
High Performance Analytical Pathology Imaging 

Database for Algorithm Evaluation 

Fusheng Wang, Jun Kong, Jingjing Gao, Cristobal Vergara-

Niedermayr, David Adler*, Lee Cooper, Weian Chen, Tahsin Kurc, 

Joel Saltz 

Center for Comprehensive Informatics, Emory University, Atlanta, GA, USA 
* IBM Spatial Database Technology, Poughkeepsie, NY, USA 

Abstract.  Algorithm evaluation provides a means to characterize variability 

across image analysis algorithms, validate algorithms by comparison with 

human annotations, synergize results from multiple algorithms for performance 

improvement, and facilitate algorithm sensitivity studies. High-resolution 

pathology images contain rich micro-anatomic information. An enormous 

amount of data can be derived from these images – e.g., 106-107 objects and 

features from a whole slide image with 1010 pixels resolution. The sizes of 

images and analysis results pose significant challenges in validating and 

comparing pathology imaging algorithms. Addressing these challenges requires 

a high performance computing approach for managing and querying spatial 

objects and features. Our work proposes and develops a high performance, 

database-supported framework to support algorithm validation and comparison. 

1 Introduction 

Evaluation and validation of image analysis algorithms is an important component in 

biomedical imaging studies, because the efficacy of an analysis pipeline generally 

depends on the characteristics of specimens and images used in the study, types of 

image processing operations employed, and the study objectives. A systematic 

approach for algorithm evaluation can facilitate the development of refined 

algorithms that can better support biomedical research and computer aided diagnosis. 

It can also substantially help the development of common training and test datasets 

from various sources to establish public shared data archives with well-understood 

results and algorithm performance and to support further algorithm evaluation in a 

community of researchers. However, algorithm evaluation and comparison 

frameworks have to address data processing, management, and query requirements 

arising from large volumes of image data and analysis results.  We propose, develop, 

and evaluate a high performance, database-supported system to support validation 

and comparison of image analysis algorithms targeting high-resolution microscopy 

images.  

Our work is motivated by whole slide image analysis studies carried out as part of 

integrative in silico experiments at the In Silico Brain Tumor Research Center 

(ISBTRC), one of the NCI caBIG In Silico Research Centers of Excellence 

(https://wiki.nci.nih.gov/display/ISCRE). ISBTRC is a collaborative effort of four 



institutions: Emory University, Thomas Jefferson University, Henry Ford Hospital, 

and Stanford University, and focuses on integrative translational research on brain 

tumors by analyzing complementary data types (genomics, imaging, clinical 

outcome). Microscopy image analysis algorithms are central to in silico experiments 

carried out at ISBTRC. These algorithms are used to extract, quantify, and classify the 

spatial features and characteristics of high-resolution whole slide tissue images. The 

results from image analyses are correlated with genomic and clinical outcome data to 

develop better biomarkers and study the mechanisms of disease progression.  In this 

paper, we focus on segmentation algorithms as a case study. The segmentation step in 

pathology image analysis is critical to the success of downstream analysis steps such 

as feature computation and classification. 

The need for algorithm evaluation and comparison arises in many ISBTRC image 

analysis cases. i) Algorithm Validation. Algorithms are tested, evaluated and 

improved in an iterative manner. This involves a formal testing phase where 

segmentations done by pathologists are captured and compared to an algorithm’s 

output. The results are evaluated to assess inter-observer variability between 

pathologists, between algorithms and humans, and between different algorithms. ii) 
Algorithm Consolidation. Multiple algorithms can be developed in a study to solve 

the same problem. Different algorithms may have their own unique strengths on 

analyzing images of certain characteristics. In those cases, an array of algorithms can 

be aggregated in a complementary way. Consolidating results from multiple 

algorithms (i.e., an ensemble approach) can lead to better analysis results. iii) 

Algorithm Sensitivity Studies. An algorithm often includes a set of parameters that 

can be adjusted to adapt to different types, resolutions, and qualities of images. 

Exploring the sensitivity of analysis output with respect to parameter adjustments can 

provide a guideline for the best deployment of algorithms in different scenarios and 

for rapid development of robust algorithms.  

    A major challenge to efficient execution of these cases is the vast amount of image 

data and analysis results. ISBTRC has collected over 700 whole slide images with a 

goal of expanding to approximately 3500 slides in the next couple of years. State-of-

the-art tissue slide scanners are capable of producing high-magnification, high-

resolution images from whole slides and tissue microarrays within several minutes. 

One single whole slide image can contain 10
10

 pixels and 10
6
-10

7
 biological objects of 

interest such as nuclei. A brute-force pair-wise comparison between results from two 
analyses of a single whole slide image could incur a complexity of O(n

2
) -- 10

12
 

operations, where n is the number of objects, with additional extensive I/O cost for 

reading the data. An efficient mechanism is needed to manage large volumes of 

results (along with provenance information). Moreover, the mechanism should 

support computational and data intensive queries – such as spatial join queries for 

comparison of image markups associated with different analysis results.  

Algorithm validation has been studied for medical imaging [1].  Much work has 

been done for modeling image analysis results, including the work done by the caBIG 

Annotation and Image Markup project (AIM) [2] for radiology images, the Open 

Microscopy Environment project (OME) for cell imaging[3], and DICOM Structural 

Reporting for human annotations [4]. Biomedical imaging databases have been 

developed for managing results [3, 5, 6, 7]. However, they are not designed to provide 

support for data querying and retrieval for algorithm evaluation workflows. The use 



 

 

of parallel and distributed computing for analysis enables researchers to process 

image data rapidly and produce large volumes of analysis results. For example, a 

distributed system has been developed by Yang et al. for computer-aided analysis of 

digitized breast tissue specimens [8]. Our work differs in that we propose a database-

based approach to support algorithm evaluation by systematically managing large-

scale results from algorithms and human annotations and supporting efficient queries 

using a parallel database architecture.     

2 Algorithm Evaluation Workflows and Queries 

We present an algorithm comparison workflow employed in ISBTRC studies as a 

motivating example (see Figure 1). The workflow consists of the following steps: 1) 
Multiple algorithms or algorithms with different parameters are applied to non-

overlapping image tiles partitioned from whole slide images. Note that tiling is a 

common practice for pathology image analysis. Tiling of an image is done either by 

padding tile boundaries to include objects on boundaries (in most cases, objects, such 

as cells and nuclei, to be segmented are relatively small), or  objects on tile 

boundaries are discarded when the final analysis result is a statistical aggregation; 2) 

results and provenance information are represented and managed in a database; 3) the 

results are queried for comparisons of objects and features extracted by the algorithms 

-- for example, to find the overlap-to-intersection ratio and centroid distance of 

intersected markups; and 4) for algorithm consolidation, analysis results are either 

filtered or aggregated based on certain criteria, and for algorithm sensitivity study, 

changes in results are recorded and stored as algorithm parameters are varied. 

Algorithms are applied to image tiles comprising whole slide images, thus the process 

of executing algorithms and carrying out result comparisons is highly data and 

computational intensive. In this paper, we focus on the data management and query 

aspect, and the workflow execution is left for future discussions.  

 

                   

Fig. 1. Algorithm comparison workflow 

We should note that this workflow can be modified to support algorithm validation, in 

which algorithm results are compared with human annotations, as seen in Figure 2. 

Even a single tile derived from a whole-slide image can contain tens of thousands of 

nuclei, making it infeasible for human annotators to mark boundaries for all objects in 

a tile. Thus, the algorithm validation workflow divides tiles into smaller regions 

(subregions) – e.g., a subregion could be an 8x8 division of a tile. In this way, an 

image dataset used in validation is organized by three hierarchical spatial concepts in 

increasing order of granularity: slide, tile, and subregion.  



These two workflows involve several common query types. The first type of query 

is the spatial join query, i.e. spatial operations used to combine two or more datasets 

with respect to a spatial relationship. There are two steps involved in this query type: 

spatial filtering based on spatial relationships, such as intersection, and spatial 

measurements based on computational geometry algorithms, such as area, centroid, 

distance, and union of polygons. In our case, all segmentation result comparisons are 

performed through spatial joins by computing overlap-to-intersection ratio and 

centroid distance of markup pairs represented in polygons. The second type of query 

is the spatial containment query.  In some cases, algorithm-generated results in certain 

regions are used for validation or comparison purposes. In this case, containing 

regions are pre-generated for subsequent analysis as a filtering condition, with which 

nuclei in tumor regions are retrieved by a spatial containment query that only returns 

markup objects of nuclei contained in said tumor regions.  The third type of query 

involves finding objects contained in subregions and computing the density of those 

objects. This query is useful in spatial sampling approaches for algorithm validation. 

For example, a stratified sampling method can use this type of query to select 

subregions grouped by the densities of objects in those subregions. 

 

Fig. 2. Algorithm validation workflow 

3 Pathology Analytical Imaging Database and Query Support  

3.1 PAIS database 

To manage algorithm results, human annotations and provenance, and to efficiently 

support complex queries, we employ a system called PAIS (Pathology Analytical 

Imaging Standards) [9, 10].  

The PAIS data model consists of 62 UML classes, representing information on 

markups (spatial shapes representing regions, cellular or subcellular objects), 

annotations (including calculated features or observations such as classifications 

associated with markups), and provenance (image references, analysis, algorithm and 

parameters).  PAIS provides highly generalized data objects and data types, flexible 

relationships across objects. Geometric shapes such as polygons are used to represent 

the boundaries of segmented objects, such as tumor regions, blood vessels, and nuclei. 
Algorithm results are converted into PAIS format by PAIS DocumentGenerator to be 

loaded into the database. The highly generalized PAIS model enables the support of 

different algorithms.  



 

 

PAIS employs a spatial DBMS based implementation for managing data – we have 

used IBM DB2 with Spatial Extender[11] in our implementation.  There are three 

major types of tables involved in the PAIS database: i) Spatial tables for 

representation of markup objects with geometric shapes. Spatial DBMS provides 

extensions to RDBMS to support spatial data types such as ST_POLYGON and 

ST_POLYLINE; ii) Feature and observation tables to capture calculated features, 

such as area, perimeter, and eccentricity, and descriptive observations, such as 

classifications of regions or nuclei; and iii) Provenance tables to represent image 

references, subject, specimen, the user performing the analysis, the analysis purpose, 

and the invoked algorithms. The database implementation provides dozens of 

functions to support comparison of relationships across spatial objects. Some most 

commonly used relationship functions include intersects, overlaps, within, contains, 

and touches, among others. It also provides numerous spatial measurement functions, 

including those to compute the area and centroid of a spatial object, to calculate the 

distance of two spatial objects, and to generate an intersected region (a spatial object 

generated from two spatial objects). Note that PAIS manages image analysis results – 

original images are managed in a separate database. 

 

Fig. 3. Workflow for generating density data for sampling 

Representing results in a structural format and managing them in a database provide 

significant advantage for expressing complex queries in SQL query language. 

Furthermore, extended built-in spatial functions make it easier to support workflows 

involving spatial operations. For example, as presented in Section 2, object densities 

in image subregions can be used as criteria for stratified sampling. Figure 3 illustrates 

database support for performing density computations and stratified sampling. 

To compute the object density for subregions, we partition tiles to produce 

subregions. An initial segmentation of all markups is performed by a segmentation 

algorithm, and all segmented markups are stored in a MARKUP_POLYGON table 

[12, 13]. Then subregion size is defined in a way such that each subregion contains a 

reasonable set of objects that could be annotated by a human within a single short 



session, e.g., within 10 minutes. With the size information, each tile of an image 

space is divided into subregions and captured in SUBREGION table in the database. 

SUBREGION contains PAIS_UID, TILENAME, SUBREGIONNAME, (X,Y) 

coordinates of the top-left corner of the subregion, WIDTH, HEIGHT, and a 

POLYGON to represent the boundary of each subregion. After the production of 

markups and subregions, markup and subregion containment relationship can be 

decided using a spatial containment query, as shown in Figure 4.  In this query, the 

conditions specify that markups and regions are from the same tile and same image, 

and regions contain markups. The result is then inserted into the 

SUBREGION_MARKUP table. From this table, an aggregation query to compute 

and to filter the density for each region could be easily specified with a GROUP BY 

clause for each subregion. 
 

 

Fig. 4. Query to generate subregion and markup containment relationships 

3.2 Parallel Database Architecture  

A major bottleneck for many database management systems is the I/O bottleneck. An 

evaluation of spatial queries in our studies has shown that most of the query execution 

time is spent in I/O and high I/O overhead is incurred, when executing aggregation or 

spatial join queries. In this section we describe the parallel database approach we have 

employed to address this issue.  

I/O bandwidth can be increased through data partitioning and parallel data access. 

In our work, we use a shared-nothing parallel database architecture to manage and 

query PAIS data to provide scalable data management and to speed up complex 

queries. Figure 5 illustrates this architecture in which multiple database instances are 

run on separate physical nodes. We also refer to these nodes as database partitions 

(Partition 1, Partition 2, …, and Partition N). Each node has its own disks, CPU and 

memory, and the partitions are connected through a fast switched network. There is 

one master node and multiple slave nodes. The master node accepts queries from 

users, translates and parallelizes queries across all nodes, and aggregates the results – 

this enables the simplicity and expressiveness of SQL queries as such distributed 

parallel query execution is transparent to users. Our implementation employs IBM 
DB2’s parallel query execution support [14]. This support provides a single logical 

view of partitioned data so that clients can compose SQL queries as if they interact 

with a serial database with no data partitioning.  

   One major challenge for a shared-nothing architecture is load balancing, i.e., how to 

distribute data and computational load evenly across all partitions. A skewed data 

distribution can lead to bottlenecks and deteriorate overall performance. We have 

implemented two different approaches for partitioning data: partitioning based on 

images and partitioning based on tiles.  The first approach distributes all of the 



 

 

segmentation and feature results obtained from a whole image onto the same node, 

and the second approach distributes all results from a tile onto the same node. The 

second approach has the benefit of speeding up queries on a single image, as tiles 

could be queried simultaneously on multiple nodes.  

Whether it is applied on tiles or images, the partitioning algorithm tries to minimize 

data communication overhead across partitions for efficient spatial joins between 

different result sets. Given multiple algorithm results from a list of tiles, the algorithm 

distributes the results across multiple nodes such that 1) the amount of results on each 

node is the same across all the nodes and 2) results from different algorithms on the 

same tile are assigned to the same node. The algorithm reads the list of tiles and the 

sizes of result sets associated with these tiles for each analysis run. It then executes a 

bin-packing heuristic, where each node represents a bin, to distribute the tiles across 

nodes as follows. The algorithm sorts the tiles in descending order of the total result 

size of each tile. Starting from the top-most tile, it assigns the tile to the node with the 

minimum results set size and increments the results set size of the node by the size of 

the tile’s results set. The algorithm proceeds down the sorted list, assigning the 

current tile to the node with the minimum results set size and incrementing the node’s 
results set size by the tile’s results set size.   

In our implementation of the parallel PAIS database the partitioning algorithm is 

invoked to generate a HashMap to store the (title, partition_key) pairs. When data is 

loaded to the parallel database, the partition_key is read from the HashMap for each 

data insert, and the database automatically distributes the data element to the right 

partition when the insert is executed. Each database partition is stored on the local 

disk attached to the corresponding node.   

 

Fig. 5. Partitioning based parallel database architecture 

In order to further reduce I/O overhead, each partition creates a spatial index on local 

data.  There are a number of indexing and data access methods [15] to support 

efficient spatial queries. These methods can be categorized into two main classes: 
space based and data based. Grid indexing is a common space based approach, where 

space is partitioned into fixed grid cells. R-Tree indexing [16], on the other hand, is a 

common data based approach. In our work, grid based indexing is used, as shown in 

Figure 6.  Each spatial region is divided into multi-level grids and indexed. These 



grids can be used to efficiently identify spatial intersections of markups in spatial 

joins. For example, in order to find the intersected markups of the green markup in 

grid cell (5,2) based on the minimal bounding box of the markup, the grid cell number 

is generated. Then all the markups of the other dataset (in red color) that intersect this 

cell are retrieved based on the grid index. These markups are further filtered by 

geometric computation. Thus, the total number of markups to be compared is 

significantly reduced via the grid based indexing.  

 

Fig. 6. Fixed grid indexing to support spatial join queries 

4 Experimental Performance Evaluation 

We have performed experiments with different partitions using IBM DB2 as the 
underlying relational database management system. We used a cluster machine with 

five nodes. Each node has two quad-core CPUs and 16GB memory (only a single core 

is used for each database instance) and runs 64-bit CentOS 5.6. We use IBM 

Infosphere Data Warehouse edition Vesion 9.7.3 with DB2 partitioning feature as our 

database engine. We have DB2 setup with five partitions on five cluster nodes. The 

dataset includes 18 whole-slide microscopy images analyzed by two methods. The 

total number of spatial objects is about 18 million and the average number of spatial 

objects per image is 0.5 million. Analysis results from different runs are stored in 

files. We use file size as results set size for the partitioning algorithm in order to avoid 

the expensive process of parsing the file for spatial objects twice – once for counting 

the objects and once for loading the objects to the database.   

We report the results of two experiments in Figures 7 and 8: one experiment looks 

at the distribution of data across backend nodes, the other measures the reduction in 

execution time of spatial joins. The spatial joins in our experiments involve 

comparison of overlap-to-intersection ratios and centroid distances between markups 

from two result sets generated for a single whole slide image.  Figure 7 shows the 

object distribution across five nodes. As is seen in the figure, while partitioning is 
estimated on file sizes, the objects are almost evenly distributed. The results indicate 

that the bin-packing scheme works well and the file size provides a good 

approximation of number of spatial objects. Figure 8 illustrates spatial join query 

speed up from a single node setup to a five-node setup for an example image with 2 

million markup objects. The results show that linear speedup is achieved with our 



 

 

partitioning approach. The partitioning algorithm allows the DB2’s parallel query 

support to take advantage of partitioned data for higher I/O bandwidth. In addition, 

indices set up on each node reduce the local I/O overhead on each node.   

 

Fig. 7. Performance of data partitioning with five computation nodes 

 

Fig. 8. Performance of spatial join queries for comparing two analysis results for an example 

image 

5 Conclusions 

Pathology image algorithm validation and comparison is essential to iterative 

algorithm development and refinement. The critical component for this is to support 

efficient spatial join queries between results. In our work, we develop an efficient data 

model and parallel database approach to model, manage and query large volumes of 

analytical image result data. Our experiments demonstrate that a bin-packing based 

data partitioning strategy combined with grid-based indices result in good data 

distribution across database nodes and reduce I/O overhead in spatial join queries 

through parallel retrieval of relevant data and quick subsetting of datasets.  
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