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Abstract

We provide an automata-theoretic solution to one of the
main open questions about the UML standard, namely how
to assign a formal semantics to a set of sequence diagrams
without compromising refinement? Our solution relies on
a rather obvious idea, but to our knowledge has not been
used before in this context: that bad and good sequence di-
agrams in the UML standard should be regarded as safety
and liveness properties, respectively. Proceeding in this
manner, we obtain a semantics that essentially complements
the set of behaviors associated with the set of sequence di-
agrams, thereby allowing us to use the standard notion of
refinement as language inclusion. We show that refinement
in this setting is compositional with respect to sequential
composition, alternative composition, parallel composition,
and star+ composition.

1. Introduction

Scenario-based descriptions of the interaction among the
components of a distributed reactive system have long at-
tracted the attention of the software-engineering and the
computer-aided verification communities. Originally stan-
dardized in the telecommunication industry as message se-
quence charts [18], they played a key role in the software-
development methods SDL [8] and ROOM [25], and have
become a central component of the UML standard [10] un-
der the name sequence diagrams (SDs).

Various researchers have realized the importance of
equipping SDs with a formal semantics, thereby providing
SDs with a precise and unambiguous intention, and form-
ing the basis for powerful analysis algorithms and tools
[5, 7, 3, 17, 20, 21, 12, 15, 14, 26, 27, 28, 16].

∗R. Grosu was partially supported by the NSF Faculty Early Career
Development Award CCR01-33583.

In spite of these successes, there is still no unanimous
agreement on one of the main questions about SDs, namely
how can one assign a formal meaning to a set of SDs with-
out compromising refinement? The standard notion of re-
finement via simulation or language inclusion requires that
each observable behavior of an implementation is also an
observable behavior of the specification. An SD, how-
ever, may be composed with other SDs via sequential com-
position, alternative composition, parallel composition and
star+ composition (looping), and a direct translation of SDs
to automata (or partial orders) leads to implementations
with a larger number of behaviors than their corresponding
specifications.

In this paper, we provide a solution to this paradox by
defining a formal semantics for SDs that relies on a rather
obvious idea, but to our knowledge has not been used be-
fore: that bad and good SDs in the UML standard should be
regarded as safety and liveness properties, respectively. The
time-proven theory and practice of the safety/liveness clas-
sification gives us additional confidence in the usefulness
of our approach. To simplify the presentation, most exam-
ples in the paper consider SDs in the context of synchronous
concatenation [7]. Such SDs define regular languages hav-
ing associated (hierarchic) automata or regular definitions.
Our semantic construction is, however, independent of this
choice, and, as shown in Section 4.3, can be easily extended
to the case of asynchronous concatenation of bounded SDs.

Our semantic treatment of SDs proceeds roughly as fol-
lows: (i) Given a set of SDs, we translate each SD to a hier-
archic automaton that may contain negative states. (ii) We
separate the negative states from the positive ones by defin-
ing a construction that extracts a negative hierarchic au-
tomaton and a positive hierarchic automaton from the orig-
inal hierarchic automaton. (iii) We construct a safety Büchi
automaton from the negative hierarchic automaton and a
liveness Büchi automaton from the positive one. The safety
and liveness automata ensure that a trace that may either
lead to the completion of a bad scenario or prevent the com-
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Figure 1. (a)–(c) Basic sequence diagrams.
(d) High-level sequence diagram.

pletion of a good scenario is rejected. (iv) We take the
product of these two automata as the operational semantics
of the original set of SDs and the corresponding language
as the denotational semantics. (v) We define refinement
in terms of language inclusion; there is no need to con-
sider finer (more behavioral) notions of refinement as our
automata are input enabled. (vi) We show that refinement
is compositional with respect to sequential composition, al-
ternative composition, parallel composition and star+ com-
position.

The rest of the paper is organized as follows. Section 2
reviews the syntax of UML SDs. Section 3 shows how to in-
terpret SDs as hierarchic automata, while Section 4 shows
how to extract negative and positive automata from such
a hierarchic automaton. Section 4 also explains how such
a pair of automata can be transformed into the product of
a safety and a liveness automaton, which is subsequently
used to define a compositional notion of refinement. Sec-
tion 5 presents our compositionality results while Section 6
discusses related work. Section 7 contains our concluding
remarks and directions for future work.

2. Syntax of UML 2.0 SDs

The visual notation for a UML 2.0 SD is a solid rectan-
gle containing two parts: the name of the SD which occurs
after the keyword sd in the pentagon in the upper-left cor-
ner of the rectangle, and the body of the SD which occurs
in the center of the rectangle. SDs are classified according
to their body type as either basic SDs, as exemplified by the
set of basic SDs depicted in Figures 1(a)–(c), or high-level
SDs, as exemplified by the SD in Figure 1(d). High-level
SDs are referred to as “interaction overview diagrams” in
the UML 2.0 standard.

A basic SD focuses on the message interchange among
a set of processes. Each process is represented by a life-line
drawn as a (dashed) vertical line beneath a box containing
the name of the process, and each message is represented
by an arrow drawn from the sender to the receiver and dec-
orated with a message identifier. For example, the basic SD

init of Figure 1(a) contains two life-lines associated with
processes m and n, and one message decorated with mes-
sage identifier a.1

A high-level SD is intended to serve as an overview of
the flow of control among its constituent SDs, and is es-
sentially a flowchart whose nodes are either initial, final or
decision/merge points, or non-recursive references to basic
or high-level SDs. To increase readability, high-level SDs
may also contain fork and join points which allow one to
compose SDs in parallel.

The sequencing or concatenation of SDs implicit in a
high-level SD—e.g., the execution of init precedes that of
ack or nack in the high-level SD of Figure 1(b)—comes
in two varieties: synchronous and asynchronous. For the
synchronous concatenation of two SDs S1 and S2, an event
in S2 is assumed to happen only after all the events in S1;
in the asynchronous case, this restriction is lifted.

Basic SDs may also be visually partitioned into arbitrar-
ily nested interaction fragments, drawn also as rectangles
and containing an interaction operator and a set of inter-
action operands. The main UML 2.0 interaction opera-
tors include sequencing, alternation, option (representing a
choice between the enclosed operand and an invisible empty
operand), parallel, looping, and negative, which designates
an invalid execution sequence. Since most interaction op-
erators, with the notable exception of negative, can be cap-
tured by high-level SDs, we assume for simplicity that basic
SDs are flat (non-nested), but allow the negative operator
(denoted neg) to be applied to SDs; see, for example, SD
nack of Figure 1(a), which is a negative SD.

3. Closed-World Semantics of UML SDs

The formal semantics of SDs is traditionally given in
terms of a process algebra or partial orders. If, however,
SDs are bounded (see Section 4.3), one can equivalently
use nondeterministic finite automata as a semantic frame-
work. Such semantics are closed-world in the sense that
given a set of SDs, no new SDs may be added to it without
compromising refinement. However, the advantage of the
automata-theoretic approach is that it allows us (Section 4)
to respectively map negative and positive SD connotations
into “attempting an undefined transition” and “reaching a
state infinitely often” in the setting of Büchi automata. This
mapping forms the basis of our safety-liveness semantics
for UML SDs, and consequently allows us to prove that re-
finement is compositional in this setting.

Definition 1 (NFA) A nondeterministic finite automaton
(NFA) A = 〈Σ, S, δ, S0, F 〉 over an input alphabet Σ is a
5-tuple such that:

1SD names, message identifiers, arrowheads, etc. may additionally con-
tain information such as parameters and types. For simplicity, we do not
consider such extensions.
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• Σ is the input alphabet.

• S is a finite set of states.

• δ ⊆ S × Σ ∪ {ε} × S is the transition relation.

• S0 ⊆ S is a set of initial states.

• F ⊆ S is a set of accepting states.

An input sequence σ = σ1. . .σn is accepted by A if there
is a state sequence s = s0. . .sn such that s0∈S0, sn∈F and
for each i, the tuple (si, σi+1, si+1) is in δ. L(A), the set of
all accepted input sequences, is called the language of A. ✷

NFAs shall be used to provide a closed-world semantics
for basic SDs and, as such, we shall henceforth refer them
as basic NFAs. We shall do the same for high-level SDs,
and for this purpose we need a notion of a high-level NFA.

Definition 2 (High-level NFA) A high-level NFA is an
NFA such that each state is a basic NFA or another, non-
recursive, high-level NFA. Also, each transition of a high-
level NFA is labeled by ε. A formal definition of a high-
level NFA can be found in [7, 4]. ✷

The UML 2.0 semantics for SDs is based on an asyn-
chronous interpretation of communication, where the send-
ing and receiving of a message are considered to be distinct
events. A natural way of capturing this semantics is to asso-
ciate a partial order (PO) with each basic SD, where events
are ordered from top to bottom along process life-lines and
where the sending event at the tail of a message arrow is
uniquely related to and precedes the receiving event at the
head of the message arrow. Given the PO, one can obtain
an NFA from it by applying the classical PO-to-NFA trans-
lation scheme of [7]: (1) The states of the automaton corre-
spond to cuts, which are sets closed w.r.t. the partial order;
the empty cut is the initial state and the cut with all events
is the accepting state. (2) If cut d equals cut c plus a single
event e, then there is an edge from c to d labeled with l(e).
The labeling function l is given with respect to an input al-
phabet Σ, which is partitioned into sending tuples m:n!a
and receiving tuples n:m?a.

Example 1 (PO-to-NFA translation) Consider the SD of
Figure 2(a). The partial order it induces is depicted in
Figure 2(b), where sending and receiving events are rep-
resented as integers. Using the PO-to-NFA translation, we
obtain the NFA of Figure 2(c). For simplicity, transitions
are labeled by events e instead of l(e). ✷

We shall henceforth assume that basic SDs can be effec-
tively parsed to basic NFAs over an appropriate alphabet.
Moreover, since nesting in high-level SDs is non-recursive,
we shall similarly assume that high-level bounded SDs can
be effectively parsed to high-level NFAs.
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Figure 2. (a) Basic SD. (b) Associated PO.
(c) Corresponding NFA.

4. Safety-Liveness Semantics of UML 2.0 SDs

The main difficulty of the classical, closed-world seman-
tics for SDs is that it is not compositional. The standard no-
tion of refinement via simulation or language inclusion re-
quires that each observable behavior of an implementation
is also an observable behavior of the specification. An SD,
however, may be composed with other SDs via sequential
composition, alternative composition, parallel composition
and star+ composition (looping), and a direct translation of
SDs to partial orders (or automata) leads to implementations
with a larger number of behaviors than their corresponding
specifications. In this section, we present a solution to this
problem by defining a safety-liveness semantics for SDs.

4.1. From NFAs to Büchi Automata

UML 2.0 SDs are intended to capture the behavior of
reactive systems: those whose role is to maintain an ongo-
ing interaction with their environment rather than produce
some final value upon termination. NFAs are therefore not
an appropriate formal model for reactive systems, since ter-
mination should be viewed as an error rather than a desir-
able outcome. A more suitable formal model for SDs are ω-
automata: automata over infinite words. In particular, Büchi
automata are ω-automata requiring an accepting state to be
visited infinitely often for every accepted input sequence. In
the rest of this section, we show how to construct a Büchi
automaton for a given SD.

A standard way of avoiding (premature) termination
within a finite automaton is to allow the automaton to loop
forever in each accepting state. Accordingly, we extend the
NFA construction of Section 3 by adding a self-loop labeled
by Σ to each accepting state. This extension can be under-
stood as allowing looping regardless of the input. A state of
this nature is often referred to in process theory as Chaos,
and so it shall be here.

The closed-world semantics of Section 3 captures the
asynchronous communication paradigm inherent in SDs

3
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Figure 3. (a) High-level SD ini. (b) Associated
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by imposing a partial order among sending and receiving
events. To be more specific about the fact that processes
may operate at different speeds, but not too specific, we add
a τ self-loop to every state. Such a loop models the pos-
sibility of stuttering between events. In what follows, let
Στ = Σ ∪ {τ}.

Example 2 (Büchi automaton) The finite automaton of
Figure 3(b) corresponding to a closed-world view of SD
ini in Figure 3(a), becomes the Büchi automaton of Fig-
ure 3(c) if we modify its acceptance condition, add a stutter-
ing (self-loop) τ transition to each state, and add a Σ self-
loop (Chaos) to its accepting state. The language accepted
by this automaton is τ∗ m:n!a τ∗ n:m?a Σω

τ ✷

4.2. Positive and Negative Automata

As discussed in Section 2, a UML 2.0 SD may con-
tain arbitrarily nested interaction fragments, corresponding
to basic SDs embedded within a high-level SD. Interaction
fragments (and, thus, SDs) can be positive or negative, with
the latter indicated by the interaction operatorneg. Positive
and negative SDs, however, are intended to capture orthog-
onal properties, namely liveness and safety. For analysis
purposes, it is therefore convenient to separate the positive
from the negative parts.

To achieve this separation, we extract both a negative
high-level NFA and a positive high-level NFA from the
high-level NFA associated with a high-level SD, where each
node in the high-level NFA corresponds to either a posi-
tive or negative basic SD. The negative NFA is obtained by
turning all negative nodes into accepting sink nodes (with-
out outgoing transitions), and all other nodes non-accepting.
The positive NFA is obtained by removing all negative
nodes and all their associated transitions.

Example 3 (Positive/negative NFAs) Consider the high-
level NFA of Figure 4(a), corresponding to the high-level
SD iod of Figure 1(d). Making only its negative nodes ac-
cepting leads to the negative NFA of Figure 4(b). Deleting
the negative nodes and their associated transitions leads to
the positive NFA of Figure 4(c). ✷

(a)

εε
ε

εε ε εε
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nack
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nack
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Figure 4. (a) High-level NFA. (b) Negative high-
level NFA. (c) Positive high-level NFA.

4.3. From High-Level to Basic NFAs

Basic negative and positive NFAs (and their associated
Büchi automata) can be derived from their high-level coun-
terparts via flattening. A high-level NFA can be viewed as
a (non-recursive) hierarchy of NFAs with basic NFAs at the
leaf nodes. During the flattening process, only the accept-
ing states of basic NFAs that are descendants of accepting
nodes are preserved as accepting in the flattened NFA. All
other states are non-accepting. For a given high-level SD S,
we denote the resulting negative Büchi automaton derived
from S as neg(S) and the resulting positive Büchi automa-
ton as pos(S).

Sequencing or concatenation of NFAs is an implicit op-
eration in high-level NFAs. To flatten a high-level NFA,
we consider two forms of NFA concatenation derived from
their high-level SD counterparts. In the synchronous con-
catenation of two SDs S1 and S2, officially known as strict
sequencing in UML 2.0, all the events in SD S1 finish be-
fore any event in SD S2 occurs. Consequently, the language
L(S1 S2) of the concatenation of S1 and S2 is the concate-
nation L(S1)L(S2) of the languages of the component SDs.

In the asynchronous concatenation of two SDs S1 and
S2, officially known as weak sequencing in UML 2.0,
events are concatenated on a process-by-process (lifeline-
by-lifeline) basis. As such, events in S2 may occur before
the last event in S1 completes. For example, the NFA of
Figure 2(b) corresponds to the asynchronous concatenation
of S1 and S2, where S1 and S2 are the basic SDs corre-
sponding to messages a and b, respectively.

Under asynchronous concatenation, the language of a
high-level SD is not necessarily regular [9]. For example, in
the SD unb of Figures 5(a) and 5(b), process m can send ar-
bitrarily many messages a to process n before any message
is actually received by process n.

To avoid such pathological cases, Alur and Yannakakis
introduce in [7] a restriction of high-level SDs, called
bounded high-level SDs, which are shown to accept regu-
lar languages by providing a translation to basic NFAs. The
details of the translation can be found in [7], but we note
that we can directly apply it to positive and negative high-
level NFAs to obtain the desired positive and negative basic
NFAs.

4
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4.4. Safety Automaton

According to the UML 2.0 standard [24], a negative frag-
ment describes traces that are invalid and should therefore
never happen in an execution of the system. In other words,
a negative fragment is intended to capture a safety property.

Let N be a flattened, negative Büchi automaton con-
structed using the procedure described in Sections 4.1, 4.2
and 4.3, and let B = ¬N be the Büchi automaton asso-
ciated with the complement of N . B is not necessarily
a safety automaton (property), according to the definition
given in [1], because it is not limit-closed. An automaton is
limit-closed if all its infinite behaviors are completely char-
acterized by its finite behaviors. We now present a transfor-
mation that will render B limit-closed. A Büchi automaton
is reduced if it does not contain a state from which no ac-
cepting state is reachable. Note that any automaton can be
transformed to an equivalent reduced automaton.

Definition 3 (Safety property [1]) Consider a safety prop-
erty P that stipulates that a “bad thing” b never happens. If b
does occur within an infinite sequence α, then it must occur
after a finite prefix of α, and no matter how α is extended
after the occurrence of b, α is still a violation of P . Taking
the contrapositive:

∀α ∈ Σω
τ . α |= P ⇔ ∀i > 0. ∃β ∈ Σω

τ . α[1..i] β |= P

we get the formal definition of safety. ✷

Definition 3 can be seen as a formal justification for our
construction of Section 4.2, where the outgoing transitions
from the accepting states of the the negative high-level NFA
are deleted.

Definition 4 (Safety transformation [2]) Given a reduced
Büchi automaton B = ¬N , define Safe(B) to be the ver-
sion of B in which every state has been transformed into an
accepting state. ✷

Example 4 (Safety automaton) The transformation of the
SD of Figure 1(d) to the safety automaton in Figure 6(b)
can be summarized as follows: (i) Construct the associated
negative NFA as shown in shown in Figure 4(b). (ii) Flatten
this to obtain the NFA in Figure 6(a). (iii) Close this with
respect to stuttering and Chaos. (iv) Complement and re-
duce it. (v) Make all states accepting, as shown in Figure
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n:m!bn:m!c

m:n?b

n:m?a

(a) ~m:n!a
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n:m!b
~n:m?c τ

m:n!a

(b)

n:m!c

Σ,τ

m:n!a

τ

τ

τ
n:m?a

τ

Figure 6. (a) Negative automaton. (b) Corre-
sponding safety automaton.

6(b) where ∼a = Σ− {a}. Interpret the resulting NFA as a
Büchi automaton. This automaton rejects any omega-trace
in τ∗ m:n!a τ∗ n:m?a τ∗ n:m!c τ∗ m:n?c Σω

τ . ✷

The above construction is effective and transforms any
high-level NFA associated with an SD to a safety Büchi au-
tomaton. Since all states of the safety automaton are ac-
cepting, Safe(A) never rejects an input by failing to enter
an accepting state (lack of “good thing”).

Theorem 1 (Safety [2]) The Büchi automaton Safe(A)
specifies a safety property.

Proof sketch The proof proceeds by first observing that
Safe(Safe(A)) = Safe(A) and then by showing that a
reduced Büchi automaton B specifies a safety property if
and only if L(B) = L(Safe(B)).

4.5. Liveness Automaton

According to the UML 2.0 standard [24], the positive
fragments describe traces that are valid and should be pos-
sible. As a consequence, each finite execution should be
extendible to an execution where the positive trace even-
tually happens. In other words, the positive fragments are
intended to capture liveness properties.

Closing the positive automaton constructed in Sec-
tion 4.2 with stuttering and Chaos, does not necessarily lead
to a liveness Büchi automaton (property), as defined in [1].
The former still represents a closed-world safety constraint.
We now present a transformation that leads to an automaton
that is open to new behaviors, but rejects the ones prevent-
ing positive traces from happening, by infinitely stuttering
in a non-accepting state.

Definition 5 (Liveness property [1]) Consider a liveness
property P that stipulates that a “good thing” g eventually
happens. If g does not occur within a finite sequence α,
then α can be extended to an infinite sequence in which g
eventually occurs.

∀α ∈ Σ∗
τ . ∃β ∈ Σω

τ . α β |= P ✷
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Definition 6 (Liveness transformation [2]) Given a re-
duced Büchi automaton A representing the positive high-
level NFA P , define Live(A) to be the Büchi automaton
derived from A as follows: (i) Construct the automaton
Uns(A)=¬Safe(A). (ii) Take the union A ∪ Uns(A). ✷

All steps in Definition 6 are effective and Live(A) never
rejects an input that leads to an undefined transition in A
(presence of a “bad thing”).

Example 5 (Liveness automaton) The derivation of the
liveness automaton of Figure 7(b) from to the SD of Fig-
ure 1(d) can be summarized as follows: (i) Construct the
associated positive NFA as shown in shown in Figure 4(c).
(ii) Flatten this to obtain the NFA in Figure 7(a). (iii) Close
it with respect to stuttering and Chaos. (iv) Use the live-
ness construction (in this case this simplifies to adding a trap
state) to obtain the desired liveness Büchi automaton of Fig-
ure 7(b). This automaton rejects any omega-trace that may
prevent the positive behavior to complete: τω , τ∗ m:n!a τω ,
τ∗ m:n!a τ∗ n:m?a τω, and τ∗ m:n!a τ∗ n:m?a τ∗ n:m!b τω . ✷

Theorem 2 (Liveness [2]) The Büchi automaton Live(A)
specifies a liveness property. Moreover L(Live(A)) =
L(A) ∪ (Σω

τ − L(Safe(A)).

Proof sketch The proof proceeds by first showing that
L(Safe(Live(A))) = Σω

τ , and then showing that a reduced
Büchi automaton B specifies a liveness property if and only
if L(Safe(B)) = Σω

τ .

4.6. Safety-Liveness Semantics

We are now ready to give the safety-liveness semantics
for bounded UML 2.0 SDs.

Definition 7 (Safety-liveness semantics) For a bounded
SD S, let Sl = Live(pos(S)) and Ss = Safe(¬neg(S))

be the corresponding Büchi automata constructed as de-
scribed above. Then L(S) is given by L(Sl × Ss). ✷

Example 6 (Safety-liveness automaton) Taking the prod-
uct (conjunction) of the safety automaton of Figure 6(b) and
the liveness automaton of Figure 7(b), one obtains the de-
sired automaton for the SD of Figure 1(b). ✷

Theorem 3 (Safety-liveness semantics) L(S) is the set
L(Sl) ∩ L(Ss).

Proof sketch The language of the product of two Büchi au-
tomata is the intersection of the languages of the component
automata.

The safety-liveness semantics of an SD S rejects any in-
valid trace, i.e., a trace not in L(Safe(¬neg(S))), and any
trace that may prevent a positive behavior from happening,
i.e., a trace not in L(Live(pos(P ))).

5. Refinement of UML 2.0 SDs

In the early phases of software development, it is rarely
the case that one knows in advance all the positive and neg-
ative traces of the target system. Instead, these sets grow
gradually as the developer’s understanding of the system
increases. Refinement is a notion that captures this incre-
mental activity.

Definition 8 (Refinement) Let S1 and S2 be two (high-
level) SDs. We say that S1 refines S2, written S1 � S2,
if L(S1) ⊆ L(S2). ✷

We show below in Theorem 4 that it is possible to
express the notion of one SD refining another in terms
of the languages of their positive and negative compo-
nents. To do so, we first introduce the operators Safe
and Rej over ω-languages. Let A be a Büchi automa-
ton. Then Safe(L(A)) = L(Safe(A)) and Rej(L(A)) =
Safe(L(A))−L(A). Intuitively, the ω-traces in Rej(L(A))
are those that could prevent the completion of an ω-trace
in L(A). Furthermore, it follows from Theorem 2 that
L(Live(A)) = ¬Rej(L(A)).

Given a high-level SD S, let P = pos(S) and N =
neg(S). Rewriting L(S) in terms of Safe and Rej we
obtain:

L(S) = Safe(¬L(N)) ∩ ¬ Rej(L(P ))

Since ∩ and Safe are monotonic operations and since
L(N) appears complemented, increasing the set L(N) of
negative traces of S makes L(S) smaller, thereby pre-
serving refinement. Similarly, if Rej is monotonic, in-
creasing L(P ) preserves refinement. Unfortunately, this
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is not always the case: if L(P1) ⊆ L(P2) and L(P1) ∩
Rej(L(P2)) �= ∅ then Rej(L(P1)) �⊆ Rej(L(P2)). As
a consequence, to make sure that refinement for posi-
tive traces holds, we have to make sure that L(P1) ∩
Rej(L(P2)) = ∅.

Theorem 4 (Refinement) Let S1 and S2 be bounded SDs,
and for i = 1, 2, Pi = pos(Si) and Ni = neg(Si). Then
S1 � S2 if the following hold: (i) L(N2) ⊆ L(N1), (ii)
Rej(L(P2)) ⊆ Rej(L(P1)).

Proof sketch Follows from the monotonicity of ∩ and
Safe, and that Rej occurs complemented.

Corollary 1 (Ref1) Let S, T , U be bounded SDs and
assume that S+ is bounded, too and that L(pos(S)) ∩
Rej(L(pos(T ))) = L(pos(T )) ∩ Rej(L(pos(S))) = ∅
Then: (1) S U � S; (2) S+ � S; (3) S+T � S and
S+T � T ; (4) S‖T � S and S‖T � T .

Proof sketch Follows immediately from Theorem 4 and
Definition 7. S‖T translates to interleaving composition of
corresponding automata.

Example 7 (Refinement by sequential composition)
In Figures 8(a) and 8(b) we illustrate SD refinement by
sequential composition with strict sequencing. Figures 8(c)
and 8(d) show the corresponding automata. Obviously the
automaton of Figure 8(d) refines the one of Figure 8(c). ✷

Example 8 (Refinement by star composition) In Fig-
ures 9(a) and 9(b) we illustrate SD refinement by star com-
position with strict sequencing. In Figures 9(c) and 9(d) we
show the corresponding automata. Obviously the automa-
ton of Figure 9(d) refines the one of Figure 9(c). ✷

Example 9 (Refinement by plus composition) In Fig-
ures 10(a) and 10(b) we illustrate SD refinement by plus
composition. In Figures 10(c) and 10(d) we show the cor-
responding automata. Obviously the automaton of Fig-
ure 10(d) refines the one of Figure 10(c). ✷

sd inis

Σ,τ

Σ,τ

(a)

Σ,τ

Σ,τ

~n:m?b
n:m?b

τ

sd inis

m:n!b
~m:n!b

(b)
τ

~n:m!d

(c)

τττ

~m:n!b~n:m?b
n:m?d

~n:m?d
n:m!d

Σ,τ

(d)

n:m?b m:n!b

ack

ack1

ref

ref

ref ack

Figure 10. Refinement by plus composition.

Corollary 2 (Ref2) Let S, T and U be three bounded SDs
and assume that SDs (S)∗ and (T )∗ are bounded, too. Then:
(1) if T � U then S T � S U ; (2) if S � T then (S)∗ �
(T )∗; (3) if T � U then S+T � S+U and T +S � U +S
(4) if T � U then S‖T � S‖U and T ‖S � U‖S
Proof sketch Follows from Theorem 4 and Definition 7.

Example 10 (Sequential composition within star) In
Figures 11(a) and 11(b) we illustrate SD refinement by
sequential composition within star with strict sequencing.
In Figures 10(c) and 11(d) we show the corresponding
automata. Obviously the automaton of Figure 10(d) refines
the one of Figure 10(c). ✷

6 Related Work

The process algebraic [20] and partial-order [5, 17, 22,
7, 3, 21, 14] semantics are to our knowledge not compo-
sitional with respect to refinement and take a closed-world
approach; i.e., given a set of SDs, no new SDs may be added
to it. However, the main interest of these semantics was in
proving properties of distributed implementations and not
in refinement.
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Figure 11. Refinement by sequential composition within star.

Live sequence charts [12, 15] are an elegant, alterna-
tive automata-theoretic solution to the refinement question,
which relies on the optional/mandatory classification of
SDs to define a compositional semantics. This classifica-
tion, however, is also a departure from the good/bad classi-
fication of the UML standard.

Triggered message sequence charts [26, 27, 28] seem to
be closest in spirit to our approach, as they classify SDs
into prescriptive (“do this”) and constraint-based (“don’t
do that”). However, their formal semantics and refine-
ment notion is based on DeNicola and Hennessy’s must pre-
order [23].

An interesting trace-based approach is advocated in
STAIRS [16], where SD behaviors are classified into pos-
itive, negative and inconclusive. While intuitively appeal-
ing, the formal treatment is essentially restricted to a closed-
world view of the positive behaviors.

The approach presented in [13] considers a closed-world
semantics for MSCs. However, in order to define an
assume-guarantee rule for determining whether a network
of processes satisfies an MSC, a safety-liveness construc-
tion similar to our own is used to synthesize, for each pro-
cess, a cooperating environment. Cooperation is understood
as not violating the expectations of the associated processes,
nor preventing them from making progress.

Other approaches, e.g. [19, 11], also approach the re-
finement problem by appealing to a semantics that departs
from the closed-world one. None of these, in our opinion,
achieves the simplicity and conceptual clarity of our safety-
liveness semantics for SDs.

7. Conclusions

We have presented an automata-theoretic semantics for
scenario-based descriptions (SDs) of reactive systems that
solves in a simple and elegant way one of the main open
questions about the UML 2.0 standard: how can one assign
a precise meaning to a set of SDs without compromising re-
finement? Our semantics relies on the observation that bad
(or negative) and good (or positive) SDs in the UML stan-

dard should be regarded as safety and liveness properties,
respectively.

More formally, given a set of UML SDs, for each SD
in the set, we construct two Büchi automata, one expressing
safety and one expressing liveness, and take their product as
the SD’s semantics. Our approach has several salient prop-
erties. First, it targets all key aspects of the UML standard
and is thus close to engineering practice. Secondly, it allows
us to interpret SD refinement, e.g. by SD extension or addi-
tion of new SDs, in a canonical way as language inclusion.
Finally, it allows us to regard a set of SDs as a pair of tem-
poral properties to be satisfied by future implementations.

Our refinement results for SDs, as characterized by
Corollary 2, provide a direct technique for checking SD
refinement in a compositional setting: given two bounded
SDs S and T such that S refines T , S continues to refine
T in the contexts allowed by Corollary 2. When such com-
positional reasoning is not possible, our results support the
development of a general-purpose model checker for prop-
erty and refinement verification of SDs. The translation of
high-level NFAs to positive and negative high-level NFAs
can be performed in linear time. The translation of the neg-
ative/positive NFAs to their corresponding safety/liveness
automata, as presented in Section 3, is exponential due to
flattening [7]. An interesting question is whether flatten-
ing can be avoided in the case of synchronous concatena-
tion. Intuitively, one could apply stuttering, chaos, safety
and liveness closure to each node of the high-level SD; for
each node, the closure is linear in the size of the associated
NFA. Reachability analysis of the high-level safety/liveness
product automaton is PSPACE-complete [6].

As future work, we plan to investigate how the se-
mantic notions of mandatory-optional (from Live sequence
charts [12, 15]), prescriptive-constraint-based (from Trig-
gered message sequence charts [26, 27, 28]), and safety-
liveness SDs are interrelated, and if it is advantageous to
mix these classifications.

Acknowledgments: We thank Ingolf Krüger and Alexan-
der Knapp for useful comments on a draft version of this
paper.
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