grosu, M. Broy, B. Sdlic, and Gh. Stefanescu. Towards a calculus for
UML-RT specifications. InH. Kilov, B. Rumpe, and I. Simmonds, editors,
Seventh OOPSLA Workshop on Behavioral Semantics of OO Business and
System Specifications, Vancouver, Canada, Monday, October,T19%h

19820, 1998.

R. Grosu and K. Stglen. A Model for Mobile Point-to-Point Data-flow
Networks without Channel Sharing. In Proc. of the 5th Int. Conf. on
Algebraic Methodology and Software Technology, AMAST'96, Munich
pages 505-519. LNCS 1101, 1996.

R. Grosu, Gh. Stefanescu, and M. Broy. Visua formalisms revisited.
In CSD '98, International Conference on Application of Concurrency to
System Design, Aizu-Wakamatsu City, Fukushi&&E, March 1998.

Radu Grosu, Thomas Stauner, and Manfred Broy. A modular visual model
for hybrid systems. In Formal Techniques in Real Time and Fault Tolerant
Systems (FTRTFT'98%pringer-Verlag, 1998.

A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Math. Proc.
Camb. Phil. S0¢119:447-468, 1996.

B. Selic and J. Rumbaugh. Using UML for modeling complex real-time
systems. Available under http://www.objectime.com/uml, April 1998.

88 Chapter 6

About the Authors

Radu Grosu studied computer science at the Technical University of Cluj. In 1994 he
received his PhD at the Technical University of Munich where he became a scientific
assistant. Since 1998 heis also avisiting researcher at the University of Pennsylvania.
Hisresearchinterestsincludetheoretical and practical aspectsinthedesignandanalysis
of reactive, real-time and hybrid systems. In particular he is interested in the formal
foundation of the software engineering's visual formalisms and worked in several
projects on thisissue. Currently at the University of Pennsylvania he is investigating
the analysis potential of visual formalisms both for reactive and for hybrid systems.

Manfred Broy is full professor of computing science at the Technical University
of Munich. His research interests are theory and practice of software and systems
engineering aspects includind system models, specification and refinement of system
components, specification techniques, development methods and verification. He
leads a research group working in a number of industrial projects that try to apply
mathematically based techniques and to combine practical approaches to software
engineering with mathematical rigor. Professor Broy is a member of the European
Academy of Sciences. In 1994 he received the Leibniz Award by the Deutsche
Forschungsgemeinschaft.

Bran Selicis Vice President of Advanced Technology, at ObjecTime Limited. He
has over 25 years of experiencein real-time software, focussing on distributed systems
and object-oriented development. He is the principa author of the textbook, "Real-
Time Object-Oriented Modeling” and is a core member of the team that defined the
Unified Modeling Language (UML), astandard for object-oriented analysisand design
that was issued by the Object Management Group (OMG). Bran is currently working
on applying UML to real-time development. He is aso co-chair of the Real-Time
Analysis and Design Working Group within the OMG.

Gheor ghe Stefanescu completed hisuniversity studiesat the University of Bucharest,
receiving a PhD degreein 1991. He spent 15 years as a researcher at the Institute of
Mathematics at the Romanian Academy. Currently he is Professor of Computer Sci-
ence at the University of Bucharest. He was visiting professor/researcher at various
universities, including Technical University Munich, Kyushu University, University of
Amsterdam, and Utrecht University. His main research interests are in forma meth-
ods applied to distributed computing and object-oriented systems, especially using
algebraic methods.

