
ENABLING ONTOLOGY BASED SEMANTIC QUERIES IN BIOMEDICAL

DATABASE SYSTEMS

Shuai Zheng

Department of Mathematics and Computer Science, Emory University
Atlanta,Georgia, USA

shuai.zheng@emory.edu

Fusheng Wang

Department of Biomedical Informatics, Emory University

Atlanta,Georgia, USA
fusheng.wang@emory.edu

James Lu

Department of Mathematics and Computer Science, Emory University

Atlanta,Georgia, USA

jlu@mathcs.emory.edu

Received (Day Month Year)

Revised (Day Month Year)

Accepted (Day Month Year)

There is a lack of tools to ease the integration and ontology based semantic queries in biomedical

databases, which are often annotated with ontology concepts. We aim to provide a middle layer

between ontology repositories and semantically annotated databases to support semantic queries

directly in the databases with expressive standard database query languages. We have developed a

semantic query engine that provides semantic reasoning and query processing, and translates the

queries into ontology repository operations on NCBO BioPortal. Semantic operators are

implemented in the database as user defined functions extended to the database engine, thus

semantic queries can be directly specified in standard database query languages such as SQL and

XQuery. The system provides caching management to boosts query performance. The system is

highly adaptable to support different ontologies through easy customizations.We have implemented

the system DBOntoLink as an open source software, which supports major ontologies hosted at

BioPortal. DBOntoLink supports a set of common ontology based semantic operations and have

them fully integrated with a database management system IBM DB2. The system has been deployed

and evaluated with an existing biomedical database for managing and querying image annotations

and markups (AIM). Our performance study demonstrates the high expressiveness of semantic

queries and the high efficiency of the queries.

Keywords: Semantics; Ontology; Biomedical Databases

1. Introduction

Biomedical ontologies have proliferated in biomedical domains to support semantic

queries, semantic interoperability and data integration [1, 2]. The National Center for

Biomedical Ontology (NCBO) BioPortal [3, 4, 5] alone hosts nearly five million terms

for about 329 ontologies. Example ontologies include NCI Thesaurus (NCIt) for cancer,

RadLex [6] for radiology image annotations, GO [7] for genes, etc.

Increasingly, biomedical databases are becoming semantic enabled through semantically

annotated data models, i.e., data objects are described through links to ontological

concepts. Examples include AIM model for NCI Image Markup and Annotation project

[8], and the pathology analytical imaging standards (PAIS) project [9, 10, 11], which use

the following attributes to describe semantically linked concepts: codeValue -- the unique

identification code for the concept, codeName -- the meaning of the concept code,

codingSchemeDesignator -- the ontology or controlled vocabulary where the data

element depends on, and codingSchemeVersion -- the version of the

codingSchemeDesignator. While storing data in RDF triples is attractive, in reality, re-

implementing an existing database with different data stores and query languages may

not be realistic. Instead, annotated biomedical databases often take the standard SQL

table based data representation, with additional attributes for the ontology based semantic

annotations. Recently XML has become a popular data model and XML databases can

be used to support similar annotated data through adding additional attributes.

Such semantically annotated databases provide the opportunity to support ontology based

semantic queries. For example, a concept may be relaxed to provide more semantically

related results: one may return descendant terms "gliosarcoma" and "giant cell

glioblastoma" when a term "astrocytoma (WHO grade IV)" is posed in a query. Such

operations need interplay between ontology queries and database queries, and require

querying an ontology repository and integrating the results into database queries for

further processing. Custom coding to support such queries is possible, but requires major

programming on manually translating queries back and forth between databases and

ontology repositories. Such an approach is not generic either, and repeated development

is needed for similar queries for each new database. Meanwhile, database users often

prefer writing queries with a declarative query language, such as the structured query

language (SQL) for tabular data and the XML query language (XQuery) for XML data.

For example, for above concept relaxation query, a user may want to specify a SQL

query with a simple extended function like getHyponym(term), without any additional

programming. A declarative query interface based approach is generic: once developed,

the interface can be used for different queries and databases. This will save major

development effort, and provides high usability for end users.

 The gap in support for convenient ontology based queries in biomedical databases is

exacerbated by the limitations of current biomedical repositories, including complex

interfaces, primitive query operations, and overhead of network communications. While

biomedical repositories such as NCBO BioPortal provide the management and query

capabilities for ontologies, the query interfaces are normally designed for machine

consumption and are cumbersome for humans. For example, for the getHyponym query

to retrieve a list of descendant terms, it can be supported by writing codes to submit

queries to an ontology repository, e.g., NCBO BioPortal. The results returned from

NCBO BioPortal interfaces, however, are very complex XML documents that have to be

parsed, filtered and aggregated before further processing. In addition, ontology

repositories normally provide primitive queries. To support a complex semantic query

such as getHyponym, a user has to develop his/her own application with multiple queries

on the ontology repository and additional semantic reasoning on query results. For

example, for getHyponym query, recursive calls have to be called until no more

descendant nodes are found. Invocation of multiple queries from a remote repository also

leads to inefficiency due to the network overhead. For example, it takes 162 seconds to

retrieve recursively all descendant concepts of a concept with a depth of 4 based on the

NCI Thesaurus ontology (NCIt) [12] hosted at BioPortal.

The limitation and mismatch of ontology repositories make it difficult to directly support

the requirements of declarative, expressive and reusable semantic queries on biomedical

database systems. This motivates us to develop DBOntoLink, a system to provide a

middle layer between ontology repositories and semantically annotated databases to

support semantic queries in the databases with declarative languages and interfaces.

DBOntoLink provides the following salient features.

Expressive semantic query operators. The system generalizes a comprehensive set of

ontology based semantic operators. These semantic operations include basic information

of concepts, relations between concepts, as well as advanced ontology reasoning.

Generalized semantic operations simplify the usage of ontology, thus extend the utility of

existing ontologies.

Tight integration of semantic operators with the database engine. The semantic

operators are implemented in the database management system as extended user defined

functions thus expressive ontology based semantic queries can be directly specified in

structural query language (SQL) or XML query language (XQuery), without any

programming needed. This makes it highly expressive and convenient to run semantic

queries against ontologies.

Extensible to different ontologies and databases. The configuration management

provides easy customization to define the mapping between relation labels and

conceptual meanings, and the mapping between ontology names and versions. This

enables the system with high adaptability to support major ontologies, such as those in

NCBO BioPortal. The software can be quickly deployed to different biomedical

databases through simple customization.

High efficiency on semantic queries. The caching management automatically caches

ontology concepts and relationships in the database from executed queries, which

significantly boosts the query performance.

2. Background

2.1. Related Work

An ontology represents concepts and relations between concepts in forms that can be

interpreted by both humans and machines. Many biomedical ontologies have been

developed in the past for different domains [1, 2, 6, 7, 12]. Most of these ontologies are

included in the NCBO BioPortal [3, 5], which provides the abilities to browse, search and

visualize ontologies as well as to comment on, and create mappings for ontologies.

LexGrid [13] is a framework for representing, storing, and querying biomedical

terminologies, and often used by ontology repositories as the backend for managing

ontologies and providing query services. caDSR [14] is a database and a set of APIs and

tools to create, edit, control, deploy, and find common data elements (CDEs) for use by

metadata consumers.

Many applications or databases are providing semantic annotations to the data by linking

data to ontology concepts. For example, NCI Annotation and Image Markup project [8]

are Pathology Analytical Imaging Standards project [9, 10, 11] provide semantic enabled

models to support semantic interoperability.

Lim et al [15, 16] summarize major problems and challenges of supporting semantic

queries in relational databases, such as graph based queries and vagueness of queries, and

propose query-by-example (QBE) based semi-automatic approach to solve the problems.

In SciPort project [17], semantic enabled authoring and queries are provided to link

specific ontologies such as RadLex with structured data, through providing RESTful Web

Service based interfaces. Extending to additional ontologies, however, needs

development of new RESTful APIs for each ontology repository. Early work in

[18,19,20] tried to support semantic operations in RDBMS through user-defined

functions. Our work provides an effective generic framework and can support multiple

different ontologies. Semantic Web based knowledge management has been an active

research area [21]. DBOntoLink takes a middle layer based approach and is extended on

existing database management systems and query languages.

2.2. Ontology Search and Semantic Queries

An ontology can provide fundamental semantic reasoning capabilities, supported by an

ontology repository as a set of services. Common services provided by an ontology

repository includes:

• Concept search: Given term(s), return matched ontology concepts with either exact

match or approximate match, and the associated information.

• Identity search: Given a concept id and ontology version id, return properties and

concepts related to the concept (e.g., child concepts, synonym concepts).

• Hierarchy search: Given a concept id, return the path from the concept to its root or

leaves, usually in the form of sequences of concatenated concept ids

These primitive operators provide the foundation for semantic operations. For example,

we may combine multiple identity based searches to generate a list of descendant

concepts, by parsing each search result and recursively searching on child concepts until

the leaf concepts. However, such approach is extremely cumbersome and could only be

implemented through programming, and each new query needs to be supported by a new

program. This approach also lacks expressiveness – humans prefer to write queries in a

declarative and expressive way, such as the popular standard SQL query language for

relational data or XQuery query language for XML data. Next we show how BioPortal is

limited on such capabilities.

2.3. BioPortal

BioPortal implements the ontology services listed above as two types of interfaces:

SOAP based Web Services and RESTful based services. The latter processes HTTP URL

formatted requests and responds with a set of result in the form of XML. For example, to

query the properties and related concepts of "lung" in RadLex, the following URL needs

to be issued. In the expression, "45137" is the ontology version id and "RID29152" is the

concept id.

http://rest.bioontology.org/bioportal/concepts/45137?

conceptid=RID29152&light=0&apikey=YourAPIKey

The result is an XML document with 483 lines with a very complex XML schema. These

interfaces are designed for machine based queries and processing, and have the following

limitations for human use:

• The URL formatted request is inconvenient for interpretation and editing, especially

when the queries are complex or there are many terms used in a query.

• They are limited as semantic operations. In many cases, users have to provide

multiple requests to build a query. More advanced queries such as finding common

ancestors of multiple concepts are difficult and require users to write complex

queries.

• The XML based query results contain complex -- often redundant -- information for

users. Users almost always need to parse and filter information from the results. In

reality, users often prefer simpler query result, for example, a list of child concept

terms for a "get children" query.

• BioPortal services suffer from network delay. Each request will incur a network

overhead, and this could seriously hamper the performance of complex queries when

multiple requests are needed, or repetitive queries from a large database.

2.4. Database User Defined Functions

The gap between ontologies and applications – especially databases – represents a key

impediment to enabling the full potential of ontologies in biomedical databases. Our goal

is to bridge the gap through database extensibility techniques provided by modern

DBMSs.

User defined functions (UDFs) in DBMSs provide an opportunity for close integration of

ontology repositories into the database. A UDF could return a single value or tabular

value – which can be further converted into a table view for SQL operations. While its

implementation could be in multiple programming languages, such as Java or C/C++, a

UDF can be embedded in a SQL query as simple as an ordinary SQL function. Thus,

UDFs can take full advantage of the expressive power of SQL. Comprehensive

application logic, such as composing complex semantic operations on an ontology

repository, can be realized as logically extended functions for SQL, and expressed in

natural declarative SQL language.For an ontology reasoning operation, instead of writing

complex codes to perform the operation, a user could simply submit a SQL query by

embedding the corresponding UDF into the query, and have the result returned in a

tabular format.For example, advance semantic reasoning, such as searching for shared

descendants of multiple concepts, may need to be queried with recursive hierarchy

searches, where many complex intermediate processing of XML based results have to

performed. Using our system, user can invoke a single function call directly where all the

reasoning is transparent to users. This is highexpressive and makes it very convenient for

users. Next we discuss the overall architecture and methods of our work.

3. Architecture of DBOntoLink

DBOntoLink has three major components: the ontology repository, the semantic adapter,

the database extension. We rely on BioPortal (with its RESTful interfaces) as the

ontology repository since it is the most commonly used biomedical ontology repository.

The Semantic adapter provides a mediation layer between applications (via databases or

RESTful web services) and the ontology repository, by supporting a comprehensive set

of semantic operations. The semantic adapter sends requests to BioPortal, parses,

processes and composes query results. The architecture overview is shown in Figure 1.

Operations implemented in the semantic adapter are consumed either by databases or

applications. In the database, these semantic operations are wrapped as user defined

functions to be consumed by SQL or XQuery queries.

Figure 1. Overview of DBOntoLink

Figure 2. The Architecture of DBOntoLink

The semantic adapter provides three major components: the semantic query engine for

processing the semantic operations, caching management for caching query results to

improve performance, and configuration management to configure the system for

different ontologies (Figure 2).

3.1. Semantic Query Engine

The semantic query engine provides semantic reasoning, query requesting and processing,

and it interfaces with databases and applications. The workflow of the engine is as

follows:

1. When an adapter interface receives a function call issued either by a UDF or HTTP

request, the semantic reasoner analyzes the procedures and requests needed to

answer this call. It then submits requests through the ontology connector.

2. Once the ontology connector receives a query request, it first checks the caching

manager to see if this query has been previously issued. If the result is already

cached, it will be retrieved from the cache database directly.

3. If the query result is not cached, the ontology connector will issue RESTful requests

composed by the request builder and transfers returned XML results to result parser.

4. The result parser extracts the relevant information from the XML result, and passes

them to the semantic reasoner via ontology connector.

5. After all the required information has been collected through multiple ontology

repository calls, the semantic reasoner generates the final result for the adapter

interface, in a form of a list of records.

This semantic adapter works as a translation engine to interpret expressive, simple

semantic operations (seen by end users and applications) into a process of complex

operations of ontology repository queries, result filtering and restructuring. Such process

is transparent to users, thus users could enjoy writing declarative semantic queries

without worrying about how the queries are realized. This approach thus significantly

improves the usability of ontology repositories.

3.2. Caching Management

To improve the efficiency when processing queries, we implement caching for query

results to avoid the overhead of multiple query requests to remote repositories. The

caching layer is realized by persisting results into relational database tables: multiple

tables are created for multiple types of information. Metadata of concepts is stored in

concept cache table, including description, child count and other basic information.

Relationship graphs between concepts are stored in relation cache table, in the form of

edges – each edge is represented as a record containing attributes of start concept,

relation label and end concept. In this way, information of ontology is stored in a flexible

structure for convenient usage and update. The caching management provides significant

speedup of semantic query processing, as the performance study of result section

demonstrates.

3.3. Configuration Management

Different ontologies often have different definitions of hierarchies and relationships [22].

DBOntoLink provides customization to define the mapping between relation label and its

conceptual meaning, as well as the mapping between ontology name and the used version.

In this way, the label of relation can be customized conveniently if necessary. All the

customization settings are defined in an XML based setting file, therefore easy to

interpret and configure. An adapter loads the configuration of a given ontology via the

configuration loader when the adapter is initialized.

4. Semantic Operations Based on Ontologies

The semantic adapter generalizes many semantic operations with convenient interfaces

for databases and applications. Such operations include metadata queries for concepts,

semantic enabled term queries and ontology relation queries.

4.1. Metadata Queries for Terms

This class of functions employs the search service of BioPortal to retrieve a term's

metadata.

 getDescription: Retrieve description or definition of a term.

 getSemanticType: Obtain the semantic type or role of a term. For example, both

"Antigen Gene" and "Fusion Gene" have the same semantic type "Gene or Genome".

 getChildCount: Retrieve the count of all child terms.

 getRelevantTerm: Retrieve all the relevant terms for each word in input text. For

example, given the text "cancer patient", the function returns terms such as: "Cancer

cell growth", "Patient Allergic to Contrast Media" and so forth, which are related to

the terms in the input text.

4.2. Semantic Enabled Term Queries

Operations in this set are implemented based on the term service of BioPortal, and focus

on retrieving related concepts for a given concept.

 getHyponym: When a user specifies a query with a term, there may be subclasses of

the concept that can generate favorable results as well. For example, for "Abnormal

Cell", this function returns its hyponyms such as "Neoplastic Cell" and "Signet Ring

Cell". This function allows query in expanded domain using hyponyms.

 getHypernym: In many cases, there may not be any result from a query using a

certain term, but users may still want to look at the closest results or related results

by relaxing the concept to a broader scope. For example, if a query with the term

"Tumor Lysis Syndrome" returns no result, the user may want to see if there is any

result from the relaxed term "Cancer-Related Condition", a super class of "Tumor

Lysis Syndrome".

 getSynonym: Queries using a precise term often suffer from the problem that results

from its synonyms will be missing. For example, "Alcoholism" and "Alcohol

Dependence" are synonyms. To support synonym detection, we send a request to the

corresponding ontology and retrieve all its synonyms. With these, the final query

will include a combination of all possible terms and return more accurate result.

 getSibling: Retrieve concepts that belong to the same category of the input concept to

expand the search domain. For example, "Copine VII", "Mitochondrial Membrane

Protein" and "Neogenin Homolog 1" are siblings sharing the parent class "Membrane

Protein".

Methods getHyponym and getHypernym can be configured with a depth limit for

searching. For example, depth 2 will retrieve all terms up to two levels in an ontology

hierarchy. All the operations in this set could be applied with result constraints such as

child node count and semantic type.

4.3. Ontology Relation Queries

The operations in this set examine relations among multiple concepts.

 getCommonAncestor: Given a set of terms, return ancestral classes shared by all the

input terms. For example, "Abnormal Eosinophil" and "Leukemic Cell" share the

same ancestral concept "Abnormal Hematopoietic and Lymphoid Cell".

 getCommonDescendant: Given a set of terms, return mutual descendants of all the

input terms. For example, "Giant Cell" and "Atypical Epithelial Cell" have mutual

child concept "Giant Epithelial Cell".

 getRelation: Discover relation between two concepts, check if one is the ancestor,

descendant or sibling of the other. For example, given terms "Cystic Fibrosis" and

"Chromosome Disorder", the relation between them is identified as sibling.

4.4. Concept Domain Queries

OWL is an ontology representation language, and the property owl:intersectionOf in

OWL presents a list of parent concepts for a given concept. For example, "Neoplastic

Polyp" is the common child of "Polyp", "Precancerous Condition" and "Neoplasm by

Morphology". Regard each concept as a domain, the "Neoplastic Polyp" is the

intersection area shared by these three domains. Operations in this category check the

intersection condition of input concepts.

 getAdjunctTerm: Retrieve terms which have intersection domain with the given

concept. For example, a search of adjunct terms of "Abnormal Germ Cell" will

return "Neoplastic Cell", since they share the intersection concept domain,

"Neoplastic Germ Cell".

 checkIfAdjunct: Check if the input terms intersect on their domain. For example, the

domain overlapping condition of "Behavior-Related Disorder" and "Psychiatric

Disorder" is true, since they share the same child concept "Socialized Conduct

Disorder".

4.5. Text Content Annotation

The operation in this set adapts the annotation service of BioPortal.

 getAnnotation: Annotate the terms in given text, return score of accuracy and other

information according to configuration. For example, consider the following text in

an sample pathology report: "Carcinoma of breast. Post-operative diagnosis: same.

left UOQ breast mass". Based on the SNOMEDCT ontology, getAnnotationwill

return "Carcinoma of breast", "Mass", "Entire breast", "Breast structure", and others

as the result.

5. Implementation

We have implemented DBOntoLink as an open source software, which supports major

ontologies hosted at BioPortal. The software is available at DBOntoLink wiki [23]. We

first implement the above semantic operations as Java based APIs, and then port them

into upper level UDF interface. Currently the database management system supported by

DBOntoLink is IBM DB2, and it can be easily extended to support other database

management systems such as Oracle, PostgreSQL, and mySQL. Once the software is

deployed, the corresponding database can immediately support ontology based semantic

queries, expressed as UDFs extended to the database query language, as discussed next.

Implementation of UDFs wraps the Java APIs as database user defined functions based

on specific database UDF specifications. They are deployed based on database specific

UDF deployment processes. We use DB2 in our current implementation, but it is easy to

adapt it to other databases by following different UDF development processes and

interfaces. These UDFs can be directly invoked by SQL queries just as normal SQL

functions, therefore they offer great usability and convenience for database users.

According to the format of the return value, UDFs can be classified into scalar functions

and table functions. A scalar function, such as getDescription, getChildCount and

checkRelation, returns a single value for each record of a query. For example, the

following SQL query retrieves the description for all the terms in the column

"Cell_Name":

A table function, such as getHyponym, getCommonAncestor and getAnnotation, can be

applied in the FROM clause of a SQL query. For example, the following query selects

records with Cell_Name as the hyponym of "Giant Cell", with results ordered by the

relevance rank:

The following query returns result with symptom "Chest Pain" from all possible

synonyms ("thoracodynia", "PAIN IN CHEST", and "thoracalgia"):

SELECT*

FROMtable (getHyponym('NCI', 'Giant Cell', 1)) AS a,mytable AS b

WHEREa.terms= b.cell_name

ORDER BYa.rank

SELECT*

FROMtable (getHyponym('NCI', 'Giant Cell', 1)) AS a,mytable AS b

WHEREa.terms= b.cell_name

ORDER BYa.rank

SELECTcell_name,getDescription('NCI',mytable.cell_name)

FROMmytable

RESTful Web Service Based Semantic Operations

Similar to UDFs, the RESTful server works as a layer between the semantic adapter and

web client. Our RESTful Web Services are implemented as JAVA Servlets. It processes

HTTP URL based request and responds with XML formatted results.

As an example, to query the hyponym of "Giant Cell", a user can issue the following

query, where the parameters are in the format "parameter_name = parameter_value" and

separated by "&":

http://URLprefix/?operation=getHyponym&ontology=NCI

&termName=Giant Cell&distance=1

The XML formatted result contains concise information, which includes term name, the

relation label and the distance, as well as metadata information of the result set.

6. XQuery Based Semantic Queries for an Image Markup and Annotation

Database

AIM is a NCI project [8] with the goal to provide standardization for image annotation

and markup, especially for clinical trials. The model includes dozens of classes such as

patient, observer, equipment, image, anatomic entities, image observations and image

observation characteristics, geometric shapes, text annotations, and calculations. The

AnatomicEntity, ImagingObservation, and ImagingObservationCharacteristic classes

represent essential features for an annotation, and rely on an ontology (e.g., RadLex or

NCI Thesaurus) or controlled vocabulary to populate the data. The representation of AIM

data is an XML based format. AIM data management and sharing is through xService [24,

25], which relies on an XML based data management system – we use IBM DB2

pureXML for this case. We use LIDC dataset [26] for our examples and load the dataset

into DB2 database with XML documents stored as XML type. DB2 has a hybrid

approach for managing relational data and XML data, and supports both SQL and

XQuery. The UDFs we develop can be used in both SQL and XQuery. Next we show

some sample use cases that the XQuery/SQL queries are semantically enriched with the

UDFs we developed.

QUERY 1: Retrieve all the anatomic entity concepts and their descriptions in this dataset:

This query returns result as a list of XML elements, and below is an example element

from the result:

<result term="lung" description="One of a pair of viscera occupying the pulmonary cavities of
the thorax, the organs of respiration in which aeration of the blood takes place..."/>

declare namespace ns1="gme://caCORE.caCORE/3.2/edu.northwestern.radiology.AIM";
for$t indb2-fn:xmlcolumn('XMLTABLE.XMLCOLUMN')/
 ns1:ImageAnnotation/ns1:anatomicEntityCollection/ ns1:AnatomicEntity/@codeMeaning
let$d:=db2-fn:sqlquery("values(xmlcast(getDescription('RadLex',parameter(1)) as xml))", $t)
return<result term ="{$t}" description ="{$d}"/>

QUERY 2: Retrieve all the image annotation documents that contain the descendant

concepts of the term "lobular organ":

QUERY 3: Retrieve common ancestors with "liver" for each of the anatomic entity:

QUERY 4: Annotate imaging observation characteristic terms with NCI Thesaurus

ontology, and return the annotations as ontology concept terms if available:

7. System Performance

We present experimental results of typical UDFs with sample test cases summarized in

Table 1. The experiment is performed with the NCI Thesaurus ontology hosted at

BioPortal, and the database we use is IBM's DB2 V9.7. The machine we use for the test

is a desktop with i5-760 at 2.8GHz, 8GB of RAM, 1TB RAID 0 (2 x 500GB

SATA7200rpm HDDs) hard drive. The running time for each query is the average of 10

executions. The local catching database stores a subset of the original ontology.

Test UDF Test Case Description

getAnnotation Annotate the sentence "lung cancer patient"

getDescription Retrieve the description of "Abnormal Cell"

getRelevantTerm Retrieve relevant terms of "patient"

declare namespace ns1="gme://caCORE.caCORE/3.2/edu.northwestern.radiology.AIM";

for$t indb2-fn:xmlcolumn('XMLTABLE.XMLCOLUMN')/

 ns1:ImageAnnotation/

ns1:imagingObservationCollection/

ns1:ImagingObservation/

 ns1:imagingObservationCharacteristicCollection/

 ns1:ImagingObservationCharacteristic/@codeMeaning

for$a indb2-fn:sqlquery("select xmlcast(terms as xml)

fromtable(getAnnotation('NCI',parameter(1)))", $t)

return<result term ="{$t}" annotation ="{$a}"/>

declare namespacens1="gme://caCORE.caCORE/3.2/edu.northwestern.radiology.AIM";
for$t indb2-fn:xmlcolumn('XMLTABLE.XMLCOLUMN')/
 ns1:ImageAnnotation/ns1:anatomicEntityCollection/ns1:AnatomicEntity/@codeMeaning
for$a indb2-fn:sqlquery("select xmlcast(terms as xml) from
table(getCommonAncestors ('RadLex', CONCAT ('liver;',parameter(1))))",$t)
return<result term ="{$t}" ancestor ="{$a}"/>

declare namespace ns1="gme://caCORE.caCORE/3.2/edu.northwestern.radiology.AIM";
for$a indb2-fn:xmlcolumn('XMLTABLE.XMLCOLUMN')/ns1:ImageAnnotation
for$hypo indb2-fn:sqlquery("select xmlcast(terms as xml)
 from table(getHyponym('NCI', Spatial Qualifier', 1))")
where$a/ ns1:imagingObservationCollection/
 ns1:ImagingObservation/ns1:imagingObservationCharacteristicCollection/
 ns1:ImagingObservationCharacteristic/@codeMeaning=$hypo
return$a

getChildCount Retrieve child node amount of "Abnormal Cell"

getHypernym Retrieve the parent node of "Neoplastic Cell"

getHyponym Retrieve the child nodes of "Neoplastic Cell"

checkIfAdjunct Check if concepts "Abnormal Germ Cell" and "Neoplastic

Large Cell" overlap.

getRelation Retrieve the relation of "Abnormal Cell" and "Circulating

Tumor Cell".

getCommonAncestors Retrieve the common ancestors of concept "Malignant

Cell" and "Neoplastic Germ Cell"

Table 1. UDFs used in testing

For each query in Table 1, Figure 3 shows performance comparison between methods

without caching and with local caching. The experiment of querying without catching

shows that simple queries take around 1 second as only one or two HTTP requests are

needed. However, complex queries take much longer. This is because many complex

queries are reasoned as queries with recursive operations that result in multiple repository

requests. Such performance is unacceptable when a query runs across many terms. With

caching, most queries run within 0.1 second, a significant performance

improvement.Performance of caching may decrease as the size of caching grows. In

reality, the execution of previous queries may also affect the efficiency of caching

because of the caching mechanism of local caching database.

Figure 3. Sample query performance without and with local cache (in seconds)

getDescription getChildCount getHypernym getHyponym checkIfAdjunct getRelation getCommonAncester

0.01

0.1

1

10

Time (seconds)

UDF

 Without caching

 With caching

In addition, we also compared the performance enhancement of UDF getHyponymat

different query depths. This query searches the descendants of the concept "Abnormal

Cell". Table 2 shows the number of concepts need to be checked and the total number of

result concepts returned in the recursive processes, as well as the performance before and

after local caching. The experiment shows that caching provides relatively constant

performance, and could be several orders of magnitude faster for high depth queries.

Table 2. Running time without and with local cache for getHyponym UDF at different

depths (in seconds)

Depth Examined

Concepts

Retrieved

Concepts

Time without

Cache

Time withCache

1 1 15 1.21 0.019

2 16 83 7.7 0.027

3 84 267 34.8 0.083

4 268 503 162.2 0.192

Visualization of Local Ontology in a Database

In practice, a local biomedical database only uses a subset of one or multiple ontologies

to make annotations of the data, and the subset of concepts consist of fragments of

ontologies and can be difficult to visualize. By taking advantage of DBOntoLink, we can

generate a graph view of a local ontology. To build the graph, each distinct concept used

in the local database is treated as a leaf and the hierarchy is recursively built until the root

using DBOntoLink functions. Intermediate nodes with same concepts are merged

together. Figure 3 shows an example local ontology graph, for a small set of local

concepts “Giant Cell”, “Malignant Cell”, “Liver” and “Lung”.

Figure 3.Local Ontology Graph Generated by System.

We can also link data objects which contain a concept into the graph, for example, an

AIM XML document for “Lung” can be attached to the “lung” node in the ontology

graph. This will enable an ontology based navigation of instances in the database.

8. Discussions and Future Work

While DBOntoLink provides an architecture that supports semantic operations in the

database, more semantic operations can be extended in the future, such as complex

semantic operations. This could be implemented by extending current set of semantic

operators, and providing corresponding translation in the semantic query engine and

UDFs in the database.

Another future work is to extend the system to support more database management

systems. Since different DBMSs have their own UDF frameworks, we can port current

UDFs to databases such as Oracle, PostgreSQL and mySQL by implementing the UDF

interfaces, where the internal Java codes can be reused across DBMSs.

9. CONCLUSION

While ontologies are proliferating in biomedical domains, most biomedical data are

available as structured data managed in relational DBMS or XML DBMS. Using

ontologies to enrich the semantics of data for queries and interoperability is becoming

increasingly important, but there is a lack of tools to ease the integration and use of

ontologies in databases using standard query languages or query interfaces. DBOntoLink

provides a bridge between ontology repositories and databases to support semantic

operations directly inside a database based on standard database query languages.

Semantically annotated biomedical databases thus can be easily extended with powerful

and expressive semantic enabled queries with DBOntoLink to use major ontologies

hosted at NCBO BioPortal, with high query efficiency achieved through caching

management.

Acknowledgement

This research is supported in part by PHS Grant UL1RR025008 from the CTSA program,

R01LM009239 from the NLM, and NCI Contract No. HHSN261200800001E.

References

[1] Cimino JJ. and Zhu X. The practical impact of ontologies on biomedical

informatics. Methods Inf Med 45 Suppl 1 2006:124–35.

[2] Rubin DL, Shah NH. andNoy NF. Biomedical ontologies: a functional

perspective. Brief Bioinform 2007.

[3] NCBO BioPortal. bioportal.bioontology.org/. (accessedJul 2013).

[4] Noy NF, Shah NH, Whetzel PL, et al. BioPortal: ontologies and integrated data

resources at the click of a mouse. Nucleic Acids Res. 2009:W170-3.

[5] Whetzel PL, Noy NF, Shah NH, et al. BioPortal: enhanced functionality via new

Web services from the National Center for Biomedical Ontology to access and

use ontologies in software applications. Nucleic Acids Res. 2011.

[6] RadLex: A Lexicon for Uniform Indexing and Retrieval of Radiology

Information Resources, http://radlex.org/. (accessedJul 2013).

[7] Gene Ontology. http://www.geneontology.org/. (accessedJul 2013).

[8] Channin D, Mongkolwat P, Kleper V, et al. The caBIG Annotation and Image

Markup Project. Journal of Digital Imaging 2009.

[9] Pathology Analytical Imaging Standards (PAIS).

https://web.cci.emory.edu/confluence/display/PAIS. (accessedJul 2013).

[10] Wang F, Kurc T, Widener P, et al. High-performance Systems for In Silico

Microscopy Imaging Studies. In Proc. of Seventh International Conference on

Data Integration in the Life Sciences (DILS 2010), Gothenburg, Sweden,

August 25-27, 2010.

[11] Wang F, Kong J, Cooper L, et al: A Data Model and Database for High-

resolution Pathology Analytical Image Informatics. Journal of Pathology

Informatics 2011:Vol. 2(32).

[12] NCI Thesaurus. http://ncit.nci.nih.gov/. (accessed Jul 2013)

[13] Pathak J, Solbrig HR, Buntrock JD, et al. LexGrid: a framework for representing,

storing, and querying biomedical terminologies from simple to sublime. J Am

Med Inform Assoc. 2009:16(3):305-15.

[14] Cancer Data Standards Registry and Repository (caDSR).

https://cabig.nci.nih.gov/concepts/caDSR/. (accessed Jul 2013)

[15] Lim L, Wang H, and Wang M. Semantic queries in databases: problems and

challenges. CIKM, 2009:1505-1508.

[16] Lim L, Wang H, and Wang M: Semantic Data Management: Towards Querying

Data with their Meaning. ICDE 2007:1438 – 1442.

[17] Wang F, Liu P, Pearson J. SciPort: An Extensible Data Management Platform

for Biomedical Research. Database Technology for Life Sciences and Medicine.

World Scientific Publishing 2010.

[18] Stoffel K, Saltz J, Hendler J, et al. Semantic Indexing For Complex Patient

Grouping. AIMIA 1997.

[19] Andrade, H C M and Saltz J. Towards a Knowledge Base Management System

KBMS: An Ontology-Aware Database Management System DBMS. SBBD

1999.

[20] Stoffel K, Davis JD, Rottman G, et al. A Graphical Tool forAd Hoc Query

Generation. AMIA 1998.

[21] Davies J, Fensel D, Harmelen FV: Towards the Semantic Web: Ontology-driven

Knowledge Management. Wiley 2003.

[22] Smith B, Ceusters W, Klagges B, et al. Relations in biomedical ontologies.

Genome Biol 2005:6(5):R46.

[23] DBOntoLink wiki. 2012.

https://web.cci.emory.edu/confluence/display/DBOntoLink. (accessedJul 2013).

[24] caGridxService. https://web.cci.emory.edu/confluence/display/xmlds. (accessed

Jul 2013)

[25] Wang F, Pan T, Sharma A, et al. Managing and Querying Image Annotation and

Markup in XML. In Proc. of SPIE Medical Imaging, San Diego, 13-18,Feb,2010.

[26] Armato SG 3rd, McNitt-Gray MF, Reeves AP, et al. The Lung Image Database

Consortium (LIDC): An Evaluation of Radiologist Variability in the

Identification of Lung Nodules on CT Scans. AcadRadiol 2007:14(11):1409-21

https://web.cci.emory.edu/confluence/display/DBOntoLink

