
CHAPTER 1: NFS BASICS AND 
PROTOCOLS 

Files are the basic storage unit of most computers. Easy access to one’s files is an 
assumed part of day-to-day operations. In the Internet age, a user’s files may reside on 
one machine but be accessed from another machine. Remote access to files is absolutely 
essential. Unfortunately, new complications arise with remote access: 

• How to ensure seamless access to remote files as if they were local 

• How to secure file data over public networks 

• How to access files when networks or servers misbehave or are down 

• How fast can you access your files over a network 

• And more... 
Over the past two decades, several file systems have been developed to allow 

remote access to files. The Server Message Block (SMB) protocol, used by Windows 
machines, allows machines to share access to remote folders and printers. The Andrew 
File System (AFS), invented at Carnegie-Mellon University, is a complex, high-
performance file system that makes extensive use of caching to perform well. The Coda 
file system was invented for use in environments with a highly variable quality of 
network connectivity. In particular, the Coda file system can handle disconnected 
operations—computers that disconnect from the network for an arbitrary length of time 
and then reconnect again. Coda synchronizes files between disconnected clients and 
servers after reconnection. 

The Network File System (NFS) is the most widely used network-based file 
system. NFS’s initial simple design and Sun Microsystems’ willingness to publicize the 
protocol and code samples to the community contributed to making NFS the most 
successful remote access file system. NFS implementations are available for numerous 
Unix systems, several Windows-based systems, and others. While not perfectly 
interoperable, heterogeneous NFS systems can exchange data together homogeneously 
with little user notice. For the most part, users are rarely aware that their files are being 
served over the network; they do not have to change their behavior or any programs they 
used before. 

In this chapter, we introduce NFS. We begin by describing the basic operating 
principles; then we describe the many components that make up this complex system. We 
follow this with the details of the NFS protocols and how they evolved. We end with an 
example illustrating how to configure and use NFS. 
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NFS Versions 
There are several revisions—or protocols—of NFS. Version 3 of NFS (NFSv3) is 

rapidly becoming the default version on most Linux systems. This version is available in 
the latest Linux 2.2 and 2.4 kernels. For the purposes of this book, we are assuming that 
readers are using one of these kernels and therefore they are using NFSv3; we will not be 
discussing NFSv2 at great length. To use the latest versions of NFS with Linux, a special 
user-level set of utilities is needed; these can be found in the nfs-utils package, 
version 0.2.0 or newer. To find out how to retrieve and install these new versions on 
Linux, see Chapter 7, “Building and Installing the Linux Kernel and NFS Software.” 

The specification for the latest version of NFS, version 4, is finalized but relatively 
new. At least one prototype implementation of this protocol version exists for Linux, but 
it is far from stable. It will be a long while before it becomes the default version of NFS 
for Linux. NFSv3 became stable on Linux more than six years after its original debut, 
and this was for a moderately complex improvement over the NFSv2 protocol. Compared 
to NFSv3, NFSv4 is significantly more complex. Therefore, we do not assume that users 
will be using NFSv4 soon, and we only describe NFSv4 briefly in Chapter 6, “NFS 
Version 4.” 

The first implementation of NFS on Linux was in a user-level daemon called 
unfsd. Since then, NFS implementations under Linux have moved into the kernel, 
where they perform faster and more reliably. To distinguish these kernel-based 
implementations from user-based implementations, the former were prefixed with k—so 
it would be knfsd instead of unfsd, or just nfsd. Other parts of NFS have also been 
moved into the kernel, as we see later in this chapter. However, to simplify our 
discussions, we have assumed that NFS is implemented in the kernel, and we have 
dropped the k prefix from those services. 

 We do not discuss or use the older user-level NFS daemon (unfsd). 
We strongly recommend that administrators move away from that older, 
slower, and unreliable NFS server. 

Overview of NFS 
In this section, we overview the primary ideas that make up NFS. There are 

several such ideas: 

• Remote procedure calls 

• Retransmissions of messages 
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• Idempotent operations 

• A stateless server 

• File handles to identify files 

• Caching on the client 

• Maintaining Unix file system semantics 

Remote Procedure Calls 
Remote Procedure Calls (RPCs) are a programming paradigm that allows a local 

process to call a function that is implemented by a remote process as if the local process 
were calling its own function. RPCs allow the NFS system to be split into two parts: a 
component that runs on the client (or calling) host and a component that runs on the 
server (or called) host. An NFS client can call file system functions—implemented as 
RPCs—on the server as if the functions, and hence the files, were local. 

Retransmissions and Idempotent Operations 
In a network-based communication, software systems must handle lost packets 

and messages. The RPC system was designed to resend RPC messages automatically, at a 
given configurable interval, for up to a configurable number of retries. Since NFS is 
based on RPC, it supports retransmissions of protocol messages automatically. If the 
network is unreachable (because it got disconnected for a period of time or because the 
NFS server crashed and is rebooting), an NFS client will resend its messages several 
times before giving up. This ensures that NFS continues to function even when transient 
problems occur. 

The flip side of the retransmission ability is the danger of duplicate messages. In 
any network, especially one that uses the User Datagram Protocol (UDP), duplicate 
packets could occur. If a duplicate RPC message is sent to an NFS server, the NFS server 
will try to process that message again, possibly performing the same operation 
repeatedly. Therefore, it is important that the NFS protocol and its operations all be 
idempotent—executing them again does not change the outcome. The decision to make 
sure all NFS operations are idempotent figured heavily into the protocol design and into 
the key design feature of the NFS server, its statelessness, which is discussed next. 
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A Stateless Server 
One important aspect of a distributed file system design is its handling of network 

failures and how well it recovers from host crashes. This point is crucial for the 
consistency and reliability of data. In local file systems, such as EXT2, a user has a 
strong guarantee that the data just saved in a write system call is actually saved to disk. 
Should the machine crash, the data will remain on disk. 

Consider the case of a client-server statefull distributed file system. A client writes 
some data using the write system call. The data goes over the wire from the client to 
the server. To improve performance, a statefull server might cache that data in memory 
and return a successful return code to the client. The server can schedule to save the data 
onto physical media at a later time. Since the client received a successful return code, it 
believes that the data must have been saved to stable media—a usual assumption when 
the write system call returns successfully. However, if the server crashes after signaling 
the client that write succeeded but before the server had a chance to synchronize the 
data to stable media, that data would be lost. When that happens, the client’s assumption 
of a successful write becomes incorrect. 

There are several ways to improve the reliability of statefull servers while 
maintaining high performance. However, a much easier way to ensure reliable crash 
recovery is to make the server stateless; such a server keeps no state, therefore avoiding 
any loss of data during crashes. With a stateless server, the client can be assured that 
when a remote NFS operation succeeds, the remote file system is guaranteed to be 
consistent, even if the remote server crashes. 

The assumption that NFS servers are stateless simplifies the NFS server code and 
the NFS protocol significantly. To ensure data consistency, the NFS client host just waits 
for a previously available remote server that has crashed to reboot. This wait state often 
locks all the processes that were performing operations on the remote server, which 
results in the infamous but necessary error message “NFS server not responding—still 
trying.” Once the server comes back up, the NFS client that was waiting for the server to 
come back up can resume its operation. 

One of the unfortunate results of the statelessness of the NFS server is poor 
performance. The server must write to disk all data it receives from clients before it 
returns successfully to the client. This synchronous writing operation is one of the largest 
drawbacks of NFS, and it impacts its performance significantly. Below we discuss 
several solutions that were invented to improve performance through client-side caching. 

Note that the NFS client is not stateless and it does keep cached data in order to 
improve performance. If the client crashes, some data may be lost, but that is no different 
from a client host crashing in the middle of a write operation to a local disk. This is very 
different from when a server crashes; when this happens, many clients’ data could be lost 
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all at once, and those clients are now left in an inconsistent state of making wrong 
assumptions about the validity of their data. 

File Handles 
NFS clients and servers handle many files at once. Often, a client may issue many 

system calls on a single file, each call turning into one or more NFS operations over the 
wire. The client and server must agree about which files both should apply a series of 
operations to. For that reason, NFS servers issue file handles to clients. File handles are 
unique identifiers that the server generates for each file that a client uses. 

These identifiers are anywhere from 32 to 64 bytes of data in length. File handles 
are opaque to the client—it does not know what the individual bytes in each handle are 
for. Only the server understands file handles. NFS servers generally encode enough 
information on the local disks to allow the servers to find out the exact file name that a 
remote client wishes to access. Servers usually encode the following pieces of 
information in each file handle: 

• A file system identifier, an index number of a mounted local file system 

• The inode number of the file within the file system 

• An inode generation number, described below, under “Maintaining Unix 
Semantics” 

• Other information as they see fit, usually listed in the C header file 
/usr/include/linux/nfsd/nfsfh.h 

Recall that the server is stateless; therefore, it cannot keep an association (state) 
that maps file handles to actual files on the server’s disks. The server generates its own 
file handles and encodes in them everything that it needs to find out the exact file that any 
given file handle was generated for. Clients receive these file handles from the NFS 
server, and they must not modify them. Instead, the clients must send back the same file 
handles the server provided when these same clients wish to access the same files. When 
NFS servers get the returned file handles, even (and especially) after a server crash, they 
can decode the file handle and tell exactly which file the client wishes to apply the 
particular operation to. This is possible because the file handle encodes information that 
uniquely identifies the exact file within a given file system that resides on the server. 

If an NFS client passes a file handle to an NFS server that the server is unable to 
decode, the server will refuse to use that file handle; the NFS server will return an error 
code back to the client telling it that the file handle is stale. Stale file handles happen 
most often when a file system on a remote file server is moved, the file system is 
reformatted or restored, or the mount point for the file system changed. See Chapter 5, 
“NFS Diagnostics and Debugging,” for how to handle stale file handles. 
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Client-Side Caching 
As we just mentioned above, servers are stateless but clients are not. To improve 

performance, clients cache file data and file attributes. 

NFS clients and servers employ a special I/O daemon (rpciod) in order to 
cluster multiple write operations from the client. When several consecutive write buffers 
accumulate, rpciod will issue a single large write request to the NFS server. This can 
improve performance manyfold, especially when a client process performs many small 
writes or appends to the same file. Note that client-side caching and buffering via 
rpciod does not violate the statelessness of the server, but it does increase the chance of 
greater data loss should the client crash. 

NFS clients also cache attributes. This is intended to speed up operations that look 
up file attributes (such as the lstat system call) and operations that change file 
attributes (such as chmod or chgrp). This behavior also has annoying side effects since 
changed file modes do not propagate immediately from one client to a server, and 
certainly, they do not propagate immediately from a server to another client. 

This behavior also has security implications. Consider two clients, A and B, that 
read the same file, possibly at the same time. Though client A might change the mode of 
the file so it is more restrictive and should no longer be readable by client B, client B 
might still cache the previous more permissive modes. This allows client B to continue to 
access a file that it is no longer supposed to. 

Maintaining Unix Semantics 
Several complications arise from Unix’s particular file system semantics. These 

semantics must be maintained accurately so that user processes could mix access to local 
and remote files without any noticeable difference. 

Inode Generation Numbers 
The first such semantic issue has to do with inode numbers, the file index numbers 

that help locate the data of the file on disk. When a file is removed, its inode is also 
removed. That inode number, however, can be reused at a later date to create a new file. 
Inode numbers can be recycled shortly after becoming available, or much later, 
depending on the system usage and the operating system. 

NFS servers encode the inode number of a file in the file handle so that they can 
identify the exact file that a client wants to access. Consider what happens if that file was 
removed, possibly on the server itself or by another client, and then another file was 
created that had the same inode number. If the NFS client host retained its file handle and 
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tried to use it, the NFS server would find the new file with the same (old) inode number 
and would incorrectly think that it was the file that the client wanted to use. This scenario 
can result in serious data corruption. 

For that reason, NFS servers add another piece of information into the mix that 
makes up the NFS file handle: an inode generation number. This number is usually an 
integer that gets incremented each time the same inode number is reused, or it is a time 
stamp of the file’s creation time. Either way, it is an additional piece of information that 
helps the stateless server correctly identify the exact file that is being used. 

Hidden .nfs Files 
Another quirky piece of Unix file system semantics is the ability to open a file, 

unlink (delete) it, and still be able to access the file’s data as long as the file remains 
open. This particular behavior was originally intended to allow programs to access 
temporary unnamed files in a way that guaranteed that the physical storage for those files 
was reclaimed as soon as the process using them closed the files’ descriptors. 
Unfortunately, this behavior was used more often by attackers of Unix systems 
determined to hide their intentions by using unnamed files. 

Since the NFS server is stateless, it is not allowed to keep any state on the current 
status of files. In particular, the server cannot tell when a file is opened or closed (these 
two operations are not even part of the v2 and v3 NFS protocols). Therefore, the NFS 
client-side code has to handle this case specially. The client side can do so because it 
does know when a file has been unlinked while being opened. When the client sees this 
unlink operation, it issues an NFS call to rename the file to a hidden file whose name 
starts with .nfs and ends with a sequence of characters and digits that guarantee the 
uniqueness of that special dot file. 

The NFS client code remembers the renamed file name. When the client sees the 
close operation, it then issues an NFS call to actually delete the .nfs file, therefore 
removing its physical storage. 

This behavior preserves this odd Unix semantics as closely as possible. 
Occasionally, clients can crash and leave behind .nfs files that the client no longer 
knows about. These stale files must be cleaned. For that reason, most systems add a daily 
cron job to look for and delete old .nfs files. 

File and Record Locking 
Modern Unix systems provide several system calls that allow a process to lock a 

whole file or a smaller region of a file while accessing it. This is most often used to 
guarantee that only one process at a time can be modifying a shared file. Unfortunately, 
proper support for locking requires that the operating system maintain a state about the 
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locked files. Since the actual files reside on the server, locking information (state) must 
be maintained on the server. This state must be maintained on the server to guarantee that 
clients from different hosts do not all try to write to the same file at the same time. 

So, it appears that NFS server hosts have to keep some state, but the NFS server 
itself (nfsd) was designed to be stateless. To reconcile these two opposing needs, the 
original designers of NFS opted to create a separate locking daemon (lockd) that NFS 
clients must communicate with to guarantee consistent locking behavior. 

Components of the Network File System 
The NFS system is complex and contains many components that interact with each 

other over special protocols. The different components use various configuration and 
state files. Figure 1.1 shows the main components of NFS and the primary configuration 
files. On the upper part of the figure we see an NFS server, and on the lower part an NFS 
client host. Each host has its own kernel-level services: eXternal Data Representation 
(XDR), Remote Procedure Call (RPC), NFS client or server, I/O daemon, and locking 
daemon. Each host also has its own user-level services. Both kernel-level and user-level 
services depend on the function that the host has: an NFS client or an NFS server. In 
addition, there are special configuration files (usually in /etc) that are used on each host 
based on its function. Note that if a host is both an NFS server and an NFS client, it will 
have to run the services on both parts of Figure 1.1. 
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Figure 1.1: The components of an NFS system [F0101.eps] 

Figure 1.1 also shows the flow of data for a simple read operation, when an NFS 
client wants to read a file from an NFS server. We describe that data flow at the end of 
this chapter. 

In the next sections, we begin by describing each component of an NFS system. 
We discuss them in dependency order, describing a component first before other 
components that use it. Once we have described each component’s function, we can put 
them all in context and show you how the overall NFS system works. 
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XDR: eXternal Data Representation 
The basic need of a distributed file system such as NFS is to exchange data across 

a network between heterogeneous machines. Most CPUs use one of two ways to 
represent data in memory: 

Big-endian 
A big-endian machine stores the most-significant byte of a machine word on the 
left side of a register. For example, the integer 2 as represented in hexadecimal on 
a big-endian machine would be 0x00000002. 

Little-endian 
A little-endian machine stores the least-significant byte of a machine word on the 
left side of a register. On such a machine, the integer 2 (in hexadecimal) would be 
represented as 0x02000000. 
Since there are two such representations for data, it is imperative that when a big-

endian machine exchanges data with a little-endian machine, they both agree on the 
representation of the data being exchanged. If they did not agree on a common format, 
these machines could corrupt data. For this reason, the Internet standard for exchanging 
data over the network is in network order, which is big-endian. This means that little-
endian machines, such as Intel-based ones, must convert data to big-endian format before 
sending it over the wire, and they must convert it back to little-endian (which is their own 
host order) when they read data from the network. This process must be done very 
carefully and consistently. 

The eXternal Data Representation (XDR) system was designed to simplify data 
exchange among networked hosts. XDR can encode any arbitrary data in a uniform 
manner and prepare it to be sent over the network. XDR can also take an arbitrary data 
stream off the network and decode it into its original data units. 

XDR comes with libraries and functions that can encode and decode many 
primitive types: integers, longs, floating-point numbers, strings, bytes, and more. 
Programmers using XDR can build more and more complex encoding functions using 
basic ones. For example, they can create an XDR encoding function for a complex data 
structure that contains simpler native types, and then they can create an even more 
complex XDR function that builds on top of that. 

XDR offers a powerful method to encode arbitrarily complex data structures in a 
uniform network order and ensures that when the data arrives on the other end, it can be 
decoded into the exact data structure that the sender encoded. The ability to transfer data 
structures across a network is the first necessary component of sharing files over a 
network. 
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RPC: Remote Procedure Call 
XDRs provide a mechanism to exchange data uniformly across a network. Remote 

Procedure Calls (RPCs) provide a method for calling functions on another host. Most 
programming languages allow you to call functions in your own program or in libraries 
that the program links with; these languages also allow you to pass data to the function 
and to return data back from the function. Together, XDR and RPC allow you to do the 
same—only on remote hosts. 

RPCs allow programmers to provide shared services in a single location 
designated as the server. Many clients can access those services as easily as they would if 
they were calling a function in their local C library. With RPCs, code and services can be 
shared more easily between hosts. 

The RPC system also allows for implementation versioning. A server can provide 
multiple implementations of a given service, and clients making RPC calls can choose the 
implementation they want to use. This allows network-wide services to evolve naturally 
over time (even in an incompatible manner), while maintaining backward compatibility; 
therefore, newer RPC clients can use the latest versions of the RPC service, while older 
ones can use older (yet compatible) versions of the RPC service. This versioning ability 
will prove to be very useful to the evolution of the NFS protocol. 

Refer back to Figure 1.1. Here we see that in order for two machines to exchange 
information, they must go through the RPC layer, which in turn uses the XDR layer to 
encode the data. When an RPC client calls an RPC server, the client has to provide the 
server with at least this basic information: 

• The name of the remote host 

• The program number of the remote service, uniquely identifying the RPC 
service 

• The version of the service (a number) 

• The number of the exact remote procedure to execute on the remote service 

• The arguments and data to pass to the remote service 

• Placeholders for the arguments and data to get back from the remote service 

The Portmapper 
Now that we have the ability to create many RPC services, all versioned, and each 

with their own set of procedures, we have to decide how they should be advertised to 
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clients. Traditionally in Unix, each service gets assigned a port number on which to 
listen: Telnet on port 23, FTP on port 21, SSH on port 22, SMTP on port 25, and so on. 
This agreement on the port number is important; without it, clients would not know how 
to contact the service. Unfortunately, a limited number of port numbers is available 
(generally only 65535), and even fewer are available to privileged (root) services—the 
first 1024 ports. Therefore, if we are to support many possible RPC services, we cannot 
dedicate a port number to each such service; if we did, we would quickly run out of 
available ports. 

The portmapper solves this problem. Each RPC service has its own program 
number, a large number that is either assigned to the service or can be designated by the 
programmer of the service. The portmapper maps the RPC program number to the actual 
port the service runs on. 

The portmapper, however, can do more than that. When an RPC program wishes 
to make its services available to clients to contact, it registers its service with the 
portmapper. It provides the portmapper with the following information: 

• The program number that it uses for the service 

• The version of the service that it supports 

• The transports that it supports: UDP, TCP, or both 
RPC servers can register multiple services, versions, and transports to use by 

registering each tuple (<service, version, transport>) individually with the portmapper. 
The portmapper records this information so that when an RPC client contacts it to call an 
RPC service, the portmapper can tell it what port the service listens on. Then the RPC 
client can contact that service directly. The only requirement for RPC clients to contact 
the portmapper is that the portmapper itself must have a preassigned port number: 111. 

Getting RPC Information 
The portmapper may be the mother of all RPC services, but it is also an RPC 

service itself. As such, it has an implementation version and transports that it supports. 
To find out this information about any RPC service, including the portmapper, use the 
rpcinfo program. Listing 1.1 shows the five forms of typical use for the rpcinfo 
command. 

Listing 1.1: Usage of the rpcinfo program 
Usage: rpcinfo [ -n portnum ] -u host prognum [ versnum ] 
       rpcinfo [ -n portnum ] -t host prognum [ versnum ] 
       rpcinfo -p [ host ] 
       rpcinfo -b prognum versnum 
       rpcinfo -d prognum versnum 
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The first two forms contact a remote host and query the NULL (first) procedure 
of prognum. This form is intended to test if a remote service is up and responding using 
UDP (-u); the second form tests using TCP (-t). You can optionally specify the version 
number (versnum) of the service you wish to verify. 

Normally, rpcinfo will contact the remote portmapper to find out which port 
number the service listens on. If you know that port number, you can specify it using the 
-n option. For example, to test if a remote NFS server (RPC program number 100003) 
named aladdin supports protocol version 3 using UDP, run the command as seen in 
Listing 1.2. 

Listing 1.2: Testing the availability of an RPC service 
[ezk]$ rpcinfo -u aladdin 100003 3 
program 100003 version 3 ready and waiting 

The second form of usage for rpcinfo is the most often used one—listing the 
RPC services that run on a given host. To list the RPC services on a host, run rpcinfo 
-p as seen in Listing 1.3. 

Listing 1.3: Listing the RPC services running on a host 
[ezk]$ rpcinfo -p 
   program vers proto   port 
    100000    2   tcp    111  portmapper 
    100000    2   udp    111  portmapper 
    100004    2   udp    981  ypserv 
    100004    1   udp    981  ypserv 
    100004    2   tcp    984  ypserv 
    100004    1   tcp    984  ypserv 
    100007    2   udp    995  ypbind 
    100007    2   tcp    997  ypbind 
    100024    1   udp    964  status 
    100024    1   tcp    966  status 
    100011    1   udp    896  rquotad 
    100011    2   udp    896  rquotad 
    100005    1   udp   1037  mountd 
    100005    1   tcp   1024  mountd 
    100005    2   udp   1037  mountd 
    100005    2   tcp   1024  mountd 
    100005    3   udp   1037  mountd 
    100005    3   tcp   1024  mountd 
    100003    2   udp   2049  nfs 
    100003    3   udp   2049  nfs 
    100021    1   udp   1038  nlockmgr 
    100021    3   udp   1038  nlockmgr 
    100021    4   udp   1038  nlockmgr 
    100021    1   tcp   1025  nlockmgr 
    100021    3   tcp   1025  nlockmgr 
    100021    4   tcp   1025  nlockmgr 
    100001    3   udp    941  rstatd 
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    100001    2   udp    941  rstatd 
    100001    1   udp    941  rstatd 
    100008    1   udp   1040  walld 
    300019    1   tcp    975  amd 
    300019    1   udp    976  amd 

Listing 1.3 shows the RPC services on this host, many of which are related to NFS 
and will be described in the sections that follow. 

The third form of usage for rpcinfo sends an RPC broadcast command for a 
given service and version of that service. It returns the IP address and name of every host 
that responds. For example, to find out which hosts support the nlockmgr service 
version 4, run the command as seen in Listing 1.4. 

Listing 1.4: Querying for all hosts that support an RPC service 
[ezk]$ rpcinfo -b 100021 4 
172.29.1.65 lorien.dev.example.com 
172.29.1.66 jigglypuff.dev.example.com 
172.29.1.67 kendo.dev.example.com 
172.29.1.57 toreador.dev.example.com 
172.29.1.3 aladdin.dev.example.com 
172.29.1.126 corvair.dev.example.com 
172.29.1.87 atlast.dev.example.com 
172.29.1.61 rewind.dev.example.com 

The fourth and last form of usage for rpcinfo removes an association of 
program number (RPC service) and version number from the portmapper. Only the 
superuser can execute this command because once the association is removed, that 
service can no longer be used! 

 Many RPC programs use a different service name from the actual 
program name. Most often, a program such as 
/usr/sbin/rpc.mountd is represented by the RPC portmapper as 
mountd. Throughout this chapter, we will refer to the service name of 
the program using the short form, and to the actual program name 
using the longer form that begins with the rpc. prefix. 

The Portmapper RPC Protocol 
For a given version, each RPC service can support any number of procedures. 

These procedures are individual functions that RPC clients can call. Being an RPC 
service itself, the portmapper is no different. The following procedures are defined for the 
(latest) portmapper protocol, version number 4: 

PMAPPROC_NULL 
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Every RPC program has this NULL procedure (also called procedure 0) because 
its number is zero, which is sometimes known as the ping procedure. This 
procedure does not take or return arguments. Its purpose is for RPC clients to call 
and find out if a service exists and is running for a given version of a protocol. 

PMAPPROC_SET 
The SET procedure registers an RPC program number, version number, and 
protocol transport type with the portmapper. 

PMAPPROC_UNSET 
This procedure deregisters an RPC service from the portmapper. 

PMAPPROC_GETPORT 
The GETPORT procedure returns the port number for a given RPC program 
number and version. 

PMAPPROC_DUMP 
The DUMP procedure returns the list of all services registered with the 
portmapper. It is used with rpcinfo -p. 

PMAPPROC_CALLIT 
This procedure is used to make the portmapper call a procedure of another RPC 
service on the same host. Normally, you would not need to use this procedure; you 
would call the RPC service directly. On Linux, the CALLIT procedure is limited 
to UDP only, it performs no authentication, and it does not return any error 
information. It is therefore of limited use, and not very secure. 

The Mount Daemon 
XDR, RPC, and the portmapper are generic parts of the RPC system on which 

NFS is based. The mount daemon (mountd) is the first RPC service we cover that is 
specific to NFS. This server implements the MOUNT protocol. It retrieves a list of 
exported directories from a configuration file called /etc/exports. This 
configuration file describes which directories this NFS server allows remote NFS clients 
to access. NFS clients contact mountd to request initial access to an NFS volume. The 
mountd daemon checks the list of currently exported volumes against the credentials of 
the NFS client and responds, either allowing or denying access. 
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If the daemon grants access, it returns a root file handle to the NFS client. This file 
handle is the NFS system identifier for the top-level directory of the exported volume. 
This piece of information is important to the NFS client. Using the root file handle, an 
NFS client can, for example, request listing of the entries in that directory, read or write 
files within that directory, or get handles for additional files or subdirectories. In other 
words, without the root file handle, an NFS client cannot begin to access any files that are 
in that volume. 

The rpc.mountd Program 
The rpc.mountd program is the user-level RPC daemon that processes 

MOUNT requests from clients. Administrators list volumes to export in the file 
/etc/exports. A special tool, exportfs, maintains a current list of exported 
volumes in the file /var/lib/nfs/xtab. The rpc.mountd server reads the current 
export list from that file. We show an example using these files later in this chapter, and 
we detail their format and options in Chapter 2, “Configuring NFS.” 

The rpc.mountd daemon supports the command-line options seen in Listing 
1.5. 

Listing 1.5: Usage of the rpc.mountd program 
Usage: rpc.mountd [-Fhnv] [-d kind] [-f exports-file] [-V version] 
        [-N version] [--debug kind] [-p|--port port] [--help] 
        [--version] [--exports-file=file] 
        [--nfs-version version] [--no-nfs-version version] 

-d or --debug 
Turn on debugging. All debugging messages are logged via syslog to the 
LOG_DAEMON service. 

-F or --foreground 
Do not daemonize rpc.mountd. Instead, the server remains running in the 
foreground. This is useful if you wish to debug it using a debugger such as gdb. 

-f ARG or --exports-file ARG 
By default, rpc.mountd reads export information from /etc/exports when 
the daemon starts up. With this option, it reads the export information from a file 
specified by ARG. Note that rpc.mountd also reads export information from 
/var/lib/nfs/xtab; we describe these files in greater detail in Chapter 2. 
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-h or --help 
Prints the help message shown in Listing 1.5. 

-N ARG or --no-nfs-version ARG 
The daemon is capable of returning NFS root file handles for multiple versions of 
NFS. If, however, you do not wish the daemon to support a certain version of 
NFS, you can specify it with this option, as ARG. This is most often useful when 
you do not wish to use a buggy or unstable implementation of the NFSv3 protocol: 

[root]# rpc.mountd --no-nfs-version 3 

-V ARG or --nfs-version ARG 
This option is the opposite of the -N option: it forces rpc.mountd to offer the 
version as specified in ARG. 

-p ARG or --port ARG 
Usually, rpc.mount will bind to a port that is randomly assigned to it by the 
portmapper. If you wish to force rpc.mountd to use another port, specify it in 
ARG. 

-v or --version 
Print the version of the daemon and exit. 

The MOUNT Protocol 
The latest version (3) of the MOUNT protocol implemented by rpc.mountd 

supports the following RPC procedures: 

MOUNTPROC_NULL 
This is the ping procedure for testing the rpc.mountd’s responsiveness. 

MOUNTPROC_MNT 
An NFS client passes the name of a directory it wishes to mount. If the client is 
authorized to access that directory, this procedure returns the root NFS file handle 
for that directory to the NFS client. Also, rpc.mountd updates the remote 
mount table file /var/lib/nfs/rmtab. 

MOUNTPROC_DUMP 
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Return the full list of remotely mounted file systems, as listed in the 
/var/lib/nfs/rmtab file. This list includes the names of remote hosts that 
mount this NFS server’s file systems, and the names of the directories that they 
mount. 

MOUNTPROC_UMNT 
Delete an entry from /var/lib/nfs/rmtab, which is a pair of hostname and 
directory name that the remote host mounts. 

MOUNTPROC_UMNTALL 
Delete all entries for /var/lib/nfs/rmtab for the NFS client host that calls 
this procedure. 

MOUNTPROC_EXPORT and MOUNTPROC_EXPORTALL 
Return the full list of all exported file systems and the names of the machines that 
are allowed to mount these file systems. 

MOUNTPROC_PATHCONF 
Return the POSIX pathconf information to the client. This information includes 
file system parameters about the server, such as the maximum allowed length for a 
path name, the maximum length for a file name, etc. 

The NFS Locking Daemon 
Unix supports locking files or portions of files (such as record locks) to ensure that 

no two people can attempt to write the same part of the file. This guarantees data 
consistency. On a single host, the kernel maintains information about user processes that 
acquired file locks and ensures the appropriate handling of lock requests and file access 
while files are locked. The key part in ensuring consistent locking is that there is a central 
authority—the kernel—that must arbitrate lock and write requests. 

In a distributed file system such as NFS, many clients may wish to lock the same 
remote file. The most logical choice for the central lock arbitration authority is the NFS 
server itself because only it has access to the actual locked file. To maintain this locking 
information, however, the NFS server would have to track which client locked which file 
or a portion of a file. However, the NFS server was designed to be stateless, and thus it 
cannot maintain any state. For this situation, the solution Sun came up with was to add 
another RPC protocol to handle locking operations. 

© Erez Zadok Page 18 12/22/2005 



The RPC Locking Daemon, rpc.lockd, implements the NFS Lock Manager 
(NLM) protocol. The NLM protocol was designed to support multiple clients wishing to 
lock files consistently through NFS. NFS clients make RPC calls to the local 
rpc.lockd, which communicates with the remote rpc.lockd to ensure consistent 
locking of files. The rpc.lockd server uses another daemon, rpc.statd, which 
implements a status monitoring service; we describe rpc.statd below. 

 At this stage, astute readers might begin to wonder why there are so 
many components of the NFS system; for instance, why is this locking 
protocol not integrated together with the NFS server nfsd? If you are 
asking this question, you would be right, but it took more than 15 years 
to do just that: integrate all of these extra protocols into the NFS 
protocol. See Chapter 6, “NFS Version 4.” You will not be disappointed. 

The rpc.lockd Program 
In older Linux systems, rpc.lockd was not implemented at all. In later kernels, 

such as those distributed with Red Hat 7, a kernel-level thread implementation of this 
service is included; it is sometimes called klockd. In Linux 2.2.18 and 2.4 kernels, the 
klockd thread is spawned from the knfsd thread on demand. 

The rpc.lockd program takes no arguments or switches. It starts the NLM RPC 
service, if the kernel had not already started it. There are several ways to find out if your 
kernel supports the NLM service in the kernel. First, you can run modprobe lockd 
and then check to see if a lockd module is listed in the output of lsmod. Second, you 
can run ps axf and look for an output such as seen in Listing 1.6. 

Listing 1.6: Process listing output for in-kernel NFS services 
  737 ?        SW    22:22 [nfsd] 
  745 ?        SW     0:00  \_ [lockd] 
  746 ?        SW     0:09      \_ [rpciod] 

Whenever you see processes listed in square brackets, it usually (but not always) 
indicates that these are kernel threads (kthreads). Kernel threads are independent 
programs that run in the kernel: they are fast since they are in the kernel, and they are 
independent so they can execute actions on their own, separately from the main kernel 
itself. Listing 1.6 shows three such kthreads. The main one is nfsd, which automatically 
spawns lockd as needed, which automatically spawns rpciod (described below). 
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The NFS Lock Manager Protocol 
The latest version (4) of the NLM protocol implemented by rpc.lockd supports 

the following RPC procedures: 

NLMPROC_NULL 
This is the ping procedure for testing the rpc.lockd’s responsiveness. 

NLMPROC_TEST 
This procedure tests to see if a lock is available to the NFS client that wants to 
lock a file. 

NLMPROC_LOCK 
This procedure creates a lock for a range of bytes within a file (which could 
subsume the entire file if desired). If the server is unable to provide the lock 
because another client may hold it, then the client can wait for the lock. The client 
can then CANCEL the request or wait until it gets the GRANTED response; both 
of these choices are described next. 

NLMPROC_CANCEL 
When a client asks to lock a file and the file is locked by another client, the 
requesting client must block waiting for that lock to be released. Sometimes, the 
waiting client may opt to cancel that request and do something else instead. This 
procedure cancels a pending request for a lock. 

NLMPROC_UNLOCK 
This procedure removes a lock that was previously given for a range of bytes 
within a file. 

NLMPROC_GRANTED 
This procedure is initiated by the server and sent back to the client (via a callback) 
to tell the client that a request for a lock has been granted. 

NLMPROC_SHARE 
The remaining four procedures are used primarily by MS-DOS clients utilizing 
PC-NFSD. This procedure creates a share reservation for a file on an MS-DOS 
system, essentially locking an entire file while it is in use by MS-DOS. 
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NLMPROC_UNSHARE 
This procedure releases a share reservation for a file on an MS-DOS system. 

NLMPROC_NM_LOCK 
This procedure establishes a non-monitored lock on a file. It is used primarily on 
single-threaded systems, such as MS-DOS, that cannot utilize the Network Status 
Monitor protocol. Clients using this procedure are responsible for clearing out 
server locks. 

NLMPROC_FREE 
If a client that used a non-monitored lock crashes, it may leave locks on the server 
that must be cleaned up. This procedure instructs a server to remove all locks for 
the calling client. 

The NFS Status Daemon 
As we described above, the rpc.lockd daemon coordinates locks between NFS 

clients and an NFS server. We explained how rpc.lockd maintains state about who 
holds locks, on which files, and for what byte ranges in the file. The problem is what 
happens when the host that maintains lock state, the NFS server running rpc.lockd, 
reboots and loses that state information. If it lost information about locks, NFS clients 
that acquired those locks could no longer use them. The solution Sun came up with was 
to add yet another RPC protocol to handle the recovery of locking information. 

The Network Status Monitor (NSM) protocol was originally designed as a general 
purpose active state sharing service for RPC systems. In practice, however, only 
rpc.lockd makes use of this service—for maintaining state about NFS locks. 
Furthermore, over time, the protocol had actually devolved to include passive state 
sharing messages. 

To ensure that this state information is not lost upon server reboot, rpc.statd 
saves its state information on disk, in files under the directory /var/lib/nfs/sm. 
Each file in that directory is named after the client that holds any locks. 

If an NFS server crashes and reboots, when it comes back up, rpc.lockd asks 
rpc.statd for any known locks. If there were any locks recorded in 
/var/lib/nfs/sm, then the NFS server’s rpc.statd and rpc.lockd daemons 
provide that information to their counterparts on each NFS client that held any locks. 
This is done before the NFS server is fully ready to serve file access requests in order to 
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ensure that all NFS clients are back in sync with any NFS servers that granted them 
locks. 

The rpc.statd Program 
The rpc.statd program supports only one startup option. By default, this 

program daemonizes (backgrounds) itself. If you specify the -F option, rpc.statd 
will remain running in the background. This is most useful when you are debugging the 
daemon using tools such as gdb. 

The Network Status Monitor Protocol 
The latest version (1) of the NSM protocol implemented by rpc.statd supports 

the following RPC procedures: 

SM_NULL 
This is the ping procedure for testing the rpc.statd’s responsiveness. 

SM_STAT 
This procedure tests if a given host is being monitored. This procedure is part of 
the original active monitoring design and may not be fully implemented in 
rpc.statd. 

SM_MON 
This procedure tells rpc.statd to begin monitoring a given host. The procedure 
is used by rpc.lockd before granting the very first lock to the host. That way, if 
the NFS server host crashes, rpc.statd will be able to inform the client about 
these locks when the server comes back up. 
A process using this procedure must supply a callback routine to invoke when the 
status of the monitored host has changed. This way a client that has asked to 
monitor a host can be informed by a remote RPC client when any change in status 
had taken place. This is used with the SM_NOTIFY procedure described below. 

SM_UNMON 
This procedure tells rpc.statd to stop monitoring a given host. It is usually 
used by rpc.lockd after releasing the last lock of that client host. 
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SM_UNMON_ALL 
This procedure tells rpc.statd to stop monitoring all hosts. It is usually not 
used by rpc.lockd. 

SM_SIMU_CRASH 
If rpc.lockd crashes on the client, all lock information on the client is lost. 
When rpc.lockd is restarted, it sends a message to the local client’s 
rpc.statd to inform the status daemon that the host had crashed and is now 
back up. This message simulates a crash from the client’s point of view: 
rpc.statd informs all NFS servers that the lock state had been lost by sending 
them the NLM_UNLOCK RPC message. This procedure is an artifact of poor past 
designs and implementations of this service: this message had to be sent when 
some services of the NFS system failed. 
This procedure is not too practical on recent Linux systems since their 
rpc.lockd service is implemented in the kernel, and it is thus not that likely to 
crash as often as user-level daemons might. If the kernel module for rpc.lockd 
crashes, a more severe situation requiring a complete host reboot may occur—no 
need to simulate that. 

SM_NOTIFY 
When rpc.statd crashes on a host and then comes back up, it must inspect the 
state of monitored hosts it recorded in /var/lib/nfs/sm. For each host listed 
there that has asked for status monitoring, this client sends this NOTIFY message 
to the remote host. When a remote rpc.statd receives such a notification, it 
invokes the callback procedure registered with the original SM_MON request 
prior to this client’s crash. This series of notifications and callbacks is intended to 
restore the state of all status monitoring to its original condition before the crash. 

The NFS Remote Quota Daemon 
The rpc.rquotad daemon implements the RQUOTA protocol. It is currently 

used by only one program: quota. This program displays quota information about one 
or more users. With NFS in place, the quota program can also contact remote 
rpc.rquotad servers to retrieve quota information for users of remote file systems. 

 The rpc.rquotad daemon does not enforce quotas nor is it used to 
provide quota information for the parts of NFS that do enforce quotas: 
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the NFS server itself. On Linux, the NFS server always enforces quotas 
whether rpc.rquotad runs or not. 

The rpc.rquotad program itself is very simple. It takes no arguments and is 
usually started at boot time from the /etc/rc.d/init.d/nfs startup script. 

Similarly, the RQUOTAD protocol is very simple. The latest version (2) of the 
RQUOTAD protocol implemented by rpc.rquotad supports the following two RPC 
procedures: 

RQUOTAPROC_GETQUOTA 
This procedure returns the list of all available quotas from the remote server, 
including those that are not activated (in use at the time). 

RQUOTAPROC_GETACTIVEQUOTA 
This procedure returns only the list of active in-use quotas. 

The NFS I/O Daemon 
Since the NFS server is stateless, it may not keep any information that could be 

lost if the server crashed. This means that when an NFS client writes data to the server, 
the server must write it to stable storage immediately. Unfortunately, that synchronous 
write is slow. Furthermore, the server may have to update additional metadata, which 
causes further synchronous writes of disk blocks. This problem seriously affected 
performance of early NFS servers. The solution to this problem was to add yet another 
statefull server to the NFS system that improved the performance of writes over NFS. 

Traditionally, the rpciod server runs on the NFS client. It interfaces with the rest 
of the kernel and collects write requests to remote NFS servers. Instead of sending each 
write request to the remote NFS server, the rpciod server collects them and sends 
writes in larger, but less frequent batches. In particular, rpciod looks for consecutive 
writes to a file that can be combined into a larger sequential write. When rpciod has 
gathered enough writes, it sends them as one large NFS write request. This saves lots of 
network bandwidth and extra work for the NFS server. 

With rpciod, local NFS users can perform writes and those writes will return 
immediately with a successful return code. However, note that the data has now been 
buffered on the local host and will be lost if the local host crashes. The assumption with 
the design of rpciod was that if the local host crashed, much more data could be lost 
anyway, and that the loss of buffered data was a reasonable compromise that yielded in 
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greatly improved performance. Surely it is better than an NFS server crashing and losing 
lots more data that many clients believe to have been written to stable storage. 

In the latest versions of Linux, the rpciod service is implemented as a kernel 
thread and is invoked automatically by the in-kernel NFS server or client as needed. 

The NFS Client Side 
Now that we have described all other components of NFS, we begin discussing the 

actual NFS components. We start with the NFS client-side code. In the next section, we 
cover the NFS server-side code and the NFS protocols. 

The NFS client-side code had always resided in the kernel in Linux. More recent 
versions of Linux also support newer NFS protocols as well as TCP transports. Your 
Linux system must support client-side NFS to be able to mount remote NFS servers. To 
find out if your system supports the client-side NFS, see if nfs is listed in 
/proc/filesystems. If it is not, run modprobe nfs to check to see if NFS 
support is available as a loadable kernel module, and then check 
/proc/filesystems again. If you cannot find nfs listed in 
/proc/filesystems, your client host does not support NFS. Go to Chapter 7, 
“Building and Installing the Linux Kernel and NFS Software,” for details on how to add 
the right NFS support to your Linux system. 

The main function of the NFS component on the client side is to translate system 
call requests into their NFS protocol RPC messages and send these messages over to the 
remote NFS server. The NFS client side also coordinates with the local I/O daemon 
(rpciod), the locking daemon (rpc.lockd), and the status-monitoring daemon 
(rpc.statd). 

The NFS Server 
The NFS server, nfsd, is at the heart of the NFS system. It listens for RPC 

requests from remote hosts and interprets them according to the NFS protocol. It sends 
responses back to clients using RPCs. It also communicates with other components that 
run on the NFS server host: the locking daemon rpc.lockd, the status daemon 
rpc.statd, and the I/O daemon rpciod. 

 The term NFS server can have multiple meanings. Some consider it to 
mean the whole host that serves files over the NFS protocol. Some will 
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use the term to refer to the whole NFS system: client hosts and server 
hosts sharing files. Others will assume that the NFS server is only the 
actual component or program that implements the NFS protocol: 
rpc.nfsd if in user-level, and nfsd or knfsd if running in the kernel. 
In this book, we endeavor to use terms that clearly distinguish these 
cases. 

The rpc.nfsd Program 
The rpc.nfsd supports only one option and also takes one argument. By 

default, nfsd listens on the reserved port 2049. If you want it to listen on a different port 
(for testing or security reasons), say 2050, run it as rpc.nfsd -p 2050. 

When a client contacts nfsd, the server processes that client’s request until 
completion. While the server processes that client request, other clients cannot contact the 
server. To solve this problem, multiple instances of the NFS server are usually started. 
For Linux, these instances are kernel threads. That way, the NFS server can process 
several requests at once. By default, Red Hat starts eight nfsd threads. If you have a 
particularly busy NFS server, and you wish to start 30 threads, you can run rpc.nfsd 
30 on that server. 

NFS Version 1 
Why did the first NFS protocol start at 2? Was there ever an NFS protocol 
version 1? Yes, there was one. It was a prototype NFS server used 
internally by Sun Microsystems at their labs. It was never released to the 
public. Most traces of any documentation or sources it had appear to have 
been lost over the past two decades. It was the same time that the RPC 
system was being developed as well. As Sun engineers were developing 
NFS, their first prototype changed enough that they decided to give it a new 
number. The main use of having two NFS protocol versions at that time 
was to make sure the RPC system and the NFS server were capable of 
handling multiple versions of the same RPC service, and that they could 
fall back to older versions if newer ones did not exist. 

NFS Version 2 
The first NFS protocol ever released publicly (in the early 80s) was version 2. 

Many of the procedures of this protocol have corresponding system calls. Recall that the 
key unit that describes a file is the NFS file handle. In the descriptions of the 18 protocol 
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procedures below (including the NULL procedure) in this version, we will emphasize the 
purpose of the file handle where appropriate: 

NFS_NULL 
This is the ping procedure for testing to see if the nfsd is up and responding for a 
given protocol version. 

NFS_GETATTR 
This procedure gets the attributes of a file, such as the owner, group, and mode 
bits. 

NFS_SETATTR 
This procedure sets the attributes of a file, similar to what chmod, chgrp, and 
chown can do. 

NFS_ROOT 
This procedure is obsolete—it was never used or implemented. Its original intent 
was to return the root file handle of a file system, but this functionality was moved 
to the MOUNT protocol’s MOUNTPROC_MNT function. 

NFS_LOOKUP 
This is one of the key procedures and it is invoked more often than other 
procedures. You give this procedure two key pieces of information: a file handle 
for a directory, and the name of a file you wish to find in that directory. The 
LOOKUP procedure checks to see if the file exists in that directory. If it does not, 
you get back an error code. If it does exist, this procedure returns a new file handle 
for the file just looked up. You can use this new file handle, for example, as an 
argument to the READ procedure in order to read data from that file. 

NFS_READLINK 
This procedure returns the value of a symbolic link, or what it points to. The 
returned value is usually an arbitrary string that the NFS client has to process one 
component at a time—an action also called traversing a symlink. 

NFS_READ 
This procedure reads a number of bytes from a file, given the file’s handle, a start 
offset to read, and the number of bytes to read. You will notice that nowhere in the 
NFS protocol are there explicit procedures for opening, seeking into, or closing a 
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file; this is due to the server’s statelessness and the need for each procedure to be 
idempotent. A normal Unix kernel keeps state after you open a file; this state is 
captured by a file descriptor data structure that includes a pointer to the current 
read head within a file. That way, a read() system call can find the point where 
it left off on the last read and just read the next few bytes. But with NFS, we 
cannot keep state. That is why each NFS_READ call must specify the exact offset 
to begin reading from. 

NFS_WRITECACHE 
This is the second and last obsolete procedure in NFSv2. Its original intent was to 
improve the performance of the NFS server by allowing the server to cache data 
without writing it to disk (at a risk of data loss should the server crash). The idea 
was that the NFS server could cache data, and that the NFS client would know 
about it, and because of this, it would not assume that the data was written to 
stable storage. Then, the client would issue a WRITECACHE procedure to ensure 
that the data got written to disk. That way, the server could cache data and the 
client could force a bulk write of the data to disk. 
This procedure was not implemented in NFSv2 for several reasons. First, it would 
have made the NFS server statefull. Second, the I/O daemon provided an alternate 
method for improving performance by clustering writes on the client’s side. Third, 
it was thought that the NFSv2 protocol would evolve and this procedure could be 
implemented in the next version of the protocol. As it turned out, this procedure 
was not really implemented in NFSv3 either, and it was not until NFSv4 that 
serious performance issues were addressed at the protocol level. 

NFS_WRITE 
This procedure is very similar to the READ procedure above: it writes a number of 
bytes to a file from a given offset. Again, this procedure is idempotent for the 
same reasons that the READ procedure is. 

NFS_CREATE 
This procedure is akin to an open or creat system call. It creates a new file in a 
directory specified by the directory’s file handle and returns the new file handle 
for the new file. 

NFS_REMOVE 
This procedure deletes a file from a directory, just as the unlink system call 
does. 
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NFS_RENAME 
This procedure renames a file just as the rename system call does. 

NFS_LINK 
This procedure creates a hard-link to an existing file, just as the link system call 
does. 

NFS_SYMLINK 
This procedure creates a symbolic link, just as the symlink system call does. 

NFS_MKDIR 
This procedure creates a new directory, just as the mkdir system call does. 

NFS_RMDIR 
This procedure deletes an existing directory, just as the rmdir system call does. 

NFS_READDIR 
This procedure reads a number of entries in a directory, just as the readdir 
system call does. Note that the procedure does not necessarily return all of the 
entries in a directory. It may only return a subset of those and an indicator to the 
client that the client must pass back to the server. That opaque indicator helps the 
NFS server find where to resume reading directory entries (again, because the 
server must not keep any state). 

NFS_STATFS 
This procedure provides statistics on a remote file system, such as its size, how 
much of it is used, and how much remains. This is similar to the statfs system 
call and is used by programs such as df. 

For the most part, the NFSv2 protocol returns to clients error codes that resemble 
normal system call return codes. A zero indicates success. Other error codes include 
NFSERR_PERM (permission denied), NFSERR_NOENT (no such entry), and so on. 
The most popular error code that was newly added specifically for NFS was 
NFSERR_STALE. This one is returned when the NFS server is unable to decode the file 
handle that the client passed to it, a condition known as a stale file handle. A stale file 
handle occurs most often when an NFS server’s file system is reformatted or mounted 
differently, but it could also occur as a result of network corruption or even a security 
break-in. 
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Like any protocol designed for the first time, NFSv2 was not without its own 
ambiguities and problems. One of the most serious ambiguities was in the precise 
meaning of the file handle—the file identifier that NFS servers create and pass to clients. 
Clients must not try to interpret the file handle’s internal meaning (byte by byte). 
However, the protocol did not address the relationship between identical file handles and 
identical files. Specifically, it was not made clear if two identical file handles from the 
same server represent the same file, a hard-linked file by another name, or otherwise. It 
was also not made clear if two different file handles must represent different files. These 
and other concerns were addressed in future revisions of the NFS protocol. 

NFS Version 3 
More than a decade after the initial release of the NFS protocol, the next version 

was released by Sun. During that decade, NFS has gained immense popularity and was 
deployed on numerous systems. Experienced users and vendors alike were demanding a 
new protocol that would address serious problems with the NFSv2 protocol. With 
NFSv3, Sun made a good effort in addressing some of the most serious performance and 
security deficiencies in the protocol. The major changes in the protocol and its 
implementation included the following: 

• Support for TCP transports as well as UDP. NFSv2 used only UDP because 
TCP was deemed too slow and costly at the time. Since TCP is a reliable 
transport and UDP is not, however, the NFSv2 protocol had to build its own 
reliability mechanism on top of UDP, which complicated its implementation. 
With TCP, much of that complication was removed. 

• Support for 64-bit file systems. NFSv2 only handled 32-bit file systems, which 
limited the maximum file size to 2GB. NFSv3 greatly increases the maximum 
file size that can be used over NFS, more than eight billion gigabytes! 

• Longer file handles. NFSv3 doubled the size of the file handle to 64 bytes. This 
was primarily done to make it more difficult for attackers to guess or fake file 
handles. 

• Since NFSv2 used UDP, it limited the maximum number of bytes that could be 
transferred at once to 8KB. NFSv3 extends this range to 64KB. Ironically, the 
UDP specification allows up to 64KB bytes in a packet, but the original RPC 
implementation used by NFSv2 limited packet sizes to 8KB. 

• To improve security, NFSv3 supports Kerberos authentication. 

• To improve performance, new operations were created and file attributes are 
automatically returned on most calls, greatly reducing the number of times that 
some of the more popular procedures had to be invoked. 
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• To further improve performance, the NFSv3 server is allowed to cache data. 
This requires that NFSv3 clients know of this and are able to ask the server to 
commit cached data to stable storage. 

The NFSv3 protocol has 22 procedures (including the NULL procedure), which 
we have listed below. Most of the procedures did not change. When a procedure 
remained basically the same, we did not describe it at length. Two unused procedures in 
NFSv2 were removed: ROOT and WRITECACHE. 

NFSPROC3_NULL 
Test if the nfsd for version 3 is up and running. 

NFSPROC3_GETATTR 
Get the attributes of a file. 

NFSPROC3_SETATTR 
Set the attributes of a file, such as owner and mode bits. 

NFSPROC3_LOOKUP 
Find a file in a directory. This procedure was improved by returning the mode of 
the directory in which it looked up the file. That way a client could tell if the mode 
bits of the directory had changed remotely, especially if they had changed so that 
the user is no longer allowed access. 

NFSPROC3_ACCESS (new to NFSv3) 
Test for access to a file, even if the file resides on a server that does not use 
traditional Unix mode bits, such as ACLs. Version 2 of the NFS protocol was very 
Unix centric, and assumed that all access to files was controlled by traditional 
Unix mode bits. 
In addition, this procedure avoids problems with root users accessing files over 
NFSv2; in NFSv2, those root users could have their UID (0) mapped to nobody 
(for security reasons). But in NFSv2 this UID mapping was not handled 
consistently and could result in partial failures to access files by root. The new 
ACCESS procedure took care of that because NFS clients can test explicitly if 
access is granted before trying to read or write files. 

NFSPROC3_READLINK 
Return the value of a symbolic link. 
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NFSPROC3_READ 
Read bytes from a file. This procedure was improved to better handle reading near 
the end of the file, where a read request may return fewer bytes than it was asked 
for. 

NFSPROC3_WRITE 
Write bytes from a file. This procedure was changed in two ways. First, it can 
indicate to clients that fewer bytes were written than were requested. Second, the 
write could be performed asynchronously, meaning that the data may remain 
cached in the server and a success status code is returned to the NFSv3 client. 

NFSPROC3_CREATE 
Create a new file. This procedure was improved to allow the creation to fail if the 
file already existed, a condition that could happen if multiple NFS clients try to 
create the same file at the same time. 

NFSPROC3_MKDIR 
Create a new directory. 

NFSPROC3_SYMLINK 
Create a symbolic link to a file. 

NFSPROC3_MKNOD (new to NFSv3) 
Create special files such as block and character devices. In NFSv2, creation of 
these files was done as special cases of the CREATE procedure. 

NFSPROC3_REMOVE 
Delete a file. 

NFSPROC3_RMDIR 
Delete a directory. 

NFSPROC3_RENAME 
Rename a file. 

NFSPROC3_LINK 
Create a hard-link to a file. 
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NFSPROC3_READDIR 
Read a number of entries for a directory. This procedure was improved in NFSv3 
to extend the number of bits used to describe the offsets of directory entries in a 
directory, thus allowing for better interoperability with other systems. 

NFSPROC3_READDIRPLUS (new to NFSv3) 
Improve the performance for some of the most popular operations. Often, when 
users list the contents of a directory, they run ls -l. To accomplish this in 
NFSv2, first the contents of the directory had to be retrieved (READDIR) and then 
the attributes of each entry had to be found (GETATTR). Most READDIR 
operations in NFSv2 were followed by a flurry of GETATTR requests. 
The READDIRPLUS improves the performance of this common operation. In one 
message, it returns a list of entries in a directory as well as the attributes for each. 
This greatly reduces server and network load. 

NFSPROC3_FSSTAT (renamed in NFSv3) 
Provides the same statistics on a remote file system as the older STATFS 
procedure performed in NFSv2, such as its current and maximum size, total and 
current number of available inodes (which was not always available in NFSv2), 
etc. 

NFSPROC3_FSINFO (new to NFSv3) 
Helps interoperability between different systems. It returns to the caller 
information about the remote file system, such as whether the file system supports 
symlinks and hard links, what the preferred and maximum read and write sizes 
are, and more. 

NFSPROC3_PATHCONF (new to NFSv3) 
Returns file system parameters about the server, such as the maximum allowed 
length for a path name, the maximum length for a file name, etc. (added to comply 
with POSIX standards and especially the pathconf system call). 

NFSPROC3_COMMIT (new to NFSv3) 
Instructs an NFS server to flush all cached data onto stable storage. Since the 
WRITE procedure in NFSv3 allows asynchronous writes, this COMMIT 
procedure became necessary so that NFS clients could ensure that the data they 
sent was written reliably. Together, the asynchronous WRITE and COMMIT 
procedures help to improve the performance of NFS in version 3. 
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On a quiet local area network with little stress on NFS servers, NFSv2 may work 
just as well as NFSv3. But you will most likely prefer NFSv3 if one or more of these 
conditions exist: 

• You want your Linux system to interoperate with many other systems. 

• You want to increase the reliability of your NFS service, through the use of a 
better-defined protocol. 

• You want better performance for busy servers. 

• Your networks exhibit high latency or performance that varies constantly. 
The next version of the NFS protocol, NFSv4, greatly improves over NFSv3 and 

changes it significantly. For one, the server is no longer stateless and other RPC protocols 
(MOUNT, RQUOTA, locking and status) are now integrated into the protocol. The 
NFSv4 standard is now complete, but it is still new. A few prototype implementations 
exist, including one for Linux. We discuss NFSv4 in more detail in Chapter 6, “NFS 
Version 4.” Next, we show a full example of the operation of NFS with existing 
protocols. 

An Example 
Now that we have discussed all of the various components of the NFS system 

individually, as well as the protocols used, we are ready to examine how the system 
works in practice. We show this through a simple example: a client named moon that 
wishes to access a file system named /home from a server named earth. 

Start by setting up the NFS server. First, make sure that all the right programs are 
running. The steps to start the various NFS services on the server are in Listing 1.7. 

Listing 1.7: Enabling and starting NFS server services 
[root]# chkconfig nfslock on 
[root]# chkconfig nfs on 
[root]# /etc/rc.d/init.d/nfslock restart 
[root]# /etc/rc.d/init.d/nfs restart 

Next, we have to allow the client host to mount the NFS server’s file system. Do 
this by configuring a file named /etc/exports, as seen in Listing 1.8. 

Listing 1.8: An example NFS server /etc/exports file 
/home       moon(rw) 

The /etc/exports entry from Listing 1.8 tells the NFS server to allow access 
to the /home file system to a host named moon. Right after the hostname, in 
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parentheses, we list the permission options for host moon. The rw indicates that client 
host will be allowed to write to that file system. 

Finally, ensure that the various NFS programs are aware of the changes to the 
/etc/exports file by running the exportfs program, as seen in Listing 1.9. 

Listing 1.9: Exporting file systems to an NFS client 
[root]# exportfs -rv 

The exportfs program informs rpc.mountd of any changes in the list of 
allowed file systems to export. Verify that the NFS server is running by checking with 
rpcinfo, as seen in Listing 1.10. 

Lisitng 1.10: Checking that all NFS server services are running 
[ezk]$ rpcinfo -p 
   program vers proto   port 
    100000    2   tcp    111  portmapper 
    100000    2   udp    111  portmapper 
    100024    1   udp    957  status 
    100024    1   tcp    959  status 
    100011    1   udp    728  rquotad 
    100011    2   udp    728  rquotad 
    100003    2   udp   2049  nfs 
    100003    3   udp   2049  nfs 
    100021    1   udp   1026  nlockmgr 
    100021    3   udp   1026  nlockmgr 
    100021    4   udp   1026  nlockmgr 
    100005    1   udp   1027  mountd 
    100005    1   tcp   1024  mountd 
    100005    2   udp   1027  mountd 
    100005    2   tcp   1024  mountd 
    100005    3   udp   1027  mountd 
    100005    3   tcp   1024  mountd 

At this stage the NFS server is set up. Now configure the NFS client. First, ensure 
that the client-side NFS software is available. Assuming that support for the NFS file 
system is either compiled into the kernel or available as a loadable module, then run the 
commands seen in Listing 1.11 to ensure that nfs appears in the listing of 
/proc/filesystems. 

Listing 1.11: Checking for NFS client-side support 
[root]# modprobe nfs 
[root]# grep nfs /proc/filesystems 
nodev   nfs 

The next stage is to configure the local client’s configuration files so that the 
remote file system is mounted at boot time. Add an entry to /etc/fstab to do this, as 
seen in Listing 1.12. 
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Listing 1.12: An example NFS client-side /etc/fstab file 
# device     mountpoint  fs-type  options  dump  fsckorder 
earth:/home  /home       nfs      rw       0     0 

Use the /etc/fstab entry in Listing 1.12 to configure the NFS client to mount 
the /home partition from server earth onto the /home directory (mount point) of the 
local host, and then use the mount options that allow the client to read and write the 
remote file system. To test that the entry worked, you can either reboot your client or 
simply run the mount command as seen in Listing 1.13. 

LIsting 1.13: Mount all NFS entries in /etc/fstab 
[root]# mount -a -t nfs 

Note that you could also mount the remote file system by hand, as seen in Listing 
1.14, without the need to specify it in /etc/fstab. 

Listing 1.14: One-time mounting an NFS server by hand 
[root]# mount -t nfs earth:/home /home 

After running the mount command, you can run df to see that the entry is indeed 
mounted, and then you could inspect the /home directory on the host moon to see what 
contents it has: 

[ezk]$ df 
Filesystem           1k-blocks      Used Available Use% Mounted on 
/dev/sda1               879078    820825     12840  98% / 
earth:/home            6224742   5352649    554811  91% /home 
[ezk]$ ls -F /home 
ezk/    martha/   lost+found/ 

At this point, you can access files in /home as if they were local. If you wish to 
unmount the file system, run the command as seen in Listing 1.15. 

Listing 1.15: Unmounting an NFS file system 
[root]# umount /home 

You will notice that unmounting an NFS file system is no different from 
unmounting any other file system. That is because NFS integrates so seamlessly with the 
rest of the system. Despite this seamlessness, NFS performs many actions in the 
background. 

We now describe what happens when you try to access a file from a remote NFS 
server, say, by reading the contents of /home/ezk/.profile. Refer back to Figure 
1.1, which shows the flow of data and operations for a read operation like the one below: 

1. A user process calls the read system call. 
2. The system call is translated in the kernel into an nfs_read function and the 

NFS client-side code is invoked. 
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3. The NFS client encodes the information and calls the RPC procedure 
NFS_READ. 

4. The RPC information is encoded via XDR and transmitted over the network to 
the NFS server. 

5. The server host receives the encoded data and decodes it via XDR. 
6. An RPC message is constructed and passed on the NFS server nfsd. 
7. nfsd calls nfsd_read. 
8. nfsd_read is translated into a disk read via ext2_read. 
9. The data is read from the disk and passed back to nfsd. 
10. nfsd passes the data back in the reverse order of all previous steps until in 

reaches the user process on the client. 

In Sum 
The Network File System allows users to share files among many machines 

seamlessly: users do not know if they are accessing files locally or remotely. NFS was 
designed to interoperate with many other systems so that users could get their files no 
matter where they were physically stored. That is one of NFS’s greatest strengths and it is 
what contributed to its popularity—it is the most widely used remote-access file system. 

The inner workings of NFS are complex. The system is broken into components 
that run on the client side and components that run on the server side. Both sides are 
layered on top of Remote Procedures Calls, which in turn are layered on top of XDRs, 
which is a method for encoding data in a consistent manner that can be interpreted 
identically by all clients and servers regardless of the operating system they run on. To 
add to this, primarily because of the original stateless design of the NFS server, there are 
many other components that are part of NFS. These include the following: an I/O daemon 
for improving performance, locking and status daemons for handling file and record 
locks, a portmapper for brokering all RPC services, a mount daemon for authenticating 
mount requests, and a quota daemon for providing quota information to NFS clients. 
Finally, the NFS system uses several configuration and state files. In this chapter, we 
only described a few. We describe all configuration and state files in more detail in the 
next chapter. 

Despite its complexity, NFS is relatively simple to use. Administrators list file 
systems to export in one file, and file systems to mount in another configuration file. 
Restarting the NFS client’s and server’s programs and mounting remote file systems then 
allows users to access those remote volumes. The greatest benefit is to users—who notice 
no difference if the files are local or remote. 
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In this chapter, we described the various components of NFS and its protocols. We 
also showed a simple example of its basic use. In the following chapters, we show NFS’s 
operation and configuration in greater detail. We will also cover important issues, such as 
performance optimizations, security, how to debug and correct problems in your NFS 
system, and how to add NFS support into your Linux system. 
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CHAPTER 6: NFS VERSION 4 
Sun engineers designed NFSv2 in the early 1980s, opening the protocol to other 

vendors to use, and even distributing a reference implementation. NFS has become a 
huge success since that time; it is the most popular distributed file system in use. Many 
vendors support NFS protocol versions 2 and 3 today. With such success and increased 
exposure, however, also came criticism regarding NFS’s performance, security, 
flexibility, and interoperability with other systems. 

When designing NFSv3 a decade later, Sun invited a few industry participants. 
The goals for developing NFSv3 were to complete the design and reimplementation in 
under a year and to address only the most important issues without making fundamental 
changes to the NFS protocol. These goals were achieved with the understanding that a 
further update of the protocol would be needed. 

Because of NFS’s popularity, it became apparent that the next revision of the 
protocol would be more significant than NFSv3 and needed to involve the larger Internet 
community in its design. A formal standardization process was needed. The Internet 
Engineering Task Force (IETF), a body of the Internet Society, had been very successful 
in producing quality protocol definitions for various Internet technologies. The IETF had 
in place a precise procedure for involving the community in the long process of 
proposing, defining, refining, and finally, publishing a document as a standard. These 
published standards are called Request For Comments (RFCs) and are available from 
www.ietf.org. The standardization process itself is a standard defined in RFC-2026, 
“The Internet Standards Process – Revision 3.” 

The IETF was the perfect choice to lead the charge for NFSv4. However, Sun 
Microsystems had long held the “NFS” trademark. So before the IETF could begin this 
work, Sun had to relinquish control over the NFSv4 specification and its successors. This 
decision is described in RFC-2339, “An Agreement Between the Internet Society, the 
IETF, and Sun Microsystems, Inc. in the matter of NFS V.4 Protocols.” 

The IETF then formed a working group (WG) for NFSv4, invited anyone who 
wanted to participate in the discussions, and ensured that the many working groups could 
meet at least three times a year during IETF meetings to report progress and discuss 
future work. 

NFSv4 is very new. This chapter discusses the overall goals of the protocol and 
the new ideas or concepts that it introduces. We cover the new protocol messages that are 
exchanged in both directions between the NFS client and the server as well as the error 
codes that NFSv4 defines. 

This chapter assumes a familiarity with NFSv2 and NFSv3 as described in 
previous chapters and especially in Chapter 1, “NFS Basics and Protocols.” The 
discussion here focuses on the differences between NFSv4 and previous versions. 
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Finally, we report on the state of the NFSv4 implementation for Linux. Since the 
implementation is only at its prototype stage, there is little that can be discussed 
regarding system administration activities related to NFSv4. Nevertheless, a general 
understanding of this new protocol and its operation should give system administrators 
familiar with previous versions a feel for the effort involved in configuring and 
administering NFSv4. 

Design Goals 
Any good large-scale project begins with a requirements document to guide the 

project along. The IETF’s NFSv4-WG started by declaring the overall goals of the 
project. These goals were outlined in RFC-2624, “NFS Version 4 Design 
Considerations.” Published in June 1999, RFC-2624 states that the goals of the NFSv4-
WG are to create a distributed file system that focuses on the following items: 

Performance 
File system performance should be good especially when used over wide area 
networks (WANs). The protocol should handle the particular problems of the 
Internet: longer latencies, higher congestion, and increased packet loss when 
compared to a local area network. Previous NFS protocols always assumed that 
NFS would be used in a local area network, so when it was used on a WAN, it 
exhibited poor performance. 

Scalability 
NFSv2/NFSv3 servers typically can handle at most several hundreds of clients. A 
single NFSv4 server should be able to handle many thousands of clients. 

Accessibility 
The protocol should be easier to access through various network appliances such 
as firewalls, load-balancers, or caching devices, and application proxies such as 
those using SOCKS. 

Reliability and high-availability 
To improve reliability, the protocol should allow a client to use multiple replicas 
of file servers and to cache data in a coherent manner. See the sidebar “Load-
Balancing NFS Mounts?” in Chapter 10, “Automounter Maps.” 

Strong security 
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The protocol should include strong security and built-in negotiation of security 
features. It should include a better security mechanism than the typical Unix 
UID/GID model, which includes simple bit-mode permissions. 

Cross-platform interoperability 
The protocol should be flexible enough for different systems to interoperate. It 
should not favor one operating system over another: Unix, MS-DOS and 
Windows, MacOS, VMS, etc., should all be treated equally. 

Internationalization (I18N) 
The protocol should allow clients and servers from different parts of the world to 
work with each other properly, especially if the server and client use a different 
character set or language. 

Extensibility 
The protocol should be extensible enough to evolve without a costly redesign for a 
new major version release. (Four versions of NFS is enough, thank you; we’d 
rather avoid a fifth.) 
Much work proceeded after NFSv4’s design goals were laid out. The WG worked 

diligently to detail the protocol’s proposed specification, while various groups began 
implementing prototypes. These prototypes were tested for functionality and 
interoperability during several gatherings of interested parties at Connectathon meetings 
(www.connectathon.org). This event is designed to be a marathon of sorts, 
bringing together implementers of various protocols to test how well their systems 
implement a protocol and also to expose any deficiencies in the protocol. 

Creating precise, accurate, and functionally complete protocols has always been 
very difficult. Often, protocols were ratified as formal specifications without much 
practical experience. Later—sometimes years after the fact—serious flaws in some 
protocols were uncovered but could not be corrected because the protocols had already 
been widely deployed. The Connectathon meetings proved very useful in preventing such 
problems. For the first time in the history of NFS, many groups worked together to create 
a detailed, comprehensive protocol. Prototypes were built and tested, and experiences 
from these tests helped further refine the protocol’s description, leading to better 
prototypes. This process was repeated until everyone was satisfied that the protocol was 
adequately stable and that it addressed the goals outlined in RFC-2624. 

A year and a half later, in December 2000, the NFS version 4 protocol 
specification moved from a Draft Internet Standard to a Proposed Internet Standard, and 
RFC-3010 was born. The next stage is to have the larger Internet community comment on 
this proposed standard. If it is accepted, it will become an Internet standard and be 
assigned a number in the IETF’s “STD” series. 
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Overview 
The IETF design and development process has created a new protocol with 

NFSv4. To support the stated design goals, NFSv4 substantially departs from previous 
NFS protocols in several ways. For example, NFSv4 servers maintain state; functions that 
previously occurred in separate “stateful” protocols are now integrated into the NFS 
server. In addition, security has been enhanced. Special filehandles and new filehandle 
types have been developed. New file attributes and concepts such as delegations, leases, 
and callbacks have been added to the protocol. Also, the protocol allows future 
developers to extend its functionality and includes facilities for clients and servers to 
agree on a common set of functions that they support. These extensive changes make 
NFSv4 a new challenge for even experienced NFS administrators. To put the protocol’s 
new procedures in proper context, the next several sections overview the major features 
of NFSv4. 

A Stateful Server 
The NFSv4 server is no longer stateless. Chapter 1 showed how, while the NFSv2 

and NFSv3 servers were indeed stateless, many other components were not. These extra 
protocols were folded into a single NFSv4 protocol: MOUNT, NLM, NSM, RQUOTA, 
and even the PCNFS protocol. 

This consolidation of protocols helped to design a coherent interaction between 
clients and servers. Furthermore, now the NFSv4 server uses a single well-known port 
(2049) for all communication; this eases its transit across firewalls and proxies. 

NFSv4 contains explicit OPEN and CLOSE operations. The OPEN operation 
provides clients with a single point where various open-time semantics can be controlled 
in a consistent manner, such as opening and locking a file atomically. The CLOSE 
operation helps clients to inform servers when the latter can discard the state that was 
associated with an opened file. 

Security 
Several mechanisms exist for securing network traffic. Two of the more popular 

ones are Secure Socket Layer (SSL) and Internet Protocol Security (IPSEC). The 
problem with these methods is that they only work with connection-oriented transport 
protocols such as TCP. They do not work with UDP, and NFS has to be able to use both 
UDP and TCP. 
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Over the years, Sun Microsystems has developed an RPC security mechanism 
called RPCSEC. This is a secure method of exchanging network data but at the RPC 
layer, which is above the transport layer. Sun’s efforts helped to evolve a general-purpose 
RPC-layer security protocol called RPCSEC_GSS, or the Remote Procedure Call 
Security — Generic Security Services. 

RPCSEC_GSS was chosen as the security mechanism for use with NFSv4. Its 
advantage is that it works at the RPC layer and thus can support both UDP and TCP. 
Furthermore, it can be implemented for older versions of NFS. 

The main features of RPCSEC_GSS that made it attractive for the NFSv4 
designers were its ability to handle private keys such as those used in Kerberos 5. It 
supports public keys, encrypts data, includes strong authentication, and supports several 
security mechanisms, all of which improve the security of NFS. 

NFSv4 added a special operation that allows clients to query a server for the 
methods of security that the server supports. This helps clients and servers negotiate 
automatically the types of security mechanisms that they wish to use. Such features need 
not be hard-coded into an implementation or have to require a complex and manual 
configuration. Servers and clients can implement any number of existing (or future) 
security methods, and the NFSv4 protocol is flexible enough to determine the best match 
of security features between the NFS clients and servers. 

Compound Operations 
Past analysis of NFSv2 traffic had shown that one of the most popular sequences 

of NFS messages was a READDIR followed by many GETATTR messages. This 
happened when users ran the common command to list a directory’s contents: ls -l. 
This particular sequence was optimized in NFSv3 by the addition of a new protocol 
procedure called READDIRPLUS. This procedure saved the NFS client from having to 
exchange many RPC messages by returning the contents of a directory along with 
attributes for each entry—all in one RPC message. 

Further analysis of NFS traffic suggested that many other sequences of procedures 
could be optimized. However, rather than create new procedures for each such sequence, 
NFSv4 introduces the concept of compound operations. An NFSv4 client can compose a 
compound operation by listing a series of NFS operations in one RPC message. 

There are two advantages to compound operations. First, they save a lot of 
network traffic since only one RPC message is exchanged. Second, they alleviate some of 
the need for frequent protocol changes. Many past suggestions and some improvements 
to older NFS protocols involved the creation of new procedures that combined other 
procedures in different ways. With the compound procedure, protocol extensibility is 
improved. 
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 NFSv4 actually defines only two primary procedures: NULL and 
COMPOUND. All other operations are defined in terms of the 
COMPOUND procedure. A client using even a single operation 
encapsulates it inside a COMPOUND procedure. See the upcoming 
section “Protocol Procedures and Operations.” 

One typical example of what NFSv4 clients might do would be to LOOKUP, 
OPEN, READ, and then CLOSE a file. This would let a client read a whole (presumably 
small) file in one message. These four operations would be combined into one 
COMPOUND procedure and sent to the NFSv4 server. The server interprets 
COMPOUND procedures by evaluating each composed operation in order until an error 
occurs or the end of the compound procedure is reached. The server then returns to the 
client the last success or error code, as well as the results for all of the successful 
operations. 

The server evaluates each compound procedure independently, so that the same 
client or multiple clients can send different compound procedures and there is no 
confusion as to their interpretation. One way that the NFSv4 server achieves this is by 
using a saved filehandle for evaluating compounded operations. Evaluation of the 
operations in a compound procedure requires a temporary filehandle to avoid interfering 
with the primary filehandle that the server uses for the client, which is called the current 
filehandle. Additional details about filehandles are provided in upcoming sections. 

File System Model 
In NFSv4, a file system on the server is still represented as a hierarchy of files and 

folders. However, this is now decoupled from actual local file systems that exist on the 
server. Previous versions of NFS could export only one file system at a time, or a portion 
thereof. NFSv4 is able to create logical file system volumes that are composed of several 
physical file systems or their subdirectories. 

The NFSv4 server is expected to provide glue between physical file systems where 
gaps in the namespace may exist. For example, if an NFSv4 server exports a single 
logical volume that combines /usr and /usr/local/bin, the server may have to 
create a glue filehandle for the local component, so that an NFS client can traverse 
from /usr down to local/bin transparently. 

Filehandles 
The NFSv4 filehandle, just as with all previous versions of NFS, is a unique file 

identifier that is constructed by the server and is opaque to the client. In previous versions 
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of NFS, only one filehandle existed. This filehandle had to be exchanged many times 
between clients and servers. In addition, there were several ambiguities about the precise 
meaning of the filehandle on some systems. NFSv4 expands the definition of the 
filehandle by creating several filehandles, several types for each filehandle, and by 
creating new ways to save on repeated exchanges of these filehandles over the network. 

Several special filehandles exist in NFSv4: current, saved, root, and public. 

The Current Filehandle 
Unix operating systems maintain a current working directory (CWD) for each 

running process on the system. This CWD is the default location from which all file 
access using relative path names is assumed to begin. Similarly, NFSv4 defines a current 
filehandle as the default filehandle that the server keeps on behalf of the client. That way 
the client does not need to include a filehandle for all operations; this saves on network 
use. 

NFSv4 clients can reset this current filehandle using the PUTROOTFH operation, 
just as Unix users can cd to a new directory and begin working off of there. 

The Saved Filehandle 
The saved filehandle is another filehandle available on NFSv4 servers. It is used in 

various operations as temporary filehandle storage while manipulating the current 
filehandle. 

For example, the COMPOUND procedure, described above, saves the current 
filehandle in the saved filehandle location while processing compound operations. The 
current filehandle typically gets restored from the saved filehandle when the compound 
operation finishes. 

The Root Filehandle 
The ROOT filehandle designates the root (top-level directory) of the exported 

volume. Recall that for the client, an exported volume appears as one directory hierarchy; 
on the server, this could be any combination of several physical file systems or 
subdirectories. That’s why the root filehandle is often thought of as the logical head of 
the conceptual top-level filehandle of a directory tree: the server may have to create the 
root filehandle dynamically and there may not be an actual directory on the server that 
directly corresponds to this root filehandle. 

In previous NFS protocols, clients authenticated to the server using a separate 
MOUNT protocol. This is not needed in NFSv4 since clients authenticate directly to the 
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server. When an NFSv4 client authenticates itself to a server, the client may instruct the 
server to set the value of the current (default) filehandle to that of the volume’s root 
filehandle, using the PUTROOTFH operation. This operation sets the top-level directory 
entry from which the client can begin to access the server’s files. Afterward, the client 
could begin traversing the entire directory tree of that volume using lookup operations 
and others. 

The Public Filehandle 
The PUBLIC filehandle is a special filehandle used by the server to authenticate 

clients, in lieu of the older MOUNT protocol. The server is responsible for the exact 
definition of the public filehandle and what file system objects it may be associated with. 

Typically, the PUBLIC filehandle is a zero-length or all-zero filehandle. This 
special value cannot be a regular filehandle. When a server receives such a filehandle, it 
knows that a client is trying to authenticate for the first time. The server is then 
responsible for determining if the client should be allowed the access and, if so, for 
sending the client back a successful response. The client can then get the ROOT 
filehandle of the file system just authenticated for, or simply set to begin file access from 
the root of that file system (using the PUTROOTFH operation). 

NFSv4 clients cannot assume anything about this association; they can, however, 
send a LOOKUP request using the predesignated public filehandle to an NFSv4 server—
to request first-time access to the file server’s volumes. Note that servers can choose to 
change the public filehandle’s definition and hand it to a select set of clients; this can be 
useful in order to avoid causal attempts to attack an NFSv4 server by probing for access 
using the typical PUBLIC filehandle. 

WebNFS 
WebNFS is a protocol designed by Sun Microsystems as an extension to 
NFSv2 and NFSv3. Its main goal is to allow access to NFS servers across 
the Internet without the need for an explicit MOUNT protocol and without 
changing the existing protocols. 
WebNFS achieves this goal by defining a special PUBLIC FILEHANDLE 
to be used with the NFS_LOOKUP procedure. The PUBLIC filehandle is 
defined as containing all zeros in NFSv2 and as having a zero length in 
NFSv3. A WebNFS client contacts a remote NFS server directly at port 
2049 using standard-style Internet URLs and provides the remote NFS 
server with the PUBLIC filehandle. Upon receiving this filehandle, the 
remote NFS server authenticates the NFS client just as the MOUNT 
protocol does. The successful response from the NFS_LOOKUP call 
includes an actual filehandle to use for normal NFS operations. 
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Traditional NFS path traversal looked up each directory in a long path 
name for the component under that directory. This resulted in a series of 
NFS_LOOKUP requests sent over the network. A good Internet-wide 
protocol should endeavor to reduce the number of network messages used. 
To improve performance over the Internet, WebNFS also supports 
multicomponent lookups. A client sends a whole path name to a server; the 
server interprets the complete path name and returns a filehandle for the 
final component. 
The design of and the experimentation with WebNFS provided some useful 
feedback on the feasibility of NFS use over the Internet. The lessons 
learned from WebNFS were incorporated in the NFSv4 protocol. 

Filehandle Types 
Past NFS protocols assumed that filehandles were persistent: they must be valid at 

all times until the client is done with them. This became a problem for two reasons. First, 
some operating systems—especially non-Unix ones—lacked the information necessary to 
encode filehandles consistently. For example, their file systems may not use unique and 
constant inode numbers, or the file system ID could change after a reboot. Second, 
vendors who wanted to implement NFS replication (read-only), migration, or load-
balancing faced serious obstacles since a filehandle on one server was not valid on 
another server, even for the same file. 

NFSv4 defines two main types of filehandles: persistent and volatile. Persistent 
filehandles have the same semantics as filehandles in older NFS protocols. Volatile 
filehandles, on the other hand, may become invalid at any point. When that happens, the 
server returns the typical “stale filehandle” error code to the client. If the file system was 
renamed or migrated, the client can then query the file server for the new location of that 
file system. The client is then responsible for retrieving an updated filehandle for the file 
in question. 

NFSv4 also supports expiration times on volatile filehandles. A server can issue 
timed filehandles to clients and be assured that clients could not use them after a certain 
period of time. The flexibility of filehandles in NFSv4 is neatly captured by the five 
different types that can be encoded as a type field bitmask in the filehandle itself: 

FH4_PERSISTENT 
This bit indicates that the filehandle is persistent. 

FH4_NOEXPIRE_WITH_OPEN 
This filehandle cannot expire while a client has the file open. 
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FH4_VOLATILE_ANY 
This filehandle could expire at any time, especially during file system renaming or 
migration. 

FH4_VOL_MIGRATION 
This filehandle will expire during file system migration. 

FH4_VOL_RENAME 
This filehandle will expire during file system renaming. 
One additional change to filehandles in NFSv4 was a semantic one. NFSv4 

clarified the relationship between filehandles and files when it came to their equality or 
inequality. Two identical filehandles must represent the same exact file storage, even for 
files that are hard-linked. Two different filehandles must represent two different files. 

File Attributes 
Older versions of NFS defined a fixed set of mostly Unix-centric file attributes. 

There was no easy way to support non-Unix file servers or create new attributes. NFSv4 
includes a flexible mechanism for supporting many platforms as well as creating new 
attributes. 

NFSv4 defines three types of file attributes: mandatory, recommended, and 
named. We discuss these attribute types next. 

Mandatory Attributes 
Mandatory attributes are those that all servers and clients must define. The set of 

mandatory attributes is intended to be kept very small and forms a basis on which all 
NFSv4 systems can interact with each other. 

Mandatory attributes include the type of a file (e.g., regular file, directory, 
symlink, etc.), the size of the file, a unique identifier for the file, and more. Some 
attributes are specific to a whole file system, such as a flag indicating whether the file 
system supports symbolic or hard links. 

Recommended Attributes 
Recommended attributes typically represent differences between various operating 

systems and file systems that need not be available in all NFSv4 implementations. An 
NFSv4 client has to query an NFSv4 server and find out which attributes (if any) are 
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supported by both sides. The intent of this type of attributes is to allow servers to 
implement as many of them as possible, as long as it is simple to do so. Attributes that are 
difficult to implement should not be simulated or half done: it is better for a feature not to 
exist than to work inconsistently. 

Recommended attributes include the “archived” and “hidden” file bits of MS-DOS 
file systems, Access Control Lists (ACLs), whether the file system is case-insensitive, 
quota information (thus subsuming the older RQUOTA protocol), and more. 

Together, mandatory and recommended attributes represent the total set of file and 
file system attributes that exist on most systems used today. Both sets of attributes are 
defined and a bitmask is allocated for them, one bit per attribute. 

Access Control Lists 

Access Control Lists (ACLs) exist in some operating systems and file systems. 
They allow more flexible control than the simplistic Unix UID/GID model for who can 
access file system resources. Unfortunately, ACLs have been implemented in a variety of 
non-interoperable ways by different vendors. One of NFSv4’s goals is to provide a 
flexible cross-platform way of specifying and using ACLs. 

One special recommended attribute is the ACL attribute. This attribute specifies an 
array of access control entries (ACEs). ACEs define an access type, the files or 
directories it should apply to, and the actual access set (a single owner, a group, 
everyone, anonymous users, dial-up users, and more). Users, for example, could be 
represented in a universal fashion (such as an e-mail address). There are four types of 
possible ACEs: 

ALLOW 
Grant access as defined in the ACE. 

DENY 
Deny access as defined in the ACE. 

AUDIT 
Log any attempt to access any file or directory that uses the access method 
specified by the ACE. 

ALARM 
Generate an alarm on attempt to access any file or directory that uses the access 
method defined by the ACE. 
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Named Attributes 
Named attributes allow NFSv4 to evolve and be extended easily. A named 

attribute has a simple string name and a value that is an arbitrary sequence of bytes. One 
use for these attributes is in the creation of application-specific file attributes. For 
example, a compression system could associate the type or compression algorithm used 
with the file, or a source-control system could attach version numbers to source files. 

Named attributes are accessible to an NFSv4 client as an attributes directory for 
each file that has named attributes. The attributes directory contains files whose names 
are the named attributes’ names and whose contents represent the values of the named 
attributes. In this way, named attributes can be listed, created, read, and modified easily 
with normal directory browsing tools (such as ls and cat). 

Named attributes may themselves have attributes, even named ones. This allows 
for the creation of a whole hierarchy of attributes for a given file. 

File Locking 
File and byte-range locking methods used to be in a separate protocol, the 

Network Lock Manager (NLM), and included complex callback procedures. In addition, 
the PCNFS protocol included share reservation messages used typically by Windows-
based systems. NFSv4 folds all locking and share-reservation support right into the 
protocol and does away with most of the locking-related callbacks. Since locks require 
that the server maintain state about the locked files, a simpler lease-based model was 
taken. This system allows for a wide range of locking semantics to be supported 
reliably—anywhere from advisory read-only locks to mandatory single-writer locks. 

When the server creates any new state on behalf of a client, it provides the client a 
lease for that state for a period of time. This period of time is defined by the server 
globally for a given client. The client is responsible for renewing the lease, either 
explicitly by calling a RENEW procedure or implicitly by accessing the resource for 
which the lease was provided (such as reading from or writing to a file that is locked). 

If the client does not renew the lease, the server may discard the state associated 
with that lease. A client that tries to access files with expired leases will get an error code. 

Client Caching 
NFSv4’s primary goal is to provide good performance over the Internet. To that 

effect, the protocol minimizes the amount of communication that is needed. One method 
already mentioned is the COMPOUND procedure. Another obvious technique is caching. 
Previous versions of NFS also employed client-side caching to improve performance. 
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File data is cached by default. With such extensive caching, the chances for caches 
to get out of sync are increased. Older versions of NFS did not include cache consistency 
mechanisms; NFSv4, on the other hand, supports and describes cache consistency 
methods in detail. The client is responsible for ensuring cache consistency when it opens 
or closes a file. Applications that wish to enforce cache consistency at all times (and 
possibly bypass the cache) have to lock the byte ranges of the file in question. 

Delegations 
One important contribution to improving performance in NFSv4 is the concept of 

a delegation. An NFSv4 server can, upon opening a file, grant an NFSv4 client a read or 
write delegation, as well as several other types of delegations such as locks. This allows 
the client a measure of independence while manipulating the file. Clients can open, lock, 
read, write, and close files during a delegation—all without having to use costly network 
resources to communicate with the server. 

With a read delegation, the server guarantees the client that no other client can 
write to that file during the lifetime of the delegation. With a write delegation, the server 
guarantees the client that no other client can read or write to that file. 

Delegations, however, have a limited lifetime. Furthermore, delegations may be 
revoked or recalled by the server when it believes that a granted delegation conflicts with 
a more important request from a different client. In a marked departure from previous 
NFS protocols, NFSv4 servers may themselves initiate calls to NFS clients in order to 
recall a delegation. This reverse procedure-calling path is known as a callback path. If the 
callback path does not exist between the server and the client, servers will not grant that 
client any delegations. We describe the NFSv4 callback procedures later, under the 
section “Callback Procedures.” 

One possible problem with delegations, or for that matter, any state that either 
client or server maintains, is what happens when either party fails. If the server crashes, it 
will lose knowledge of any delegations it gave to clients. If a client crashes, it will lose 
any information about locks it held before. The problem is exacerbated by the Internet, 
where networks are less reliable and can become partitioned for a period of time. To 
address these situations, NFSv4 defines a method of delegation recovery. A server may, 
at any time, contact the client and ask it to relinquish its delegation. This could be useful, 
for example, for a server that crashed and came back up, to consolidate all of its known 
delegations before resuming regular file system activity. 

Internationalization (I18N) 
Older versions of NFS only supported the U.S. ASCII character set for file names. 

If NFSv4 is to cross international boundaries, the protocol must support character sets 
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used throughout the world. This is particularly important because with NFSv4, a client 
could be accessing files that reside on a server in a different country, possibly one with a 
very different language and alphabet. Such a client would have to understand both the 
local and remote language character sets and possibly translate between the two sets, a 
process known as internationalization (I18N). 

One proposed idea for I18N was for NFSv4 servers and clients to negotiate a 
locale before exchanging file names. Afterward, both parties could agree on a small 
subset of characters to use. This small set could be encoded in just 7 bits for most 
languages. However, several complications arose during the design of NFSv4, especially 
with multicomponent lookups where each pathname component could use a different 
locale. The idea of using a locale with each NFS operation was dropped in favor of a 
simpler method, albeit one that could consume more network bandwidth. 

NFSv4 uses universal 16-bit or even 32-bit character sets, sometimes known as 
Unicode sets, or UTF-8. Sixteen-bit Unicodes have been determined to support all 
characters of all known languages. They are unique and simple and clearly identify the 
language to which the particular character belongs. Thirty-two-bit codes may be needed 
to support additional language character sets—perhaps when the intergalactic space 
station is completed (we may also have to revise I18N to support purely telepathic 
species). 

Normalization is defined as the process by which a client and server agree on a 
base set of characters and then only use that set, thus saving on network bandwidth. For 
example, most NFSv4 clients and servers within the U.S. can easily fall back to using the 
ASCII character set. The first minor version of the NFSv4 protocol (version 0) does not 
specify how normalization should take place, nor does it require it. This is intended to be 
addressed in future revisions. Therefore, at this stage, NFSv4 clients and servers have to 
be able to handle un-normalized characters. If they choose to, or require it, such clients or 
servers can normalize the UTF-8 characters they get as needed. 

Minor Versioning 
Past NFS protocol revisions were major; the protocol procedures were changed 

significantly and were incompatible with previous versions. Typically, major revisions 
are assumed to be needed once a decade (yes, start worrying about NFSv5 come 2010). 

In another departure from previous NFS versions, NFSv4 allows for minor 
revisions such as NFSv4.1, NFSv4.2, etc. Minor revisions are assumed to be standardized 
quicker, in about 1 to 2 years. 

Many features of NFSv4 allow users to extend it without a formal change: 
compound operations and named attributes, for example. The IETF, however, 
recommends that the community using NFSv4 periodically reevaluate the need for small 
revisions since, in all likelihood, certain new features might turn out to be sufficiently 
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useful that they should be standardized. Such features as named attributes should be 
standardized and given an official number through the Internet Assigned Numbers 
Authority (IANA). 

The rules for minor revisions of the NFSv4 (and all future major versions) are as 
follows: 

• New primary procedures may not be added or removed. 

• No existing compound operations may be removed. 

• New compound operations may be added. Since these compound operations 
may result in a semantically different NFS protocol for different minor 
versions, clients must not use filehandles or any objects returned from a 
compound procedure where the client’s minor version was different from the 
server’s minor version. 

• Existing attributes may not be changed or removed. New attributes may be 
added by appending them at the end of the current list of attributes. 

• No existing data structures, bit flags, attributes, returned results, or error codes 
may be changed or deleted. 

• Semantics of all existing operations, returned results, and error codes must 
remain as is. 

• New error codes can be defined. 

• Minor versions can define an operation, an attribute, or a bit flag as 
“mandatory to not implement.” All existing structure for the operation is kept 
intact, but the operation or object is obsoleted. This allows the reintroduction 
of the operation or object at a later date and avoids the possibility of reuse of 
the operation’s or object’s freed slot. 

• Features may be downgraded from mandatory to recommended or from 
recommended to optional, or they may be upgraded in the reverse (but only 
one upgrade level at a time). 

• No new features can be added as mandatory in a minor revision. They can be 
introduced as optional or recommended and then upgraded to mandatory in a 
subsequent revision. 

• Clients and servers supporting a minor revision must support all previous 
minor revisions for the same major release. 
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Protocol Procedures and Operations 
At the heart of any protocol are the procedures that make up the specification. 

Table 6.1 lists the procedures and operations of NFSv4. This protocol has only two 
primary procedures: NULL and COMPOUND, which are procedure 0 and procedure 1, 
respectively. Procedure 2 is undefined and reserved for future expansion. The rest are 
protocol operations that can only be encapsulated in a COMPOUND procedure. 

Table 6.1: NFSv4 Protocol Procedures and Operations 
NUMBER OPERATION MEANING 
Procedure 0 NULL No operation. 

Procedure 1 COMPOUND Compound operations. 

Procedure 2 N/A (For future expansion.) 

Operation 3 ACCESS Check access rights. 

Operation 4 CLOSE Close file. 

Operation 5 COMMIT Commit cached data. 

Operation 6 CREATE Create a non-regular file object. 

Operation 7 DELEGPURGE Purge delegations awaiting 
recovery. 

Operation 8 DELEGRETURN Return delegation. 

Operation 9 GETATTR Get attributes. 

Operation 
10 

GETFH Get current filehandle. 

Operation 
11 

LINK Create link to a file. 

Operation 
12 

LOCK Create lock. 

Operation 
13 

LOCKT Test for lock. 
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Operation 
14 

LOCKU Unlock file. 

Operation 
15 

LOOKUP Look up file name. 

Operation 
16 

LOOKUPP Look up parent directory. 

Operation 
17 

NVERIFY Verify difference in attributes. 

Operation 
18 

OPEN Open a regular file. 

Operation 
19 

OPENATTR Open named attribute directory. 

Operation 
20 

OPEN_CONFIRM Confirm open. 

Operation 
21 

OPEN_DOWNGRAD
E 

Reduce open file access. 

Operation 
22 

PUTFH Set current filehandle. 

Operation 
23 

PUTPUBFH Set public filehandle. 

Operation 
24 

PUTROOTFH Set root filehandle. 

Operation 
25 

READ Read from file. 

Operation 
26 

READDIR Read directory. 

Operation 
27 

READLINK Read symbolic link. 

Operation 
28 

REMOVE Remove file system object. 

Operation 
29 

RENAME Rename directory entry. 

Operation 
30 

RENEW Renew a lease. 

Operation 
31 

RESTOREFH Restore saved filehandle. 

Operation 
32 

SAVEFH Save current filehandle. 
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Operation 
33 

SECINFO Obtain available security. 

Operation 
34 

SETATTR Set attributes. 

Operation 
35 

SETCLIENTID Negotiate clientid. 

Operation 
36 

SETCLIENTID_C
ONFIRM 

Confirm clientid. 

Operation 
37 

VERIFY Verify same attributes. 

Operation 
38 

WRITE Write to file. 

Next, we describe the NFSv4 RPC messages shown in Table 6.1. For more details 
on each procedure, or for the precise source code definitions for these, see RFC-3010 and 
Appendix B, “Online Resources.” 

NULL 
This is the standard ping procedure that takes and returns no arguments. It is 
intended to run very quickly because it is used more often by clients to test if a 
server is up and responding. 

COMPOUND 
The COMPOUND procedure combines several NFS operations into a single RPC 
message. As described above in “Compound Operations,” the NFSv4 server 
evaluates each operation in the compound in order, until all operations have been 
evaluated or an error occurs. The server returns the last error status as well as the 
results for all intermediate operations. 

ACCESS 
This is the first operation in the NFSv4 protocol. It verifies that a user, as specified 
by the user’s credentials, has access to the file or directory in question. The NFS 
client can specify the bitmask of access rights to check, so that the NFS server can 
check only for those rights. 

CLOSE 
This operation closes a file. The server releases any state information and share 
reservations that exist for the file. Clients are expected to release all locks held 
prior to closing a file. If they do not release locks, the server may try to free up the 
locks itself. If the server is unable to free all the locks, it returns an error message 
for the CLOSE operation. 

COMMIT 
This operation flushes all unwritten data to stable storage, for a given file. Clients 
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may specify the starting offset and length of bytes (a range) within the file to flush. 
If the offset and length are both zero, the server will flush the entire file. 
One typical problem with asynchronous writes is the possibility of a server crash 
between an asynchronous write and a commit operation. Servers return a special 
identifier to clients upon a successful asynchronous write, called a write verifier. 
The same write verifier is returned to the client upon a successful commit. If 
clients receive a different write verifier, they know that, somehow, the previously 
written data was lost and not written to stable media. This can often happen when 
a server reboots between a write and commit operation. 

CREATE 
This operation creates a non-regular file. To create regular files, clients must use 
the new OPEN operation. Clients must specify the type of object to be created: a 
directory, symbolic link, character device, or block device, etc. 

DELEGPURGE 
Typically, when a server delegates access to a client, and either one of them crash, 
both parties have to recover their previous information about the delegations they 
provided or received. However, there are cases when not all delegations need to be 
recovered after a client or server crash. If a client determines that a delegation it 
lost was no longer needed, it can use the DELEGPURGE operation to tell the 
server to remove all of the delegations pending recovery for that client. This can 
happen when a client does not need to store information relating to the delegation 
into stable storage locally on the client. By purging such delegations, servers can 
clear up some of the state they hold and even unblock pending operations for other 
clients (possibly for the same shared resource). 

DELEGRETURN 
Each delegation has a special state identifier (stateid) that the server hands back to 
the client. The DELEGRETURN operation simply returns to the server a 
delegation given its stateid. This operation is often the final stage in returning a 
delegation to a server that had recalled it from a client using the CB_RECALL 
callback operation (described below). 

GETATTR 
This operation returns the attributes for a given object. The client can specify the 
exact set of attributes it is interested in (because there could be many). The server 
returns a bitmap of the attributes for which it was able to get values, as well as the 
values for these attributes. 

GETFH 
This operation returns the current filehandle back to the client. This operation may 
be needed after a LOOKUP or CREATE since they do not automatically return 
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new filehandles. See the section “Filehandles” above. 

LINK 
This operation creates a new name for a given file, known in Unix file systems as 
a hard-link. Of course, servers running on platforms that do not support hard-links 
will return an error code back to a client that requests the creation of a new link for 
an existing file. 

LOCK 
This operation requests a lock for a byte range in a file, specified using the starting 
offset and the length of the byte-range to lock. Clients can use special syntax to 
specify the locking of a file from a given offset through the end of the file, or the 
entire file. If a lock cannot be granted, the server returns as much information as it 
can about the conflict: the owner, offset, and length of the byte-range in the 
conflicting file. This way clients can tell which other client already has a lock on 
the file. 

LOCKT 
This operation does not set a lock; it tests to see if a lock exists for a file at a given 
offset and length. Note that the server does not guarantee that a different client 
may not acquire a lock shortly after a LOCKT. 

LOCKU 
This operation instructs a server to release (unlock) the locked resources specified 
by the given stateid for the file in question. 

LOOKUP 
This operation finds a file in a directory corresponding to the current filehandle. It 
supports multicomponent lookups, thus saving on repeated lookups for each 
component. 

LOOKUPP 
This operation specifically finds the parent directory of the current filehandle. 
Previous versions of NFS required special semantics to the LOOKUP procedure 
when looking up “..” or “.”. However, this dot-dot concept is Unix-centric and 
does not exist on all operating systems. Therefore, the LOOKUPP operation must 
be used to ensure cross-platform compatibility; servers would implement this 
operation according to their own specifics. 

NVERIFY 
This operation can be used primarily to verify the validity of a cache. Suppose a 
client wants to find out if a cached file changed and, if so, return the new data 
bytes of the file. The client can send a sequence of <LOOKUP, NVERIFY, 
READ>, where the NVERIFY is asked to check for the size attribute of the file 
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and the last modification time as the client knows them. If the file has not 
changed, NVERIFY will return an error indicating that the attributes checked for 
are still the same. If, however, the file did change, then NVERIFY will not return 
an error, and the compound procedure would proceed to process the READ 
operation—thus reading the updated bytes of the file. 

OPEN 
This complex operation opens a regular file, possibly creating it. The result of an 
OPEN leaves a state on the server, a state that is normally released using a CLOSE 
operation. Clients must issue an explicit GETFH operation to retrieve the 
filehandle to CLOSE. The OPEN operation, just as with the open(2) system 
call, can create files exclusively if they do not exist, or reopen existing files. One 
additional complication of this operation is the client’s ability to claim to the 
server that it may have already held a previous lock or delegation. 

OPENATTR 
NFSv4 supports extensible attributes, designated as a hierarchy of named 
attributes and their values. To access these attributes, clients perform the 
OPENATTR operation. This operation returns a filehandle for a special virtual 
directory that contains the named attributes of the given file system object. The 
client can then issue normal READDIR, LOOKUP, READ, and WRITE 
operations on the attribute directory—since it appears as any other normal 
directory. This provides a very flexible method for extending and manipulating the 
attributes of a file. 

OPEN_CONFIRM 
During the time that a client opens and uses a locked file, the client may generate a 
lot of additional state information that the server is obligated to maintain. Each 
time a client generates such additional state information, it will typically include a 
sequence ID number along with the information. To help NFSv4 servers save on 
the amount of memory and resources consumed by possibly many such pieces of 
state data, the client may periodically issue the OPEN_CONFIRM operation. The 
client passes a sequence ID number to the server; the server may then discard 
much of intermediate state information for that client’s use of the file. 

OPEN_DOWNGRADE 
This operation is used to reduce a client’s access to an open file. It may be 
necessary if a client that locked a file has the file opened multiple times and 
possibly is using different access or deny permissions. When one of the opened 
references is closed, the file’s permanent access restrictions may be changed in 
such a way as to conflict with some of the remaining opened references. This 
procedure is useful to instruct a server to replace the access and deny bits of an 
opened file with those specified by the client. 
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PUTFH 
This operation replaces the current filehandle with the handle specified by the 
client. It is useful, for example, when clients change to different directories or 
other operations where the clients wish to change the context for the following 
operations. 

PUTPUBFH 
This operation replaces the current filehandle with the one that represents the 
server’s public filehandle. This operation is often the first NFSv4 operation used, 
to set the initial context for future operations. Recall that the public filehandle can 
be different from the root filehandle, as detailed in “Filehandles” above. 

PUTROOTFH 
This operation replaces the current filehandle with the one that represents the 
server’s root filehandle. This operation is also often the first NFSv4 operation 
used, to set the initial context for future operations. See “Filehandles” above. 

READ 
This operation reads a number of bytes, starting at a given offset, for the file 
represented by the current filehandle. 

READDIR 
This operation returns a number of entries in a directory, starting from a given 
offset in that directory (which is often the last place where a previous READDIR 
left off). The client may specify a list of attributes to return for each entry. This 
operation in NFSv4 subsumes the capabilities of NFSv3’s READDIRPLUS 
procedure. 

READLINK 
This operation reads the value of a symbolic link, or what the symlink points to. If 
the server does not support symlinks, it returns an error. 

REMOVE 
This operation deletes a file system object from the directory corresponding to the 
current filehandle. If that is the last reference to the object, the server may destroy 
any information associated with that file object. This operation can remove files, 
directories, or any other type of file. 

RENAME 
This operation renames a file. The old and new names of the file are given as 
UTF-8 strings. The old directory where the file resides is stored in the current 
filehandle, and the new directory location is stored in the saved filehandle. 

RENEW 
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When clients receive a lease from a server, for example, a lease to write a file 
exclusively, that lease expires after the designated period of time. Clients must 
issue the RENEW operation as needed to renew their lease; otherwise the server 
may timeout the lease and free it. 

RESTOREFH 
This is one of several operations that are used to manipulate the various 
filehandles that servers can have; such operations include setting and copying 
values of filehandles between different handles. This operation copies the saved 
filehandle contents into the current filehandle. 

SAVEFH 
This operation copies the current filehandle into the saved filehandle location. It is 
in essence the opposite of the RESTOREFH operation. 

SECINFO 
This operation returns a list of valid available RPC authentication techniques that 
the server supports for a given filehandle. In this fashion, clients and servers can 
negotiate the most suitable forms of security for their needs. 

SETATTR 
This operation changes a set of attributes for a given file system object. The client 
provides the server with a bitmask of attributes to change along with their values. 

SETCLIENTID 
Each NFSv4 client is identified to a server using a client ID, which includes a 
possible callback path: an RPC program number and a port number. This 
operation tells a server that the client wants to use a different client ID for 
subsequent operations. It can be used, for example, by NFSv4 clients that act as 
proxies, caching devices, or load-balancers. 

SETCLIENTID_CONFIRM 
This operation confirms that a client identifier given in a previous SETCLIENTID 
operation is still valid. It may be necessary to use this operation if the server holds 
state for a given client ID because that state should not be released for a client that 
has changed its ID. 

VERIFY 
This operation is used to ensure that the attributes of a file are the same before 
proceeding with the next operation. For example, a client can issue a sequence 
<LOOKUP, VERIFY, PUTFH, REMOVE> to remove a file. However, the client 
issues the VERIFY before removing the file to check, for example, that the file’s 
size and owner are what the client expects. If the attributes are not the same, the 
VERIFY operation would return an error and the file would not be removed: the 
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compound procedure will terminate before completing all operations. 

WRITE 
This operation writes data to a regular file represented by the current filehandle. 
The client can specify the offset and length of bytes to write to the file. 

An NFSv4 Implementation RFC 
Past NFS protocols attempted to specify design and implementation 
information in the same RFC. Worse, often many implementation 
recommendations were not discussed at all, leading vendors to implement 
past protocols in incompatible ways. 
The NFSv4-WG left many implementation details unanswered in RFC-
3010. This was intentional, so that the main RFC would only concern itself 
with the design and specification of the NFSv4, not how it might be 
implemented. For example, for callbacks to work through firewalls and 
NAT boxes, these devices will have to be modified to be aware of NFSv4, 
so they can properly allow such access through the firewall and into a 
secure site. In addition, load-balancers will have to figure out how to 
migrate or replicate NFSv4 files for use with this new protocol. These 
implementation details, and many more, are the subject of an upcoming 
NFSv4-WG RFC—an implementation RFC—that the working group is 
scheduled to work on next. 

Callback Procedures 
Because of the complexity of NFSv4, the server may require access to the client. 

That is, the client itself must act as a server under certain conditions. The client’s ability 
to service requests is done via the NFS4_CALLBACK program. This program is just 
another RPC program: it has a set of procedures and operations. However, there is no 
preassigned RPC program number and port number for the callback program. The client 
provides the server with its callback program number and port numbers via the 
SETCLIENTID operation. 

In a similar fashion to the NFSv4 server program, the NFS4_CALLBACK client 
program also defines only two primary procedures: CB_NULL and CB_COMPOUND. 
All other callback operations are defined in terms of the CB_COMPOUND procedure. 
Table 6.2 lists all callback procedures and operations. 
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Table 6.2: NFSv4 Callback Procedures and Operations 
NUMBER OPERATION MEANING 
Procedure 0 CB_NULL No operation. 
Procedure 1 CB_COMPOUND Compound operations. 
Procedure 2 N/A (For future expansion.) 
Operation 3 CB_GETATTR Get attributes. 
Operation 4 CB_RECALL Recall an open delegation. 

Next, we describe the NFSv4 callback RPC messages shown in Table 6.2. For 
more details on each procedure, or for the precise source code definitions for these, see 
RFC-3010 and Appendix B. 

CB_NULL 
This is the standard ping procedure. The server uses this procedure to verify that a 
callback path to the client exists. 

CB_COMPOUND 
This procedure is a wrapper for any number of operations. Its behavior is similar 
to the NFSv4 COMPOUND procedure. 

CB_GETATTR 
This is the first callback operation. When a client holds a delegation on a file, it 
can perform read and write operations that change the attributes of the file—such 
as its size. If another client asks the server for the attributes of that file, the server 
has to call the original client using the CB_GETATTR operation to find out the 
most up-to-date attributes of the file before responding to the second client. 

CB_RECALL 
Using this operation, a server asks a client to relinquish a delegation. The client 
has to process the recall as soon as possible and then return the delegation using 
the DELEGRETURN operation. 

Error Messages 
One of the ways to understand any protocol is to look at the error conditions that 

can occur. Many of the NFS error messages in this and previous protocols resemble 
standard error conditions such as those listed in the header file 
/usr/include/asm/error.h. In this section we summarize the error conditions of 
the NFSv4 protocol. Note that these errors can be returned by servers to clients, as well as 
by clients to servers (in response to a callback procedure). 

© Erez Zadok Page 63 12/22/2005 



NFS4_OK 
The operation completed successfully. 

NFS4ERR_ACCES 
The caller does not have the proper permission to perform the operation requested. 

NFS4ERR_BADHANDLE 
The server could not decode the filehandle, possibly due to an internal consistency 
failure. 

NFS4ERR_BADTYPE 
The server does not support the type of object that the client tried to create. 

NFS4ERR_BAD_COOKIE 
The cookie (an internal identifier) of a READDIR operation is invalid. 

NFS4ERR_BAD_SEQID 
Each locking request must identify itself using a sequence number that is either the 
last one or a new one that is one more than the last one used. If a different 
sequence number is used, the server responds with this error. 

NFS4ERR_BAD_STATEID 
Each state that either clients or servers maintain has a unique identifier (stateid) 
that is exchanged between them. If a stateid was used that the other party does not 
recognize, it returns this error. 

NFS4ERR_CLID_INUSE 
A client tried to use the same client ID (via SETCLIENTID) that another client 
already uses. 

NFS4ERR_DELAY 
Occasionally, a client will send a request to a server and the server will begin 
processing it. However, the server may realize that the request is taking a long 
time to process; for example, when retrieving a file that has been stored on a 
backup tape as part of a Hierarchical Storage Management (HSM) system. In that 
case, the server responds with this error, telling the client that the request is taking 
longer and that the client should retry it later. 

NFS4ERR_DENIED 
Trying to lock a file failed. This could be a temporary condition and the client 
should try again later, since the other client who held the lock might release it. 

NFS4ERR_DQUOT 
The hard quota limits have been exceeded. 
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NFS4ERR_EXIST 
The file already exists. This could happen when a client tries to create a file 
exclusively and the file already exists. 

NFS4ERR_EXPIRED 
The client’s lease has expired. 

NFS4ERR_FBIG 
The server is unable to perform the operation because it would result in growing 
the file beyond the server’s limits. 

NFS4ERR_FHEXPIRED 
A volatile filehandle has expired. 

NFS4ERR_GRACE 
When a server crashes and then restarts, there is a period of time when it is 
initializing and cannot respond to some operations. During that time and similar 
times, the server will return this error. 

NFS4ERR_INVAL 
The client passed an operation that included an invalid argument, or the server 
cannot support the operation requested. 

NFS4ERR_IO 
A hard I/O error (such as a failing disk) occurred. 

NFS4ERR_ISDIR 
A non-directory operation was applied to a directory. 

NFS4ERR_LEASE_MOVED 
The lease has moved or migrated to a new server. 

NFS4ERR_LOCKED 
The client tried to read or write a file that is locked by another client. 

NFS4ERR_LOCK_RANGE 
This error occurs when a client requests a lock for a portion of a file that overlaps 
a portion locked by another client. 

NFS4ERR_MINOR_VERS_MISMATCH 
The server does not support the minor revision of the protocol requested. 

NFS4ERR_MLINK 
The file has too many hard-links. 

NFS4ERR_MOVED 
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The file system was moved or migrated to another server. The server can find out 
the new location for the file system by requesting the fs_locations attribute 
of the current filehandle. 

NFS4ERR_NAMETOOLONG 
The name of the file is too long. 

NFS4ERR_NODEV 
The device does not exist. 

NFS4ERR_NOENT 
The file or directory does not exist. 

NFS4ERR_NOFILEHANDLE 
The current filehandle has not been properly set. 

NFS4ERR_NOSPC 
The file system is full. 

NFS4ERR_NOTDIR 
The directory operation was applied to a non-directory. 

NFS4ERR_NOTEMPTY 
Cannot remove the directory because it is not empty. 

NFS4ERR_NOTSUPP 
The operation is not supported. 

NFS4ERR_NOT_SAME 
The attributes requested in the VERIFY operation do not match those on the 
server. 

NFS4ERR_NXIO 
The device or address does not exist or had an I/O error. 

NFS4ERR_OLD_STATEID 
An older state identifier was used. 

NFS4ERR_PERM 
The operation is not permitted because it was not performed by the superuser or 
the file’s owner. 

NFS4ERR_READDIR_NOSPC 
The space provided by the client for filling in a READDIR request is not 
sufficient. 
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NFS4ERR_RESOURCE 
While processing a COMPOUND procedure, the host ran out of resources (such as 
memory). 

NFS4ERR_ROFS 
A file system–modifying operation was attempted on a read-only file system. 

NFS4ERR_SAME 
The attributes requested in the NVERIFY operation match those on the server. 

NFS4ERR_SERVERFAULT 
An unknown error occurred on the server and it cannot be mapped to any 
predefined NFS error code. 

NFS4ERR_SHARE_DENIED 
Cannot open a file with a share reservation because a share is already reserved by 
another client. 

NFS4ERR_STALE 
The filehandle is invalid, the file referenced by it does not exist, or access to that 
file was revoked. 

NFS4ERR_STALE_CLIENTID 
The server does not recognize the client ID sent to it by a locking request or a 
confirmation request for setting a client ID. 

NFS4ERR_STALE_STATEID 
The state ID used was generated by an earlier or older server. 

NFS4ERR_SYMLINK 
This error is returned if the client tries to open a symlink file or look up a file in a 
directory that is specified by a symlink. The client is supposed to recursively 
traverse symlinks by getting their values explicitly (using READLINK) and then 
passing the non-symlink value to a LOOKUP or OPEN operation. 

NFS4ERR_TOOSMALL 
The space provided in a buffer or request is too small. 

NFS4ERR_WRONGSEC 
The client used a security mechanism that is not supported by the server’s security 
policy. 

NFS4ERR_XDEV 
The client tried to create a hard-link across a different device. 
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Linux Implementations 
The Center for Information Technology Integration (CITI) at the University of 

Michigan has been working on a prototype implementation of an NFSv4 server and client 
for Linux and NetBSD. CITI’s first goal for the Linux port was to support the most 
mandatory NFSv4 features; this goal was achieved in early 2000. The group then went on 
to complete the Linux port, based on the 2.2.x kernel and the existing NFSv3 client/server 
code. The status of these ports is available from CITI’s NFSv4 Web page at 
www.citi.umich.edu/projects/nfsv4/. 

This section describes the procedures for retrieving, configuring, installing, and 
running the prototype implementation of NFSv4 for Linux. Note that the procedures 
described here are likely to change often, and the NFSv4 support in Linux is highly 
experimental—alpha quality at best. If these procedures do not work for you, refer to 
CITI’s Web site and the NFS mailing list at nfs@nfs.sourceforge.net. For 
general guidelines of how to build and install a Linux kernel and user-level software, 
refer to Chapter 7, “Building and Installing the Linux Kernel and NFS Software.” 

1. Start by downloading the following three packages from CITI’s download 
page: www.citi.umich.edu/projects/nfsv4/download/. Store 
them in /usr/src. 

linux_nfsv4.tar.gz 
Linux 2.2.14 kernel source and the NFSv4 additions. 

redhat_mount.tar.gz 

Linux mount-2.9o source that contains the NFSv4 additions. 

rpcsec_gss.tar.gz 
Linux RPCSEC_GSS user-level library and the GSS daemon. 

2. Then download the server side utilities from 
www.citi.umich.edu/projects/nfsv4/sept_2000_rel/serve
r_util/server_utils.tar.gz. 

3. Unpack the sources: 
[root]# cd /usr/src 
[root]# tar xzf linux_nfsv4.tar.gz 
[root]# tar xzf redhat_mount.tar.gz 
[root]# tar xzf rpcsec_gss.tar.gz 

4. Configure and build the kernel in /usr/src/linux_nfsv4. When 
configuring the kernel, make sure you select the SUNRPC, NFS_FS, and 
NFSD modules, but not NFSv3 support. 

[root]# cd /usr/src 
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[root]# mv linux linux.old 
[root]# ln -s linux_nfsv4 linux 
[root]# cd linux 
[root]# make menuconfig 
[root]# make dep 
[root]# make clean 
[root]# make bzImage 
[root]# make modules modules_install 

5. Manually enable NFSv4 in your kernel configuration file: 
[root]# echo "CONFIG_NFS_V4=y" >> .config 
[root]# make bzImage modules 
[root]# cp arch/i386/boot/bzImage /boot/vmlinuz-nfsv4 
[root]# cp System.map /boot/System.map-nfsv4 

6. Add a new kernel boot entry to the end of your /etc/lilo.conf file, 
which looks as follows: 

image=/boot/vmlinuz-nfsv4 
        label=linux-nfsv4 
        read-only 
        root=/dev/hda1 

Of course, /dev/hda1 is just an example. Make sure that your root entry 
matches your host’s root disk. 

7. Run /sbin/lilo. 

8. Configure and build the linux mount program that supports NFSv4. 
[root]# cd /usr/src/redhat_mount 
[root]# ln -s ../setproctitle.o lib/setproctitle.o 
[root]# make 
[root]# install -s -c -m 755 mount /usr/sbin/mount-nfsv4 

9. Install MIT’s Kerberos version 5. If you are using Red Hat 7, insert the 
installation CD-ROM and install the following RPMs: 

[root]# cd /mnt/cdrom/RedHat/RPMS 
[root]# rpm -Uvh krb5-server-1.2.1-8.i386.rpm 
[root]# rpm -Uvh krb5-devel-1.2.1-8.i386.rpm 
[root]# rpm -Uvh krb5-libs-1.2.1-8.i386.rpm 
[root]# rpm -Uvh pam_krb5-1-19.i386.rpm 
[root]# rpm -Uvh krb5-workstation-1.2.1-8 

10. Build and install the GSS server: 
[root]# cd /usr/src/rpcsec_gss 
[root]# ./configure 
[root]# make 
[root]# make install 
[root]# install -s -c -m 755 gssd/gssd /usr/sbin/gssd 

Server-Side Support 
Unpack and install server-side utilities (only needed for NFSv4 servers): 
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[root]# mkdir /usr/src/server_utils 
[root]# cd /usr/src/server_utils 
[root]# tar xzf ../server_utils.tar.gz 
[root]# install -c -m 755 exportfs /usr/sbin/exportfs 
[root]# install -c -m 755 rpc.nfsd /usr/sbin/rpc.nfsd 
[root]# install -c -m 755 nfsv4 /etc/rc.d/init.d/nfsv4 

Turn on NFSv4 services and start the servers: 
[root]# chkconfig nfsv4 on 
[root]# /etc/rc.d/init.d/nfsv4 restart 

Client-Side Support 
Follow the general instructions to build and install the NFSv4 software and 

utilities, and then start the GSS server and load up the proper modules. 
[root]# /usr/sbin/gssd & 
[root]# insmod sunrpc 
[root]# insmod nfs 

Now you can use the special /usr/sbin/mount-nfsv4 program to mount an 
NFSv4 server: 

[root]# /usr/sbin/mount-nfsv4 server:/home /mnt 

 NFSv4 was designed to work across many platforms, including 
Windows. The Windows world uses the Server Message Block (SMB) 
protocol to share files and printers with other Windows systems. Also, 
through the use of SAMBA—a Unix-based SMB server—Windows and 
Unix systems can share files and printers. While NFSv4 is expected to 
integrate file access in a better way between all Unix and non-Unix 
systems, NFSv4 was not designed to share printers. 

In Sum 
NFSv4 is a major redesign of the NFS protocol. The goals of this protocol are to 

provide good performance over the Internet, work well with many clients, work across 
firewalls and network appliances, be highly reliable and available, include strong 
security, interoperate with any platform, support international character sets, and extend 
easily. 

This complex new protocol subsumes all previous protocols. It includes lots of 
support for clients and servers to maintain caches and share state, as well as checking 
those for consistency and coherency. 
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Great care was taken to allow for many possible optimizations. Since the Internet 
is a wide area network and subject to high latency and greater loss of packets, the 
protocol ensures that only the bare essential information is exchanged over the network. 
The protocol allows servers to delegate access to clients for a duration of time, so the 
servers need not be involved with the client at all for that time. 

The protocol also defines a new concept of a compound procedure: a wrapper 
routine that encapsulates many other operations. Such a composition is sent as a single 
RPC message to the server and processed all at once. 

To avoid having to redesign this protocol again in just a couple years, extensibility 
methods were built into the protocol. Clients and servers can, for example, create new 
named attributes for file system objects. Through minor revisions of the protocol, new 
operations and attributes can be created, and much more functionality can be changed, as 
long as it complies with the rules set forth for minor revisioning. 

The NFSv4 protocol is the first NFS protocol on its way to becoming an Internet 
standard. For the first time in its history, an NFS protocol design was opened to the whole 
community and is guided by the IETF’s strict rules for creating new protocols. The full 
detailed description of NFSv4 is available in RFC-3010 and spans over 200 pages. Happy 
reading. 
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