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There is a lack of tools to ease the integration and ontology based semantic queries in biomedical 

databases, which are often annotated with ontology concepts. We aim to provide a middle layer 

between ontology repositories and semantically annotated databases to support semantic queries 

directly in the databases with expressive standard database query languages. We have developed a 

semantic query engine that provides semantic reasoning and query processing, and translates the 

queries into ontology repository operations on NCBO BioPortal. Semantic operators are 

implemented in the database as user defined functions extended to the database engine, thus 

semantic queries can be directly specified in standard database query languages such as SQL and 

XQuery. The system provides caching management to boosts query performance. The system is 

highly adaptable to support different ontologies through easy customizations.We have implemented 

the system DBOntoLink as an open source software, which supports major ontologies hosted at 

BioPortal. DBOntoLink supports a set of common ontology based semantic operations and have 

them fully integrated with a database management system IBM DB2. The system has been deployed 

and evaluated with an existing biomedical database for managing and querying image annotations 

and  markups (AIM).  Our performance study demonstrates the high expressiveness of semantic 

queries and the high efficiency of the queries.  

Keywords: Semantics; Ontology; Biomedical Databases 

1.   Introduction 

Biomedical ontologies have proliferated in biomedical domains to support semantic 

queries, semantic interoperability and data integration [1, 2]. The National Center for 

Biomedical Ontology (NCBO) BioPortal [3, 4, 5] alone hosts nearly five million terms 

for about 329 ontologies. Example ontologies include NCI Thesaurus (NCIt) for cancer, 

RadLex [6] for radiology image annotations, GO [7] for genes, etc.  



Increasingly, biomedical databases are becoming semantic enabled through semantically 

annotated data models, i.e., data objects are described through links to ontological 

concepts. Examples include AIM model for NCI Image Markup and Annotation project 

[8], and the pathology analytical imaging standards (PAIS) project [9, 10, 11], which use 

the following attributes to describe semantically linked concepts: codeValue -- the unique 

identification code for the concept, codeName -- the meaning of the concept code, 

codingSchemeDesignator -- the ontology or controlled vocabulary where the data 

element depends on, and codingSchemeVersion -- the version of the 

codingSchemeDesignator.  While storing data in RDF triples is attractive, in reality, re-

implementing an existing database with different data stores and query languages may 

not be realistic.  Instead, annotated biomedical databases often take the standard SQL 

table based data representation, with additional attributes for the ontology based semantic 

annotations.  Recently XML has become a popular data model and XML databases can 

be used to support similar annotated data through adding additional attributes.  

Such semantically annotated databases provide the opportunity to support ontology based 

semantic queries. For example, a concept may be relaxed to provide more semantically 

related results: one may return descendant terms "gliosarcoma" and "giant cell 

glioblastoma" when a term "astrocytoma (WHO grade IV)" is posed in a query. Such 

operations need interplay between ontology queries and database queries, and require 

querying an ontology repository and integrating the results into database queries for 

further processing. Custom coding to support such queries is possible, but requires major 

programming on manually translating queries back and forth between databases and 

ontology repositories. Such an approach is not generic either, and repeated development 

is needed for similar queries for each new database. Meanwhile, database users often 

prefer writing queries with a declarative query language, such as the structured query 

language (SQL) for tabular data and the XML query language (XQuery) for XML data. 

For example, for above concept relaxation query, a user may want to specify a SQL 

query with a simple extended function like getHyponym(term), without any additional 

programming. A declarative query interface based approach is generic: once developed, 

the interface can be used for different queries and databases. This will save major 

development effort, and provides high usability for end users.  

 The gap in support for convenient ontology based queries in biomedical databases is 

exacerbated by the limitations of current biomedical repositories, including complex 

interfaces, primitive query operations, and overhead of network communications.  While 

biomedical repositories such as NCBO BioPortal provide the management and query 

capabilities for ontologies, the query interfaces are normally designed for machine 

consumption and are cumbersome for humans. For example, for the getHyponym query 

to retrieve a list of descendant terms, it can be supported by writing codes to submit 

queries to an ontology repository, e.g., NCBO BioPortal. The results returned from 

NCBO BioPortal interfaces, however, are very complex XML documents that have to be 

parsed, filtered and aggregated before further processing. In addition, ontology 

repositories normally provide primitive queries. To support a complex semantic query 

such as getHyponym, a user has to develop his/her own application with multiple queries 

on the ontology repository and additional semantic reasoning on query results. For 



example, for getHyponym query, recursive calls have to be called until no more 

descendant nodes are found. Invocation of multiple queries from a remote repository also 

leads to inefficiency due to the network overhead. For example, it takes 162 seconds to 

retrieve recursively all descendant concepts of a concept with a depth of 4 based on the 

NCI Thesaurus ontology (NCIt) [12] hosted at BioPortal.  

The limitation and mismatch of ontology repositories make it difficult to directly support 

the requirements of declarative, expressive and reusable semantic queries on biomedical 

database systems. This motivates us to develop DBOntoLink, a system to provide a 

middle layer between ontology repositories and semantically annotated databases to 

support semantic queries in the databases with declarative languages and interfaces. 

DBOntoLink provides the following salient features.  

Expressive semantic query operators. The system generalizes a comprehensive set of 

ontology based semantic operators. These semantic operations include basic information 

of concepts, relations between concepts, as well as advanced ontology reasoning. 

Generalized semantic operations simplify the usage of ontology, thus extend the utility of 

existing ontologies. 

Tight integration of semantic operators with the database engine.  The semantic 

operators are implemented in the database management system as extended user defined 

functions thus expressive ontology based semantic queries can be directly specified in 

structural query language (SQL) or XML query language (XQuery), without any 

programming needed. This makes it highly expressive and convenient to run semantic 

queries against ontologies. 

Extensible to different ontologies and databases.  The configuration management 

provides easy customization to define the mapping between relation labels and 

conceptual meanings, and the mapping between ontology names and versions. This 

enables the system with high adaptability to support major ontologies, such as those in 

NCBO BioPortal.  The software can be quickly deployed to different biomedical 

databases through simple customization.  

High efficiency on semantic queries. The caching management automatically caches 

ontology concepts and relationships in the database from executed queries, which 

significantly boosts the query performance. 

2.   Background 

2.1.   Related Work 

An ontology represents concepts and relations between concepts in forms that can be 

interpreted by both humans and machines. Many biomedical ontologies have been 

developed in the past for different domains [1, 2, 6, 7,  12]. Most of these ontologies are 

included in the NCBO BioPortal [3, 5], which provides the abilities to browse, search and 

visualize ontologies as well as to comment on, and create mappings for ontologies. 

LexGrid [13] is a framework for representing, storing, and querying biomedical 

terminologies, and often used by ontology repositories as the backend for managing 

ontologies and providing query services. caDSR [14] is a database and a set of APIs and 



tools to create, edit, control, deploy, and find common data elements (CDEs) for use by 

metadata consumers.  

Many applications or databases are providing semantic annotations to the data by linking 

data to ontology concepts. For example, NCI Annotation and Image Markup project [8] 

are Pathology Analytical Imaging Standards project [9, 10, 11] provide semantic enabled 

models to support semantic interoperability.  

Lim et al [15, 16] summarize major problems and challenges of supporting semantic 

queries in relational databases, such as graph based queries and vagueness of queries, and 

propose query-by-example (QBE) based semi-automatic approach to solve the problems. 

In SciPort project [17], semantic enabled authoring and queries are provided to link 

specific ontologies such as RadLex with structured data, through providing RESTful Web 

Service based interfaces. Extending to additional ontologies, however, needs 

development of new RESTful APIs for each ontology repository. Early work in  

[18,19,20] tried to support semantic operations in RDBMS through user-defined 

functions.  Our work provides an effective generic framework and can support multiple 

different ontologies. Semantic Web based knowledge management has been an active 

research area [21].  DBOntoLink takes a middle layer based approach and is extended on 

existing database management systems and query languages. 

2.2.   Ontology Search and Semantic Queries 

An ontology can provide fundamental semantic reasoning capabilities, supported by an 

ontology repository as a set of services. Common services provided by an ontology 

repository includes: 

• Concept search: Given term(s), return matched ontology concepts with either exact 

match or approximate match, and the associated information.  

• Identity search: Given a concept id and ontology version id, return properties and 

concepts related to the concept (e.g., child concepts, synonym concepts).  

• Hierarchy search: Given a concept id, return the path from the concept to its root or 

leaves, usually in the form of sequences of concatenated concept ids  

These primitive operators provide the foundation for semantic operations. For example, 

we may combine multiple identity based searches to generate a list of descendant 

concepts, by parsing each search result and recursively searching on child concepts until 

the leaf concepts. However, such approach is extremely cumbersome and could only be 

implemented through programming, and each new query needs to be supported by a new 

program. This approach also lacks expressiveness – humans prefer to write queries in a 

declarative and expressive way, such as the popular standard SQL query language for 

relational data or XQuery query language for XML data. Next we show how BioPortal is 

limited on such capabilities. 

2.3.   BioPortal 

BioPortal implements the ontology services listed above as two types of interfaces: 

SOAP based Web Services and RESTful based services. The latter processes HTTP URL 

formatted requests and responds with a set of result in the form of XML. For example, to 



query the properties and related concepts of "lung" in RadLex, the following URL needs 

to be issued. In the expression, "45137" is the ontology version id and "RID29152" is the 

concept id.  

http://rest.bioontology.org/bioportal/concepts/45137? 

conceptid=RID29152&light=0&apikey=YourAPIKey 

The result is an XML document with 483 lines with a very complex XML schema. These 

interfaces are designed for machine based queries and processing, and have the following 

limitations for human use:  

• The URL formatted request is inconvenient for interpretation and editing, especially 

when the queries are complex or there are many terms used in a query.   

• They are limited as semantic operations. In many cases, users have to provide 

multiple requests to build a query. More advanced queries such as finding common 

ancestors of multiple concepts are difficult and require users to write complex 

queries. 

• The XML based query results contain complex -- often redundant -- information for 

users. Users almost always need to parse and filter information from the results. In 

reality, users often prefer simpler query result, for example, a list of child concept 

terms for a "get children" query. 

• BioPortal services suffer from network delay. Each request will incur a network 

overhead, and this could seriously hamper the performance of complex queries when 

multiple requests are needed, or repetitive queries from a large database. 

2.4.   Database User Defined Functions 

The gap between ontologies and applications – especially databases – represents a key 

impediment to enabling the full potential of ontologies in biomedical databases. Our goal 

is to bridge the gap through database extensibility techniques provided by modern 

DBMSs.  

User defined functions (UDFs) in DBMSs provide an opportunity for close integration of 

ontology repositories into the database. A UDF could return a single value or tabular 

value – which can be further converted into a table view for SQL operations. While its 

implementation could be in multiple programming languages, such as Java or C/C++, a 

UDF can be embedded in a SQL query as simple as an ordinary SQL function. Thus, 

UDFs can take full advantage of the expressive power of SQL. Comprehensive 

application logic, such as composing complex semantic operations on an ontology 

repository, can be realized as logically extended functions for SQL, and expressed in 

natural declarative SQL language.For an ontology reasoning operation, instead of writing 

complex codes to perform the operation, a user could simply submit a SQL query by 

embedding the corresponding UDF into the query, and have the result returned in a 

tabular format.For example, advance semantic reasoning, such as searching for shared 

descendants of multiple concepts, may need to be queried with recursive hierarchy 

searches, where many complex intermediate processing of XML based results have to 

performed. Using our system, user can invoke a single function call directly where all the 



reasoning is transparent to users. This is highexpressive and makes it very convenient for 

users. Next we discuss the overall architecture and methods of our work. 

3.   Architecture of DBOntoLink 

DBOntoLink has three major components: the ontology repository, the semantic adapter, 

the database extension. We rely on BioPortal (with its RESTful interfaces) as the 

ontology repository since it is the most commonly used biomedical ontology repository. 

The Semantic adapter provides a mediation layer between applications (via databases or 

RESTful web services) and the ontology repository, by supporting a comprehensive set 

of semantic operations. The semantic adapter sends requests to BioPortal, parses, 

processes and composes query results.  The architecture overview is shown in Figure 1. 

Operations implemented in the semantic adapter are consumed either by databases or 

applications. In the database, these semantic operations are wrapped as user defined 

functions to be consumed by SQL or XQuery queries.  

Figure 1. Overview of DBOntoLink 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Architecture of DBOntoLink 



The semantic adapter provides three major components: the semantic query engine for 

processing the semantic operations, caching management for caching query results to 

improve performance, and configuration management to configure the system for 

different ontologies (Figure 2). 

3.1.   Semantic Query Engine 

The semantic query engine provides semantic reasoning, query requesting and processing, 

and it interfaces with databases and applications. The workflow of the engine is as 

follows:  

1. When an adapter interface receives a function call issued either by a UDF or HTTP 

request, the semantic reasoner analyzes the procedures and requests needed to 

answer this call. It then submits requests through the ontology connector.  

2. Once the ontology connector receives a query request, it first checks the caching 

manager to see if this query has been previously issued. If the result is already 

cached, it will be retrieved from the cache database directly.  

3. If the query result is not cached, the ontology connector will issue RESTful requests 

composed by the request builder and transfers returned XML results to result parser.  

4. The result parser extracts the relevant information from the XML result, and passes 

them to the semantic reasoner via ontology connector.  

5. After all the required information has been collected through multiple ontology 

repository calls, the semantic reasoner generates the final result for the adapter 

interface, in a form of a list of records.  

This semantic adapter works as a translation engine to interpret expressive, simple 

semantic operations (seen by end users and applications) into a process of complex 

operations of ontology repository queries, result filtering and restructuring. Such process 

is transparent to users, thus users could enjoy writing declarative semantic queries 

without worrying about how the queries are realized. This approach thus significantly 

improves the usability of ontology repositories. 

3.2.   Caching Management 

To improve the efficiency when processing queries, we implement caching for query 

results to avoid the overhead of multiple query requests to remote repositories. The 

caching layer is realized by persisting results into relational database tables: multiple 

tables are created for multiple types of information.  Metadata of concepts is stored in 

concept cache table, including description, child count and other basic information. 

Relationship graphs between concepts are stored in relation cache table, in the form of 

edges – each edge is represented as a record containing attributes of start concept, 

relation label and end concept. In this way, information of ontology is stored in a flexible 

structure for convenient usage and update. The caching management provides significant 

speedup of semantic query processing, as the performance study of result section 

demonstrates. 



3.3.   Configuration Management 

Different ontologies often have different definitions of hierarchies and relationships [22]. 

DBOntoLink provides customization to define the mapping between relation label and its 

conceptual meaning, as well as the mapping between ontology name and the used version. 

In this way, the label of relation can be customized conveniently if necessary. All the 

customization settings are defined in an XML based setting file, therefore easy to 

interpret and configure. An adapter loads the configuration of a given ontology via the 

configuration loader when the adapter is initialized. 

4.   Semantic Operations Based on Ontologies 

The semantic adapter generalizes many semantic operations with convenient interfaces 

for databases and applications. Such operations include metadata queries for concepts, 

semantic enabled term queries and ontology relation queries. 

4.1.   Metadata Queries for Terms 

This class of functions employs the search service of BioPortal to retrieve a term's 

metadata. 

 getDescription: Retrieve description or definition of a term. 

 getSemanticType: Obtain the semantic type or role of a term. For example, both 

"Antigen Gene" and "Fusion Gene" have the same semantic type "Gene or Genome". 

 getChildCount: Retrieve the count of all child terms. 

 getRelevantTerm: Retrieve all the relevant terms for each word in input text. For 

example, given the text "cancer patient", the function returns terms such as: "Cancer 

cell growth", "Patient Allergic to Contrast Media" and so forth, which are related to 

the terms in the input text. 

4.2.   Semantic Enabled Term Queries 

Operations in this set are implemented based on the term service of BioPortal, and focus 

on retrieving related concepts for a given concept. 

 getHyponym: When a user specifies a query with a term, there may be subclasses of 

the concept that can generate favorable results as well. For example, for "Abnormal 

Cell", this function returns its hyponyms such as "Neoplastic Cell" and "Signet Ring 

Cell". This function allows query in expanded domain using hyponyms.  

 getHypernym: In many cases, there may not be any result from a query using a 

certain term, but users may still want to look at the closest results or related results 

by relaxing the concept to a broader scope. For example, if a query with the term 

"Tumor Lysis Syndrome" returns no result, the user may want to see if there is any 

result from the relaxed term "Cancer-Related Condition", a super class of "Tumor 

Lysis Syndrome".  

 getSynonym: Queries using a precise term often suffer from the problem that results 

from its synonyms will be missing. For example, "Alcoholism" and "Alcohol 

Dependence" are synonyms. To support synonym detection, we send a request to the 



corresponding ontology and retrieve all its synonyms. With these, the final query 

will include a combination of all possible terms and return more accurate result.  

 getSibling: Retrieve concepts that belong to the same category of the input concept to 

expand the search domain. For example, "Copine VII", "Mitochondrial Membrane 

Protein" and "Neogenin Homolog 1" are siblings sharing the parent class "Membrane 

Protein".  

Methods getHyponym and getHypernym can be configured with a depth limit for 

searching. For example, depth 2 will retrieve all terms up to two levels in an ontology 

hierarchy. All the operations in this set could be applied with result constraints such as 

child node count and semantic type. 

4.3.   Ontology Relation Queries 

The operations in this set examine relations among multiple concepts. 

 getCommonAncestor: Given a set of terms, return ancestral classes shared by all the 

input terms. For example, "Abnormal Eosinophil" and "Leukemic Cell" share the 

same ancestral concept "Abnormal Hematopoietic and Lymphoid Cell".  

 getCommonDescendant: Given a set of terms, return mutual descendants of all the 

input terms. For example, "Giant Cell" and "Atypical Epithelial Cell" have mutual 

child concept "Giant Epithelial Cell".  

 getRelation: Discover relation between two concepts, check if one is the ancestor, 

descendant or sibling of the other. For example, given terms "Cystic Fibrosis" and 

"Chromosome Disorder", the relation between them is identified as sibling.  

4.4.   Concept Domain Queries 

OWL is an ontology representation language, and the property owl:intersectionOf in 

OWL presents a list of parent concepts for a given concept. For example, "Neoplastic 

Polyp" is the common child of "Polyp", "Precancerous Condition" and "Neoplasm by 

Morphology". Regard each concept as a domain, the "Neoplastic Polyp" is the 

intersection area shared by these three domains. Operations in this category check the 

intersection condition of input concepts. 

 getAdjunctTerm: Retrieve terms which have intersection domain with the given 

concept. For example, a search of adjunct terms of "Abnormal Germ Cell" will 

return "Neoplastic Cell", since they share the intersection concept domain, 

"Neoplastic Germ Cell".  

 checkIfAdjunct: Check if the input terms intersect on their domain. For example, the 

domain overlapping condition of "Behavior-Related Disorder" and "Psychiatric 

Disorder" is true, since they share the same child concept "Socialized Conduct 

Disorder".  

4.5.   Text Content Annotation 

The operation in this set adapts the annotation service of BioPortal. 

 getAnnotation: Annotate the terms in given text, return score of accuracy and other 

information according to configuration. For example, consider the following text in 



an sample pathology report: "Carcinoma of breast. Post-operative diagnosis: same. 

left UOQ breast mass". Based on the SNOMEDCT ontology, getAnnotationwill 

return "Carcinoma of breast", "Mass", "Entire breast", "Breast structure", and others 

as the result.  

5.   Implementation 

We have implemented DBOntoLink as an open source software, which supports major 

ontologies hosted at BioPortal. The software is available at DBOntoLink wiki [23]. We 

first implement the above semantic operations as Java based APIs, and then port them 

into upper level UDF interface. Currently the database management system supported by 

DBOntoLink is IBM DB2, and it can be easily extended to support other database 

management systems such as Oracle, PostgreSQL, and mySQL. Once the software is 

deployed, the corresponding database can immediately support ontology based semantic 

queries, expressed as UDFs extended to the database query language, as discussed next. 

Implementation of UDFs wraps the Java APIs as database user defined functions based 

on specific database UDF specifications. They are deployed based on database specific 

UDF deployment processes. We use DB2 in our current implementation, but it is easy to 

adapt it to other databases by following different UDF development processes and 

interfaces. These UDFs can be directly invoked by SQL queries just as normal SQL 

functions, therefore they offer great usability and convenience for database users. 

According to the format of the return value, UDFs can be classified into scalar functions 

and table functions. A scalar function, such as getDescription, getChildCount and 

checkRelation, returns a single value for each record of a query. For example, the 

following SQL query retrieves the description for all the terms in the column 

"Cell_Name": 

 

A table function, such as getHyponym, getCommonAncestor and getAnnotation, can be 

applied in the FROM clause of a SQL query. For example, the following query selects 

records with Cell_Name as the hyponym of "Giant Cell", with results ordered by the 

relevance rank:  

 

The following query returns result with symptom "Chest Pain" from all possible 

synonyms ("thoracodynia", "PAIN IN CHEST", and "thoracalgia"): 

 

SELECT* 

FROMtable (getHyponym('NCI', 'Giant Cell', 1) ) AS a,mytable AS b 

WHEREa.terms= b.cell_name 

ORDER BYa.rank 

SELECT* 

FROMtable (getHyponym('NCI', 'Giant Cell', 1) ) AS a,mytable AS b 

WHEREa.terms= b.cell_name 

ORDER BYa.rank 

SELECTcell_name,getDescription('NCI',mytable.cell_name) 

FROMmytable 



RESTful Web Service Based Semantic Operations 

Similar to UDFs, the RESTful server works as a layer between the semantic adapter and 

web client. Our RESTful Web Services are implemented as JAVA Servlets. It processes 

HTTP URL based request and responds with XML formatted results.  

As an example, to query the hyponym of "Giant Cell", a user can issue the following 

query, where the parameters are in the format "parameter_name = parameter_value" and 

separated by "&":  

http://URLprefix/?operation=getHyponym&ontology=NCI  

&termName=Giant Cell&distance=1  

The XML formatted result contains concise information, which includes term name, the 

relation label and the distance, as well as metadata information of the result set.  

6.   XQuery Based Semantic Queries for an Image Markup and Annotation 

Database 

AIM is a NCI project [8] with the goal to provide standardization for image annotation 

and markup, especially for clinical trials. The model includes dozens of classes such as 

patient, observer, equipment, image, anatomic entities, image observations and image 

observation characteristics, geometric shapes, text annotations, and calculations. The 

AnatomicEntity, ImagingObservation, and ImagingObservationCharacteristic classes 

represent essential features for an annotation, and rely on an ontology (e.g., RadLex or 

NCI Thesaurus) or controlled vocabulary to populate the data. The representation of AIM 

data is an XML based format. AIM data management and sharing is through xService [24, 

25], which relies on an XML based data management system – we use IBM DB2 

pureXML for this case. We use LIDC dataset [26] for our examples and load the dataset 

into DB2 database with XML documents stored as XML type. DB2 has a hybrid 

approach for managing relational data and XML data, and supports both SQL and 

XQuery. The UDFs we develop can be used in both SQL and XQuery. Next we show 

some sample use cases that the XQuery/SQL queries are semantically enriched with the 

UDFs we developed.  

 

QUERY 1: Retrieve all the anatomic entity concepts and their descriptions in this dataset: 

 

This query returns result as a list of XML elements, and below is an example element 

from the result: 

 

 

<result term="lung" description="One of a pair of viscera occupying the pulmonary cavities of 
the thorax, the organs of respiration in which aeration of the blood takes place..."/> 

declare namespace ns1="gme://caCORE.caCORE/3.2/edu.northwestern.radiology.AIM"; 
for$t indb2-fn:xmlcolumn('XMLTABLE.XMLCOLUMN')/ 
        ns1:ImageAnnotation/ns1:anatomicEntityCollection/ ns1:AnatomicEntity/@codeMeaning 
let$d:=db2-fn:sqlquery("values( xmlcast(getDescription('RadLex',parameter(1)) as xml))", $t) 
return<result term ="{$t}" description ="{$d}"/> 



QUERY 2: Retrieve all the image annotation documents that contain the descendant 

concepts of the term "lobular organ": 

 

QUERY 3: Retrieve common ancestors with "liver" for each of the anatomic entity: 

 

QUERY 4: Annotate imaging observation characteristic terms with NCI Thesaurus 

ontology, and return the annotations as ontology concept terms if available: 

 

 

 

 

 

 

 

 

 

7.   System Performance 

We present experimental results of typical UDFs with sample test cases summarized in 

Table 1. The experiment is performed with the NCI Thesaurus ontology hosted at 

BioPortal, and the database we use is IBM's DB2 V9.7. The machine we use for the test 

is a desktop with i5-760 at 2.8GHz, 8GB of RAM, 1TB RAID 0 (2 x 500GB 

SATA7200rpm HDDs) hard drive. The running time for each query is the average of 10 

executions. The local catching database stores a subset of the original ontology. 

 

Test UDF Test Case Description 

getAnnotation Annotate the sentence "lung cancer patient" 

getDescription Retrieve the description of "Abnormal Cell" 

getRelevantTerm Retrieve relevant terms of "patient" 

declare namespace ns1="gme://caCORE.caCORE/3.2/edu.northwestern.radiology.AIM"; 

for$t indb2-fn:xmlcolumn('XMLTABLE.XMLCOLUMN')/ 

        ns1:ImageAnnotation/ 

ns1:imagingObservationCollection/ 

ns1:ImagingObservation/ 

        ns1:imagingObservationCharacteristicCollection/ 

        ns1:ImagingObservationCharacteristic/@codeMeaning 

for$a indb2-fn:sqlquery("select xmlcast(terms as xml) 

fromtable(getAnnotation('NCI',parameter(1)))", $t) 

return<result term ="{$t}" annotation ="{$a}"/> 

declare namespacens1="gme://caCORE.caCORE/3.2/edu.northwestern.radiology.AIM"; 
for$t indb2-fn:xmlcolumn('XMLTABLE.XMLCOLUMN')/ 
        ns1:ImageAnnotation/ns1:anatomicEntityCollection/ns1:AnatomicEntity/@codeMeaning 
for$a indb2-fn:sqlquery("select xmlcast(terms as xml) from 
table(getCommonAncestors ('RadLex', CONCAT ('liver;',parameter(1))))",$t) 
return<result term ="{$t}" ancestor ="{$a}"/> 

declare namespace ns1="gme://caCORE.caCORE/3.2/edu.northwestern.radiology.AIM"; 
for$a indb2-fn:xmlcolumn('XMLTABLE.XMLCOLUMN')/ns1:ImageAnnotation 
for$hypo indb2-fn:sqlquery("select xmlcast(terms as xml)  
        from table(getHyponym('NCI', Spatial Qualifier', 1))") 
where$a/ ns1:imagingObservationCollection/ 
        ns1:ImagingObservation/ns1:imagingObservationCharacteristicCollection/ 
        ns1:ImagingObservationCharacteristic/@codeMeaning=$hypo 
return$a 



getChildCount Retrieve child node amount of "Abnormal Cell" 

getHypernym Retrieve the parent node of "Neoplastic Cell" 

getHyponym Retrieve the child nodes of "Neoplastic Cell" 

checkIfAdjunct Check if concepts "Abnormal Germ Cell" and "Neoplastic 

Large Cell" overlap. 

getRelation Retrieve the relation of "Abnormal Cell" and "Circulating 

Tumor Cell". 

getCommonAncestors Retrieve the common ancestors of concept "Malignant 

Cell" and "Neoplastic Germ Cell" 

Table 1. UDFs used in testing 

For each query in Table 1, Figure 3 shows performance comparison between methods 

without caching and with local caching. The experiment of querying without catching 

shows that simple queries take around 1 second as only one or two HTTP requests are 

needed. However, complex queries take much longer. This is because many complex 

queries are reasoned as queries with recursive operations that result in multiple repository 

requests. Such performance is unacceptable when a query runs across many terms. With 

caching, most queries run within 0.1 second, a significant performance 

improvement.Performance of caching may decrease as the size of caching grows. In 

reality, the execution of previous queries may also affect the efficiency of caching 

because of the caching mechanism of local caching database. 

 

Figure 3. Sample query performance without and with local cache (in seconds) 
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In addition, we also compared the performance enhancement of UDF getHyponymat 

different query depths. This query searches the descendants of the concept "Abnormal 

Cell". Table 2 shows the number of concepts need to be checked and the total number of 

result concepts returned in the recursive processes, as well as the performance before and 

after local caching. The experiment shows that caching provides relatively constant 

performance, and could be several orders of magnitude faster for high depth queries. 

 

Table 2. Running time without and with local cache for getHyponym UDF at different 

depths (in seconds) 

Depth Examined 

Concepts 

Retrieved 

Concepts 

Time without 

Cache 

Time withCache 

1 1 15 1.21 0.019 

2 16 83 7.7 0.027 

3 84 267 34.8 0.083 

4 268 503 162.2 0.192 

Visualization of Local Ontology in a Database 

In practice, a local biomedical database only uses a subset of one or multiple ontologies 

to make annotations of the data, and the subset of concepts consist of fragments of 

ontologies and can be difficult to visualize.  By taking advantage of DBOntoLink, we can 

generate a graph view of a local ontology.  To build the graph, each distinct concept used 

in the local database is treated as a leaf and the hierarchy is recursively built until the root 

using DBOntoLink functions. Intermediate nodes with same concepts are merged 

together. Figure 3 shows an example local ontology graph, for a small set of local 

concepts “Giant Cell”, “Malignant Cell”, “Liver” and “Lung”. 

 

Figure 3.Local Ontology Graph Generated by System. 

 

We can also link data objects which contain a concept into the graph, for example, an 

AIM XML document for “Lung” can be attached to the “lung” node in the ontology 

graph.  This will enable an ontology based navigation of instances in the database. 

 



8.   Discussions and Future Work 

While DBOntoLink provides an architecture that supports semantic operations in the 

database, more semantic operations can be extended in the future, such as complex 

semantic operations. This could be implemented by extending current set of semantic 

operators, and providing corresponding translation in the semantic query engine and 

UDFs in the database. 

Another future work is to extend the system to support more database management 

systems. Since different DBMSs have their own UDF frameworks, we can port current 

UDFs to databases such as Oracle, PostgreSQL and mySQL by implementing the UDF 

interfaces, where the internal Java codes can be reused across DBMSs.  

9.   CONCLUSION 

While ontologies are proliferating in biomedical domains, most biomedical data are 

available as structured data managed in relational DBMS or XML DBMS. Using 

ontologies to enrich the semantics of data for queries and interoperability is becoming 

increasingly important, but there is a lack of tools to ease the integration and use of 

ontologies in databases using standard query languages or query interfaces. DBOntoLink 

provides a bridge between ontology repositories and databases to support semantic 

operations directly inside a database based on standard database query languages. 

Semantically annotated biomedical databases thus can be easily extended with powerful 

and expressive semantic enabled queries with DBOntoLink to use major ontologies 

hosted at NCBO BioPortal, with high query efficiency achieved through caching 

management.  
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