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Abstract—The objective of this work is to detect shadows in images. We pose this as the problem of labeling image regions, where

each region corresponds to a group of superpixels. To predict the label of each region, we train a kernel Least-Squares Support Vector

Machine (LSSVM) for separating shadow and non-shadow regions. The parameters of the kernel and the classifier are jointly learned

to minimize the leave-one-out cross validation error. Optimizing the leave-one-out cross validation error is typically difficult, but it can be

done efficiently in our framework. Experiments on two challenging shadow datasets, UCF and UIUC, show that our region classifier

outperforms more complex methods. We further enhance the performance of the region classifier by embedding it in a Markov Random

Field (MRF) framework and adding pairwise contextual cues. This leads to a method that outperforms the state-of-the-art for shadow

detection. In addition we propose a new method for shadow removal based on region relighting. For each shadow region we use a

trained classifier to identify a neighboring lit region of the same material. Given a pair of lit-shadow regions we perform a region

relighting transformation based on histogram matching of luminance values between the shadow region and the lit region. Once a

shadow is detected, we demonstrate that our shadow removal approach produces results that outperform the state of the art by

evaluating our method using a publicly available benchmark dataset.

Index Terms—Shadow detection, shadow removal, kernel optimization

Ç

1 INTRODUCTION

SHADOW removal is desirable in many situations. Shad-
ows are common in natural scenes, and they are known

to complicate many computer vision tasks such as image
segmentation and object detection. Therefore the ability
to generate shadow-free images would benefit many com-
puter vision algorithms. Furthermore, for aesthetic reasons,
shadow removal can benefit image editing and computa-
tional photography algorithms.

Automatic shadow detection and removal from single
images, however, are very challenging. A shadow is cast
whenever an object occludes an illuminant of the scene; it is
the outcome of complex interactions between the geometry,
illumination, and reflectance present in the scene. Identify-
ing shadows is therefore difficult because of the limited
information about the scene’s properties.

In this paper, we propose a novel algorithm for shadow
detection. We pose shadow detection as an image labeling
problem, similar to some statistical learning-based meth-
ods [9], [11], [45]. Given an image, we first divide it into mul-
tiple regions, where each region is a group of superpixels, as
illustrated in Fig. 1. We use a region classifier to estimate the
shadow probability of each region based on its appearance
features. Subsequently, we improve shadow detection by
considering contextual cues between neighboring regions.
The contextual cues are incorporated in our framework as

pairwise potentials in a Markov Random Field (MRF). We
solve the optimization with QPBO [20], [27] to produce the
final shadow labels.

One particular novelty of our approach is the framework
for training a strong shadow region classifier that can effec-
tively integrate multiple types of local cues. In particular, we
jointly learn a classifier and a discriminative kernel that com-
bines chromatic, intensity, and texture properties for shadow
detection. Unlike existing approaches for shadow detection,
we propose to use Least Square Support Vector Machines
(LSSVM). LSSVMs have been shown to perform equally well
as SVMs in many classification benchmarks [33]. LSSVMs
have a closed-form solution, which is a computational
advantage over SVMs. Furthermore, once the solution of an
LSSVM has been computed, the solution for a reduced train-
ing set obtained by removing any of the training data points
can be found efficiently. This enables using the same training
data for learning both the classifier and the kernel parame-
ters. As will be shown, optimizing the kernel parameters is
crucial for improving the discriminative power of the
shadow classifier, and this can be done efficiently using our
framework. Moreover, our method can be implemented in a
GPU, further reducing the computational cost.

As will be shown, our shadow region classifier outper-
formsmore complexmethods evenwithout using contextual
cues. Nonetheless, context is important for shadow detection
as it is often difficulty to discern shadows based on the local
appearance of individual regions, even for human observers.
We therefore enhance our method by incorporating contex-
tual cues as pairwise potentials in an MRF framework. We
introduce two types of potentials: affinity and disparity. The
affinity potentials encourage similar adjacent regions to have
the same label, while the disparity potentials prefer different
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labels for shadow-nonshadow region pairs (using the output
of a classifier for region pairs).

We perform experiments on the challenging UCF [9]
and UIUC [47] shadow datasets and observe that the pro-
posed method outperforms the current state-of-the-art
method [11]. On the UIUC dataset, our method reduces the
false negative rate of [11] by 35.3 percent while maintaining
a similar false positive rate. On the UCF dataset, our method
reduces the false negative rate and false positive rate by
9 and 13.5 percent, respectively.

We complete our pipeline with a final shadow removal
step. We propose a method to generate shadow free images
using the detected shadow masks. We perform experiments
on a publicly available shadow removal benchmark dataset
[9]. Our method reduces the root mean square error (RMSE)
of Guo et al. [10] by 18 percent. In shadow areas the error
reduction is 30 percent.

2 PREVIOUS WORK

2.1 Shadow Detection in Images

Shadow detection in images is a well studied problem. Ear-
lier methods such as [6], [7] detect shadows by comparing
the gradients of an image and its illumination invariant rep-
resentations. These methods show impressive results in
high quality images, but their performance degrades signifi-
cantly with consumer photographs or web quality pictures
[21]. More recent methods use image datasets with anno-
tated shadow masks to learn the appearance of shadows in
images. These methods follow two main approaches: detect-
ing shadow boundaries or detecting shadow regions.
Lalonde et al. [21] focus on shadow boundaries on the
ground. They train a shadow boundary classifier based on
color and texture features and combine it with scene layout
cues from [14] using a Conditional Random Field (CRF) to
encourage boundary continuity. Huang et al. [15] use a set
of physically inspired features to train a shadow boundary
pixel classifier using an SVM. They join pixels confidently
predicted as shadow boundaries with weakly predicted
adjacent pixels in a Canny-like manner. Shadow boundary
detection methods [15], [21] achieve good results, but strug-
gle to segment closed shadow contours.

For detecting shadow regions, Zhu et al. [47] propose a
set of shadow variant and shadow invariant features in
monochromatic images to learn a shadow region classifier,
and refine the results with a CRF. Guo et al. [9], [10] train
two pairwise classifiers to find pairs of regions in an image
that share the same material and are viewed under the
same illumination conditions (both in shadow or both in

not shadow), and same material but illuminated differently
(only one region in shadow). They minimize an energy func-
tional that combines the predictions of a single region classi-
fier and the positive predictions of their pairwise classifiers.
However, their single region classifier is not particularly
accurate, especially for shadow regions. They use an SVM
with aX2 kernel that has limited discriminative power.

More recently, Khan et al. [11] propose a deep learning
approach to learn features for shadow detection. They train
two Convolutional Neural Networks (CNN), one for detect-
ing shadow regions and the other for shadow boundaries.
They use a CRF to label pixels as shadow/non-shadow
where the predictions of the two neural nets are combined
into a unary potential, and the pairwise potential is an Ising
prior where the pairwise penalty is determined by the simi-
larity in intensities between adjacent pixels.

This paper improves and subsumes our previous confer-
ence papers [39], [42], [45], and is followed by our recent
work [40], [41], [48].

2.2 Shadow Removal in Images

Early works in shadow removal focus on eliminating the
effects of shadows in the image gradients and then integrate
the modified gradient field to obtain a shadow free image.
For instance, Finlayson et al. [6], [7] remove shadows by
zeroing shadow edges in the gradient domain and then inte-
grating it to obtain a shadow free image. They achieve good
results with high quality images, however the integration
often introduces changes in color balance, global smooth-
ness and loss of textural properties, specially in the penum-
bra or boundary areas. Liu et al. [25] propose an integration
based algorithm that aims to improve the loss of texture
that commonly accompanies integration methods. They
construct a gradient field for the penumbra area to cancel
out the effects of the illumination change. Their results
improve in terms of texture consistency but they cannot
handle non uniform shadows or complex textures. Integra-
tion based methods are highly sensitive to accurate segmen-
tation of the shadow edges.

Shor et al. [32] present an affine shadow formation model
with a multi scale scheme to remove shadows. They require
minimal user assistance to identify shadow and lit areas of
the same surface material. Based on those pairings, they
obtain the constant parameters of the shadowmodel. Due to
the assumed constant coefficient their method has problems
with non uniform shadows and sometimes rich textures.
Xiao et al. [44] extend the affine model of Shor et al. [32] by
allowing the attenuation factor to be adaptive. This accounts
for reflectance variations on the shadow areas.

Fig. 1. Shadow detection as a region labeling problem. From left to right: Input image, initial superpixels, segmented regions, and shadow predictions.
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Wu et al. [43] perform shadow matting to remove shad-
ows. They estimate shadow intensities based on intensity
ratios in the umbra region and use a Bayesian framework to
regularize the shadow scale factor in the shadow regions.
The umbra regions of the shadows are assumed to be
roughly uniform. Guo et al. [9] also remove shadows based
on shadow matting, they generate a soft shadow mask from
the ground truth and randomly sample patches from both
sides of the shadow boundary to compute the illumination
ratios. Khan et al. [19] use a Bayesian formulation to extract
a shadow matte and remove the shadows. First, the umbra
and penumbra regions, and the object shadow boundaries
are estimated. Then, a rough shadow-less image is obtained
using multi-scale color transfer using Gaussian mixture
models. Lastly, assuming shadows are cast by a single light
source and uniform ambient light, a Bayesian formulation is
optimized to solve for the final matte from the rough
shadow-less image.

2.3 Least-Squares SVM Classifiers

We use Least-Squares Support Vector Machines [34], also
known as Kernel Ridge Regression [29]. LSSVMs have a
closed-form solution, which is computationally advanta-
geous compared to SVMs. Furthermore, once the solution of
an LSSVM has been computed, the solution for a reduced
training set obtained by removing any training data point
can be found efficiently. This enables reusing training data
for further calibration, e.g., [12], [13]. This section reviews
LSSVMs and the leave-one-out formula.

Given a training set of n data points fxigni¼1
1 and associ-

ated labels fyijyi 2 f1;�1ggni¼1, LSSVM optimizes

minimize
w;b

�jjwjj2 þ
Xn
i¼1

ðwTfðxiÞ þ b� yiÞ2: (1)

Here fðxiÞ is the feature mapping from the input space to a
feature space. If the dimension of the feature space is high
(� n) or even infinite, it is more efficient to obtain the solu-
tion for (w; b) via the representer theorem, which states that
w can be expressed as a linear combination of training data
in the feature space, i.e., w ¼ Pn

i¼1 aifðxiÞ. Let K be the ker-
nel matrix, kij ¼ fðxiÞTfðxjÞ. Let ki denote the ith column of
K, then Eq. (1) is equivalent to

minimize
aa;b

�aaTKaaþ
Xn
i¼1

ðkT
i aaþ b� yiÞ2: (2)

Let aa ¼ ½aa b�T ;Z ¼ ½K 1n�T ;R ¼ �K 0n
0Tn 0

� �
, Eq. (2) is equiv-

alent to

minimize
aa

aaT ðRþ ZZT Þaa� 2yTZTaaþ
Xn
i¼1

y2i : (3)

This is an unconstrained convex optimization problem, so
the optimum value is attained at zero-gradient. Taking the
gradient with respect to aa, the optimal solution can be
obtained by solving the linear equation: ðRþ ZZT Þaa ¼ Zy.
With C ¼ Rþ ZZT ;d ¼ Zy, the optimal solution is:
aa ¼ C�1d. Suppose xi is removed from the training set, and
let CðiÞ;dðiÞ;aaðiÞ be the corresponding values for removing xi.
We have aaðiÞ ¼ C�1

ðiÞdðiÞ. Note that, even though we remove xi
from the training data, we can still writew as a linear combi-
nation of ffðxiÞg without excluding the term fðxiÞ. The only
change is the removal of the term ðkT

i aaþ b� yiÞ2 from the
objective function. Thus we have CðiÞ ¼ C� ziz

T
i and

dðiÞ ¼ d� yizi. Using the Sherman-Morrison formula [30],
[31], we can quickly compute the inverse ofCðiÞ

C�1
ðiÞ ¼ ðC� ziz

T
i Þ�1 ¼ C�1 þ C�1ziz

T
i C

�1

1� zTi C
�1zi

: (4)

With M ¼ C�1Z and hii ¼ zTi mi, following the derivation as
above, we obtain the following formulas:

The optimal solution : aa ¼ My; (5)

Leave-one-out solution: aaðiÞ ¼ aaþ ðaaTzi � yiÞ
1� hii

mi; (6)

Leave-one-out error ¼ aaðiÞTzi � yi ¼ aaTzi � yi
1� hii

: (7)

3 SHADOW REGION CLASSIFICATION

We pose shadow detection as a region classification prob-
lem. Given an image, we first segment it into regions using
a two step process [45]: 1) apply SLIC [1] superpixel seg-
mentation to oversegment the image and obtain an initial
set of superpixels; 2) apply Mean-shift clustering [5] and
merge superpixels in the same cluster into a large region.
This segmentation process is illustrated in Fig. 1. Once the
image has been segmented into regions, we use an LSSVM
to predict the shadow probability of each region.

Because shadows are the outcome of the complex interac-
tion between scene geometry and illumination sources, it is
necessary to consider multiple feature types for shadow
classification. In particular, we propose to base the classifi-
cation decision on the chromatic, intensity, and texture
properties of the region. However, it is difficult to combine
heterogeneous feature types and manually tune the impor-
tance of each type. We therefore consider this as a kernel
learning problem where the kernel function has the form

Kðx; yÞ ¼
Xk
i¼1

wi exp � 1

si
Diðx; yÞ

� �
: (8)

Here Kðx; yÞ denotes the kernel value between two regions
x and y. The function Diðx; yÞ is the distance between x and
y in some feature space (e.g., X2 distance between texton
histograms) and it is predetermined. The function
expð� 1

si
Diðx; yÞÞ is called the extended Gaussian kernel [17],

[36], [46], and the kernel K is the linear combination of
extended Gaussian kernels. The parameters fwi; sig are
what needs to be learned. Additionally, we constrain the
kernel weights to be non-negative and have unit sum, i.e.,Pk

i¼1 wi ¼ 1.

1. Bold uppercase letters denote matrices (e.g., K), bold lowercase
letters denote column vectors (e.g., k). ki represents the ith column of
the matrix K. kij denotes the scalar in the row jth and column ith of the
matrix K and the jth element of the column vector ki. Non-bold letters
represent scalar variables. 1n 2 <n�1 is a column vector of ones, and
0n 2 <n�1 is a column vector of zeros.
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We propose to jointly learn the kernel and the LSSVM
classifier. Given a set of training regions and corresponding
shadow indicator labels, our goal is to find a set of parame-
ters fwi; sig that yields the lowest leave-one-out balanced
error rate. The balanced error rate is the average of the false
positive and false negative rate. For brevity, we refer to the
balanced error rate simply as error rate or error. The leave-
one-out error for a given kernel is defined and conceptually
computed as follows: First, the leave-one-out confidence
values are computed for all training examples. The leave-
one-out confidence value for a particular training example
is obtained by training a classifier on the remaining exam-
ples and evaluating on the left-out sample. The leave-one-
out confidence values are then compared against the
ground truth shadow annotation to compute the leave-one-
out error rate. In general, estimating the leave-one-out error
is computationally prohibitive because classifier training
must be done many times, once per training example. How-
ever, as explained in Section 2.3, using LSSVM, the leave-
one-out confidence values can be obtained efficiently with-
out training the leave-one-out classifiers.

The leave-one-out error is a function of the kernel param-
eters. Even though calculating the value of this function for
a particular kernel can be done efficiently, it is still unclear
how to find a set of kernel parameters that yields the lowest
leave-one-out error. Unfortunately, the leave-one-out error
function is not convex. Even worse, this function is noncon-
tinuous and piece-wise constant, and therefore a gradient-
based optimization approach is unlikely to work well. To
see this, recall that the set of possible error rates are discrete;
the interval between two adjacent discrete values is
inversely proportional to the number of training examples.
This function is non-differentiable at many locations, and
has zero gradients at the other locations.

To optimize the set of kernel parameters, we propose to
use beam search with random steps. We first discretize the
space of kernel parameters using a grid (details will be pro-
vided in Section 3.2). Starting from a random parameter vec-
tor, we perform a number of iterative updates. Each update
involves the following steps:

1) Randomly choose one kernel parameter and assign a
new random value. If necessary, re-normalize fwig
to have unit sum.

2) Train an LSSVM classifier and compute the leave-
one-out error for the new set of parameters.

3) Update the parameter set if it yields lower leave-one-
out error than the current best value.

In our experiments, we perform 500 iterations. If the
leave-one-out error does not decrease after 25 consecutive
iterations, we randomly assign new values to all parameters.

The method proposed here has advantages over some
existing kernel learning approaches. One popular approach
is multiple kernel learning, e.g., [2], [16], [22], [37]. Many
multiple kernel learning methods, however, can only learn
a linear combination of base kernels; they cannot be used to
learn other parameters such as the scaling factor of a gener-
alized Gaussian kernel. This problem can be circumvented
by creating multiple kernel instances with different parame-
ter settings. However, this explodes the number of base ker-
nels, so the optimization typically requires a differentiable

objective function [16], [37]. Furthermore, most existing
approaches learn the kernel parameters to optimize an
objective function defined on the surrogate loss of training
data, not the held-out data. Thus the same training data is
used for both classifier training and kernel learning. The
double-use of training data reduces the generalization abil-
ity of the algorithms. To avoid this problem, one can main-
tain a separate set of validation data and use the wrapper
approach [4] for optimizing kernel parameters. This
assumes we have enough labeled data for training and vali-
dation. Furthermore, optimizing the kernel’s parameters on
a single set of validation data has the risk of overfitting to
the validation data.

3.1 Feature and Kernel Details

In order to determine if a region is in shadowwe will look at
its chromatic, intensity and textural properties. For each
region, we compute a 21-bin histogram for each of the com-
ponents (L*,a*,b*) of the perceptually uniform color space
CIELAB. To represent texture, we compute a 128-bin texton
histogram. We run the full MR8 filter set [38] in the whole
data set and cluster the filter responses into 128 textons using
k-means. Shadow regions tend to be less textured and
darker.2 The CIELAB color space has been shown to perform
well for shadow edge identification in outdoor scenes [18] as
well as to improve reflectance segmentation [8]. The two
color opponent channels behave differently under illumina-
tion changes. Especially in outdoor environments, the b*
channel (yellow-blue) is more sensitive to shadows than the
a* channel (red-green), which is shadow invariant to a cer-
tain degree [35]. To compare textures between regions we
use the X2 distance between their texton histograms. For
color histograms, it is more appropriate to use the Earth
Mover’s Distance (EMD) [28] because neighboring bins in
the L*,a*,b* histograms represent proximate values and their
ground distance is uniform (property of the CIELAB space),
in contrast to texton histograms. Furthermore, EMD is more
accurate in measuring distances between histograms of con-
tinuous entities (such as L,*a,*b), it is less sensitive to quanti-
zation error and it can be efficiently computed for 1D
histograms. Since our features are normalized histograms
(unit mass), both the X 2 and EMD distances are metrics.
Hence, we can use them in the form of extended Gaussian
distances [17], [46]. Our kernel therefore has the form

Kðx; yÞ ¼
X

l2fL;a;b;tg
wl exp � 1

sl
Dlðx; yÞ

� �
; (9)

where DL;Da;Db are EMD distances for L*, a*, b* histo-
grams, andDt is X2 distance for texton histograms.

3.2 Optimization Grid Details

Our task is to optimize the leave-one-out error over 8 kernel
parameters, which are the kernel weights fwL;wa; wb; wtg
and the scaling factors fsL; sa; sb; stg. We define an 8-
dimensional grid; each dimension corresponds to a kernel
parameter. The discrete values for each scaling factor sl

2. We work with web quality type of images, captured by sensors
that are not linearly calibrated. Hence, darker regions tend to have
more compressed ranges and due to quantization, some contrast is lost.
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form a set of multiples of the mean distance. This is inspired
by a common heuristic: using the mean of the pairwise dis-
tances as the scaling factor [46]. If fx1; . . . ; xng is the set of
training examples, the mean distance is computed as

ml ¼ 1
ðn�1Þn

P
i 6¼j Dlðxi; xjÞ. The possible discrete values of sl

are fsmljs 2 f18 ; 16 ; 14 ; 12 ; 1; 2; 4; 6; 8gg. For the weight wl of a

base kernel, we use fs=40js 2 f1; . . . ; 10gg as the set of possi-
ble values.

3.3 Error Rate Computation Details

Our optimization criterion is the leave-one-out balanced
error rate. This requires having a threshold for separating
between positive and negative predictions. While the
LSSVM classifier also has a default threshold of 0, this set-
ting is optimized for the total error rate instead of the bal-
anced error rate. To resolve this issue, we first use Platt
scaling [26] to map the decision values of LSSVM to proba-
bilities, and then use the probability threshold of 0.5.

More specifically, suppose fi is the leave-one-out score
for the ith training example. We map fi to a probability by
fitting a sigmoid function: Pa;bðfiÞ ¼ 1

1þexpðafiþbÞ, where a; b

are the parameters of the function. Let Nþ and N� be the
number of positive and negative training examples, and yi
the label of the ith training example. Assuming a uniform
uninformative prior over the probabilities of the correct
labels, the MAP estimates for the target probabilities3 are:
ti ¼ Nþþ1

Nþþ2 if yi ¼ 1 and ti ¼ 1
N�þ2 otherwise.

The parameters a; b are set by solving the regularized
maximum likelihood problem

max.
a;b

X
i

ti log ðPa;bðfiÞÞ þ ð1� tiÞlog ð1� Pa;bðfiÞÞ
� �

:

We solve the above optimization problem using Newton’s
method with backtracking line search [24].

3.4 GPU Acceleration and Running Time

An advantage of the proposed kernel learning algorithm is
its efficient GPU implementation. The kernel learning algo-
rithm consists of many iterations, each iteration involves
computing a kernel, solving an LSSVM, and calculating the
leave-one-out balanced error rate. Computing a kernel for a
set of kernel weights requires several element-wise matrix
exponentiations and additions. These can be done efficiently
using a GPU. Furthermore, the distance matrices between
training regions Dlð�; �Þ need to be computed just once. Solv-
ing an LSSVM involves a series of matrix operations (as
described in Section 2.3), and these operations have a GPU
implementation. Computing the leave-one-out error can be
done efficiently, even on a CPU.

In our experiments, the number of training examples
is around 12,000, corresponding to a kernel matrix of size
12,000 � 12,000. For each iteration, our Matlab GPU imple-
mentation takes 1.25 s to load the distance matrices to the
GPU, a GTX 980. To compute the kernel, 7.5 s to train an
LSSVM, and 0.2 s to compute the leave-one-out error

(including Platt’s scaling). In total, it takes less than 10 s per
iteration.Without GPU, each iteration takes about 30 s on a 2.9
Mhz hexacore with 128 Gb of RAM.We run our algorithm for
500 iterations, and the training procedure typically terminates
within 1.5 hours using the GPU. Notably, the random grid
optimization procedure can also be parallelized to further
reduce the training time.

4 ADDING CONTEXT TO SHADOW DETECTION

We enhance shadow detection by embedding the shadow
region classifier in an MRF framework. As before, we first
segment an image into regions fRig. We construct a graph
where each node corresponds to a region and each edge cor-
responds to a pair of neighboring regions. We associate a
binary label xi for each graph node to indicate whether the
corresponding region is in shadow or not (xi ¼ 1 if Ri is
shadow, and xi ¼ �1 otherwise). Shadow detection is then
posed as the minimization of the following energy function:

X
i

FðxiÞ þ
X
i;j2Va

caðxi; xjÞ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{affinity

þ
X
i;j2Vd

cdðxi; xjÞ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{disparity

: (10)

In the above, fxig is the set of variables that need to be opti-
mized. The first term of the above energy is the sum of
unary potentials. The unary potential FðxiÞ is based on the
probability that region Ri is in shadow, and this depends on
the decision value of the shadow region classifier (Section 3).
The last two terms are the sums of pairwise potentials. They
correspond to contextual cues between neighboring regions.

4.1 Unary Potentials

We define the unary potential FðxiÞ in terms of the predic-
tions of the single region classifier (LSSVM with probabilis-
tic output): FðxiÞ ¼ �viP ðxijRiÞ; where vi is the area in
pixels of the region Ri, and P ðxijRiÞ is Platt’s scaling proba-
bility. The unary potential encourages agreement between
the label of a region and the prediction based on the appear-
ance of the region.

4.2 Affinity Pairwise Potentials

We introduce two types of pairwise potentials to model rela-
tionships between neighboring regions. The affinity potential
ca penalizes assigning different labels for similar regions. We
define a similarity metric between two regions Ri;Rj based
on the kernel used for the single region classifier.

For Ri and Rj where KðRi;RjÞ > 0:5, we establish the
affinity potential term as

csðxi; xjÞ ¼ vij KðRi;RjÞ if xi 6¼ xj;
0 otherwise:

	
(11)

The penalty for having different shadow labels is the simi-
larity between the two regions weighted by the geometric
mean of the areas of the regions, i.e., vij ¼ ffiffiffiffiffiffiffiffiffiffi

vivj
p

, where vi

and vj are the areas of Ri and Rj, respectively.

4.3 Disparity Pairwise Potentials

For disparity potentials, we use a classifier to identify
shadow-nonshadow transitions between two regions of the

3. The target probabilities model the out-of-sample data with the
empirical density of the training set, but with a finite probability of
opposite label. Using these non-binary targets reduces overfitting of the
sigmoid [26].
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same material. We train an LSSVM that takes a pair of
neighboring regions and predicts if the input is a shadow-
nonshadow pair. We use an RBF kernel with the following
features:

� The X 2 distance between the texton histograms.
� The EMD between corresponding L*, a* and b* histo-

grams of the two regions.
� The average RGB ratios. Given two regions i, j, com-

pute the ratios of region average intensity for each R,
G and B channels: rR ¼ Ri=Rj; rG ¼ Gi=Gj; rB ¼
Bi=Bj, and the feature vector is: ððrR þ rG þ rBÞ=3;
rR=rB; rG=rBÞ.

We penalize the same shadow labeling for the pairs of
regions that are classified as positive by the learned classi-
fier. The penalty is the prediction confidence weighted by
the geometric mean of the regions’ areas

cdðxi; xjÞ ¼ 0 if xi 6¼ xj;
vij P

dð1jRi;RjÞ otherwise:

	
(12)

The energy function (10) requires optimizing the node
labels for a sparse graph. This energy function has submod-
ular pairwise interactions caðxi; xjÞ and supermodular
interactions cdðxi; xjÞ:We optimize it using QPBO [20], [27].

5 SHADOW REMOVAL

We propose a method to generate a shadow-free image once
the shadow regions in the image have been detected. For
each shadow region, we first identify a neighboring non-
shadow region that shares the same material properties. We
refer to the later as the lit neighbor. Then, we use the lit
neighbor appearance to relight the shadow region, effec-
tively removing the shadow from the image.

5.1 Region Relighting

Given a shadow region Rs and a neighboring non-shadow
region of the same material Rl, we look for a transformation
T that relights Rs. Since the two regions are close to each
other and have the same material, a transformed version of
Rs should closely resemble the appearance of the lit region
Rl. The relighting transformation T depends on the appear-
ance of the lit region. We have

T ðRs;RlÞ ¼ cRs; such that cRs � Rl: (13)

We perform the relighting transformation in CIELab color
space. First, we compute the 50 bin histogram of the lumi-
nance values, L channel, ofRl (HRlðLÞ). Then, we apply histo-
gram matching so that the shadow region L values match
the lit region histogram (we useMatlab’s histeq function).

The resulting luminance histogram,HbRsðLÞ
, resembles that

of the lit regionHRlðLÞ while still preserving a similar shape to
the original shadow values HRsðLÞ. Fig. 2b depicts the results
of this step if we convert back to RGBwith the adjusted lumi-
nance values for the shadow region. Fig. 2a shows the origi-
nal input image with Rl boundaries drawn in yellow and Rs

boundaries drawn in black. The image segmentation often
produces small inaccuracies around the regions’ boundaries.
That is, few shadow pixels leaking into a lit region (or vice
versa) or small chunks of different material(s) are getting

added to an otherwise homogeneous region. These spurious
pixels modify the range of luminance values of a given
region, which can severely affect the histogram matching
results. Hence, we apply the relighting transformation using
only the core pixels of each region. That is, we exclude the
outer perimeter pixels (resulting of eroding each region with
a 3� 3 identitymatrix as neighborhood structure).

As a second step, we adjust the a channel of the shadow
region by adding the difference between the median a values
of Rl and the median a values of Rs. Finally, the same opera-
tion is carried out for the b channel to complete the relighting
process T ðRs;RnÞ yieldingcRs. In Fig. 2c, we can see the recon-
structed RGB image showing the final relighting results.

5.2 Classifier for Lit Neighbors

We propose a classifier that takes as input a shadow
region and a neighboring lit region. For each shadow
region Rs we need to identify which of its lit neighbors
Ri shares the same material with Rs. If a lit neighbor
shares the same material then it can be used to relight Rs

by applying the transformation T previously described in
Section 5.1. Hence, we select features that describe: i) the
similarity between Rs and Ri, ii) the transformation
defined by the pair of regions T ðRs; RiÞ, and iii) the
results of applying that transformation. If Rs and Ri, have
the same material, the relit shadow region cRs and the lit
region should be similar in color and texture. We com-
pute the following features:

� RGB color ratios between Ri and Rs: tr, tg, tb encoded
as

trþtgþtb
3 , trtb

,
tg
tb
[15].

� Earth Mover’s Distance between each region’s lumi-
nance histograms.

� Median a and b offsets defined by T ðRs;RiÞ.
� EMD between the a and b histograms of Ri and the

relit region cRs

� X2 distance between the texton histogram of the relit

region cRs and the texton histogram of the combined

regions cRs and Ri.
For all the feature computations we only consider the

central pixels of each region. The L, a and b histograms con-
tain 50 bins. Positive training examples are pairs of neigh-
boring regions sharing the same material with one being
shadow and the other lit. For negative training examples
the lit region is of a different material than the shadow
region. We train a probabilistic SVM classifier[3] with a
Gaussian RBF kernel. For model selection, we perform grid
search with five-fold cross validation. We use the fast ver-
sion of LibSVM implemented by Li et al. [23].

Fig. 2. Shadow region relighting using lit neighbor. (a) Shadow region
and lit neighbor: shadow region depicted with black boundaries, lit neigh-
boring region depicted with yellow boundaries, common boundary drawn
in blue. (b) RGB reconstruction showing the result of histogrammatching
on L channel for the shadow region. (c) Shadow region relit, results after
the adjustments in a and b channels.
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To generate a texton codebook we run the full MR8 filter
set [38] on the whole data set and cluster the filter responses
into 128 textons using K-means.

5.3 Iterative Shadow Removal

Our shadow removal method takes as input an RGB image
and a binary shadow mask. First, we segment the image
into regions and automatically label each region as shadow
or lit (as described in Section 3). For each shadow region we
extract its lit neighboring regions building a set of lit-
shadow pairs.

Second, we compute the features for each pair of regions,
as described in the previous section, and run the classifier.
The positive classifications are selected as candidate relight-
ing pairs. If for a shadow region more than one lit neighbor
is classified as positive we only consider the one with the
highest classification confidence.

On the next stage, region relighting is performed on the
candidate relighting pairs according to the process
described in Section 5.1. After that, we label the set of relit
regions as lit. Hence, new pairs of lit-shadow regions are
created so we can start a new cycle of identifying candidate
relighting pairs using the classifier and then relighting
regions based on the positive classifications. Figs. 3b and 3c
depict the shadow removal results after the first and second
iterations of our method, respectively. As can be observed,
there are three isolated shadow regions (no lit neighbors)
that are successfully relit in the second round.

At the final step, we address the so far ignored boundary
pixels. To remove the shadow in the outer perimeter ps of a
relit shadow region bRs, we propose a two step operation:

1) Adjust the L, a and b values of the pixels in ps based
on the core pixels of bRs. First, we compute the mean
L, the median a and the median b for the core pixels
and for the boundary pixels. Then, we add the differ-
ences to the pixels in ps.

2) Smooth the new boundary pixels’ values. We con-
vert the results from the previous step to RGB. Then,
we run a Gaussian filter at the locations of ps to
obtain the final values for the boundary pixels.

6 SHADOW DETECTION EXPERIMENTS

We perform experiments on the UCF [47] and the UIUC
shadow datasets [9]. Both of these datasets come with
shadow masks, which are used for evaluating performance.
For the UCF dataset, the shadow masks are provided by
human annotators. In contrast, the shadow masks of the
UIUC dataset are obtained automatically. Each shadow

image of the UIUC dataset has a corresponding non-
shadow version, taken without the objects that cast the
shadows. The shadow masks for the UIUC dataset are cre-
ated based on the difference between the shadow and non-
shadow images. This process is illustrated in Fig. 4. It
typically leads to a good shadow mask, but not always.

For quantitative evaluation, we compare the shadow
masks produced by our method to the provided shadow
masks. We compute the classification error rates at the pixel
level on shadow and non-shadow areas separately. We also
report the Balanced Error Rate (BER), defined as

BER ¼ 1� 1

2

TP

TP þ FN
þ TN

TN þ FP

� �
: (14)

We experiment with the different settings of our method.
First, we evaluate the single region classifier without the
contextual cues from pairwise potentials. We refer to this
method as Leave-one-out Kernel Optimization (LooKOP).
Second, we evaluate the fully-developed shadow detection
framework, embedding the LooKOP in the MRF frame-
work; this will be called LooKOP+MRF. We also experiment
with a variant of LooKOP+MRF where the Disparity Pair-
wise potentials are removed.

6.1 Comparison Between Single Region Classifiers

Table 1 compares the performance of several region classifi-
cation methods, which predict shadow/non-shadow labels
for each region separately (i.e., no pairwise potentials
are used). UnarySVM [10] uses a predefined kernel SVM.
MK-SVM [45] combines multiple kernels, but kernel weights
are not learned. ConvNet [11] combines the predictions of

Fig. 3. Shadow removal pipeline. (a) Input image with overlaid shadow mask, boundary of segmented regions depicted in red. (b) Removal results
after first iteration of our method. (c) Removal results after the second iteration. (d) Final removal results after boundary areas are relit.

Fig. 4. Generation of ‘ground truth’ shadow masks on UIUC dataset.
Two images of the same scene are taken, with and without blocking a
light source. The shadow mask is obtained by considering the difference
between two images. This process typically yields a good shadow mask,
but not always. Top: Good shadow mask. Bottom: Bad shadow mask;
the top of the tea box is not in shadow, and should have not been a part
of the shadow mask.
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two convolutional neural networks: one for shadow regions
and the other for shadow boundaries. This method is
referred to as ConvNets (Region+Boundary) in [11]. Loo-
KOP, proposed in this paper, optimizes the kernel parame-
ters to minimize the leave-one-out balanced error rate. As
can be seen, LooKOP outperforms the other methods in all
evaluation categories. Comparing the balanced error rate of
LooKOP and MK-SVM, we note more than 20 percent error
reduction.MK-SVMhas twomain differences fromLooKOP:
(i) MK-SVM uses SVM instead of LSSVM; (ii) MK-SVM uses
predefined kernel weights and scaling factors, instead of
learning them. This demonstrates the importance of learning
the kernel parameters. The advantage of LooKOP over other
methods is more significant for shadow regions. All methods
have higher error rates for shadow regions, commensurate
with the difficulty of detecting shadows.

6.2 Incorporating Pairwise Potentials

Table 2 compares the performance of several fully-
developed shadow detection methods that enhance the
single region classifiers by incorporating pairwise potentials
between neighboring regions. LooKOP+MRF, proposed in
this paper, combines the benefits of a learned kernel and the
contextual cues from affinity and disparity pairwise poten-
tials. ConvNet+CRF [11] achieved the prior state-of-the-art
result on this dataset. Considering the balanced error rate,
we see that LooKOP+MRF outperforms ConvNet+CRF by
27.3 percent. The performance gap between these two meth-
ods is even wider in shadow regions.

Table 3 reports the performance of these methods on the
UCF dataset. The first three methods only use the unary
potentials while the last three combine both unary and pair-
wise potentials. The incorporation of pairwise potentials
improves the performance of all methods, judging by the
balanced error rate. Our proposed method, LooKOP+MRF,
yields lower error rates than ConvNet+CRF on all evalua-
tion categories, shadow or non-shadow. Interestingly, even
LooKOP, our proposed method that does not incorporate

pairwise potentials, outperforms ConvNet+CRF on the bal-
anced error rate.

Fig. 5 shows the benefits for embedding LooKOP in an
MRF framework, adding pairwise potentials to incorporate
contextual cues. These pairwise potentials reduce the bal-
anced error rates on both datasets. This figure also illus-
trates the importance of the disparity pairwise potentials.

6.3 Error Distribution Analysis

To gain insight into our method’s performance, we analyze
the distribution of per image error within each test set. In
terms of balanced error rate, 74 percent of the images in
UIUC have less than 10 percent BER (see Fig. 6b solid black
line) and no image has more than 30 percent BER. For UCF,
66 percent of the images have less than 10 percent BER,
whereas around 15 percent of the images have BER of
30 percent or higher (see Fig. 6a).

In Fig. 6 we plot the cumulative proportion of images
within the classification error rate in non-shadow areas as

TABLE 1
Shadow Detection Performance of Several
Region Classifiers on the UIUC Dataset

Method Shadow Non Shadow BER

UnarySVM [10] 45.7 8.9 27.3
MK-SVM [45] 20.5 4.3 12.4
ConvNet [11] 16.4 5.3 10.6
LooKOP (this paper) 14.9 4.2 9.5

This table shows the error rates for shadow area (2nd column), non-shadow
area (3rd column), and the balanced error rate (last column). For error rates,
shown as percentages, a lower number indicates better performance. Best
results are printed in bold.

TABLE 2
Performance of Shadow Detection
Pipelines on the UIUC Dataset

Methods Shadow Non Shadow BER

UnarySVM+Pairwise [10] 28.4 4.8 16.6
ConvNet+CRF [11] 15.3 4.5 9.9
LooKOP+MRF (this paper) 9.9 4.4 7.2

All the methods use pairwise potentials between neighboring regions.

TABLE 3
Performance on the UCF Dataset

Methods Shadow Non Shadow BER

UnarySVM [10] 63.3 2.7 33.0
ConvNet [11] 27.5 7.9 17.7
LooKOP (this paper) 22.9 6.2 14.5

UnarySVM+Pairwise [10] 26.7 6.3 16.5
ConvNet+CRF [11] 22.0 7.4 14.7
LooKOP+MRF (this paper) 20.0 6.4 13.2

UnarySVM, ConvNet, and LooKOP are the methods that predict the shadow
label of each region individually. The others are fully-developed methods,
incorporating contextual cues in terms of pairwise potentials. For each evalua-
tion category, the best performance is printed in bold.

Fig. 5. Benefit of pairwise potentials. This figure shows the balanced
error rates for three methods: LooKOP, LooKOP with Affinity pair-
wise potential, and LooKOP with both Affinity and Disparity pairwise
potentials.

Fig. 6. Per image error distribution within test sets. Proportion of images
(Y axis) within a given error rate upper bound threshold (X axis).
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red dashed lines. As can be seen from this figure, the major-
ity of images have low error rate in non-shadow areas. The
classification error rate in non-shadow areas is commonly
referred to as False Positive Rate. We present results in
terms of the classification error in shadow areas with blue
dashed lines . As can be seen, for around 78 percent of the
images in UIUC less than 15 percent of the shadow pixels
are miss-classified. Whereas for UCF, 74 percent of
the images have less than 15 percent shadow pixels miss-
classified. The classification error rate in shadow areas is
commonly referred to as False Negative Rate.

6.4 LooKOP Iterative Optimization Procedure

We train a shadow region classifier using an iterative opti-
mization procedure with 500 iterations. In Fig. 7, we plot
the leave-one-out balanced error rate (of training data) as a
function of the number of iterations involved in optimizing
the kernel parameters. For a reliable result, we perform this
experiment multiple times (10 times for UIUC and 5 times
for UCF). We plot the mean balanced error rate and the
standard deviation over multiple experiments in Fig. 7. As
can be seen, we use 500 iterations, but the optimization pro-
cedure converges after 300 iterations.

To further verify the effectiveness of the LooKOP optimi-
zation we sampled the actual error rate on the test set every
20 iterations. Results are plotted in Fig. 8. As can be seen,
the error decreases significantly over iterations (28 and 20
percent decrease in UIUC and UCF respectively). This veri-
fies the benefits of the proposed learning approach. The test-
ing error reduction is consistent with the leave-one-out
cross validation error shown in Fig. 7.

6.5 Kernel Type Choice

To analyze how the choice of kernel type affects the results
of our method we run LooKOP using a model with all X2

kernels. There is some difference between using X2 versus
using EMD, but the gap is small in favor of EMD. We run
our method with all X 2 kernels and track the testing error.
With all X2 kernels the mean error after 500 iterations is
10.2 versus 9.5 in UIUC, and 15.2 versus 14.5 in UCF. We
show detailed results in Table 4. We show that our method
improves the performance of a model with all X 2 kernels:
26 percent error reduction in UIUC (24 percent in UCF) after
500 iterations. These findings suggest that our kernel opti-
mization is not exclusive to any specific type of kernel.

6.6 SVM versus LSSVM

Our proposed single region classifier (without the MRF)
achieves good shadow detection performance. To under-
standwhether it is due to the use of LSSVM as a classifier, we
train a regular SVMwith the same learned kernel parameters
(learned using LooKOP optimization). We observe that the
regular SVM achieves similar error rate as the LSSVM. The
error rates of using SVM on UIUC and UCF datasets are 9.4
and 15.3 percent respectively. These figures are similar to the
error rates of LSSVM, which are 9.5 and 14.5 percent. Thus,
the improved performance is due to the kernel learning
approach rather than the SVM formulation.

6.7 Cross-Dataset Evaluation of Shadow Detection

To evaluate the cross-dataset performance of our proposed
method, we train LooKOP on UCF (or UIUC) and test on
UIUC (or UCF). In these experiments, we use per pixel accu-
racy as the evaluation metric to be able to compare to the
published results of Guo et al. [10] and Khan et al. [19].

Table 5 shows the cross-dataset performance. The results
for training on theUIUC dataset are shown in Columns 2 and
3. As expected, models trained on the smaller UIUC training
set do not generalize well on the more challenging and larger
UCF testing set. All methods experience a notable decrease in
performance when testing cross-dataset. However, when
testing on the UCF testing set, our method, LooKOP trained

Fig. 7. Leave-one-out balanced error rate as a function of iterations of
the kernel optimization. The optimization algorithm converges after
around 300 iterations.

Fig. 8. Balanced error rate on test set. This shows mean BER on the test
set over 5 trials. Error bars illustrate variance among trial runs.

TABLE 4
Role of Kernel Choices in Our Framework

Dataset 1 100 300 500

UIUC LooKOP 13.5 10.8 9.8 9.6
UIUC LooKOP-X2 13.9 11.3 11.0 10.2

UCF LooKOP 18.2 15.3 15.0 14.6
UCF LooKOP-X2 20.1 16.5 15.9 15.2

Balanced error rate on the test set as a function of iterations. LooKOP uses a
mixture of X2 and EMD kernels, while LooKOP-X2 uses all X2 kernels.

TABLE 5
Cross-Dataset Evaluation

Train on UIUC Train on UCF

UIUC-Test UCF-Test UCF-Test UIUC-Test

UnarySVM [10] 81.7 68.9 87.5 75.5
ConvNets [19] 92.3 82.8 89.3 80.5
LooKOP 93.1 85.2 90.2 92.5

This table shows the per pixel accuracies for shadow detection as percentages.
The higher number indicates better performance. Best results are printed
in bold.
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on UIUC training set, has the lowest decrease in performance
(8.5 percent versus 10.3 and 15.6 percent respectively), and
also achieves the best shadowdetection results at 85.2 percent
per pixel accuracy. The last two columns of Table 5 shadow
the performance for methods trained on the UCF training set.

Our method, LooKOP generalizes remarkably well to the
UIUC testing set, in contrast to [10], [19]. It is worth noting,
that LooKOP trained on the larger UCF training set, achieves
92.5 percent per pixel accuracy on UIUC testing set, which is
just slightly worse than when LooKOP is trained on UIUC

Fig. 9. Shadow detection examples. The last column compares the predicted shadow and the provided annotation; false positive is shown in orange,
false negative in green. This figure is best seen in color. Most of the errors occur at the shadow boundaries.

Fig. 10. Examples of significant mismatch between predicted and annotated shadow regions. The last column compares predicted shadow and pro-
vided annotation; false positives in orange, false negatives in green. Rows (1,2): Imperfect shadow masks cause mismatches. Row (3): limitation of
appearance-based approaches that ignore scene context.
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training set, at 93.1 percent. This indicates that our proposed
method is able to generalize well if it is trained on decently
large dataset.

6.8 Qualitative Evaluation

Fig. 9 shows some examples of shadow detection using Loo-
KOP+MRF. Overall, this method works well, showing
detection results with high precision and recall. Most of the
errors occur at the boundaries between shadow and non-
shadow areas. These errors are possibly propagated from
the process of superpixel segmentation and grouping.

Fig. 10 shows several cases where there are significant
differences between the predicted shadow mask and the
annotated shadow mask. Interestingly, not all mismatches
correspond to a bad result, due to the imperfection of the
annotation. The shadow mask in the first row of this figure
should not have contained the top of the box, as explained
in Fig. 4. For the second row, the self-shadow regions
should have been part of the shadow mask. The third row
shows a challenging case. Our method correctly classifies
almost all regions, except for a small brick. This example
illustrates a limitation of appearance-based approaches that
ignore scene context; it cannot distinguish between a dark
brick from a brick in shadow. Unfortunately, the Markovian
assumptions and pairwise potentials between neighboring
regions do not help in this case. Fig. 11 illustrates another
failure mode. Our algorithm fails to detect elongated soft
shadows in the image (i.e., the shadow corresponding to the
fingers). This is partly due to the propagated error from the
process of superpixel segmentation and grouping.

6.9 Testing Times

The average running time of our method for an image of
size 500� 335 pixels is 13 seconds, using our GPU imple-
mentation on a GTX 980. The individual steps are: initial
segmentation, merge superpixels, compute features, pre-
compute distance matrices, compute test kernel, predict
region confidences, MRF optimization, which take: 1, 2, 6, 2,
0.25, 0.25, and 1 seconds, respectively.

7 SHADOW REMOVAL RESULTS

In this section we present quantitative and qualitative
results of our shadow removal method using the shadow
removal subset of the UIUC dataset[9]. This dataset contains
32 training images for which we manually annotated
ground truth for our lit neighbor classifier. The test set con-
tains 48 shadow images for which there is a corresponding
shadow-free image, which is used as ground truth for
shadow removal evaluation.

7.1 Quantitative Results

In Table 6, we evaluate our shadow removal method using
as input our shadow detection results. We compare to the
state of the art shadow detection-removal pipelines of Guo
et al. [10] (Auto Mating) and Khan et al. [19] (Bayesian
Refinement). As evaluation metric we use the Root Mean
Squared Error in CIELab space between the provided
shadow-free images and the results of applying shadow
removal on automatically detected shadow masks. We also
include the RMSE between the shadow-free image and the
input shadow image when no shadow removal is per-
formed, which we denote as Original Error.

As can be seen in Table 6, our overall shadow removal
error is significantly lower than the state of the art: 6.1 ver-
sus 7.4 and 6.8. For shadow region pixels our performance
reduces the error by 30 percent and 20 percent respectively,
yielding a RMSE of 9.6 units. The performance we get on lit
regions is also the lowest error at 4.9. However, this is
slightly worse than the Original Error on these non shadow
regions. This is due to small faults in the segmentation such
that lit pixels leaked into shadow regions. With no shadow
removal applied, the RMSE is 4.6.

We also evaluate our performance in shadow regions for the
inner pixels and for the border pixels separately, The shadow
removal error for inner regions is 8.81, whereas the error in the
border regions is noticeably worse at 14.09. Here the inner
shadow regions are the shadow regions excluding their outer
perimeter pixels (resulting from eroding each region with a
3� 3 identity matrix as neighborhood). Moreover, some
shadow regions cannot be relit as no suitable lit neighbor is
detected by our classifier, or does not exist in the image. Thus,
considering only the inner pixels of the shadow regions that
were actually relit by ourmethod the RMSEdrops to 8.12.

To better evaluate our proposed shadow removal
method, we ran it using as shadow mask the provided
ground truth instead of the detected masks. Table 7 com-
pares the results of our shadow removal with the state of the
art methods [10], [19], all using ground truth shadowmasks.

Fig. 11. Failure due to segmentation. Soft and elongated shadow
regions, such as the shadows created by the fingers, are hard to detect,
partly due to the error during superpixel segmentation and grouping.
This process may produce regions that contain both shadow and non-
shadow pixels.

TABLE 6
Evaluation of Shadow Detection-Removal

Pipelines on the UIUC Dataset

Method All Regs. Lit Regs. Shadow Regs.

Original Error 13.7 4.6 42.0
Auto Matting [10] 7.4 5.4 13.9
Bayesian Refinement [19] 6.8 5.1 12.1
Region Relighting (ours) 6.1 4.9 9.6

The evaluation metric is Root Mean Squared Error(RMSE), the lower the
RMSE the better. Best results are printed in bold. Original Error denotes
RMSE when no shadow removal is performed.

TABLE 7
Evaluation of Shadow Removal Using Ground
Truth Shadow Masks on the UIUC Dataset

Method All Regs. Lit Regs. Shadow Regs.

Auto Matting [10] 6.4 4.7 11.8
Bayesian Refinement [19] 6.1 4.7 10.5
Region Relighting (ours) 5.6 4.6 8.6

The evaluation metric is Root Mean Squared Error (RMSE), the lower RMSE
the better. Best results are printed in bold.
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As can be seen, with ground truth shadow masks our
proposed method achieves the lowest overall error. We also
perform best on shadow region pixels at 8.6 RMSE, which is
a 10 percent improvement with respect to using our
detected shadow masks.

7.2 Qualitative Results

Fig. 12 presents some qualitative results. Ourmethod produ-
ces high quality shadow-free images for a variety of materi-
als and textures. In the first and forth rows our shadow free
image presents a noticeable boundary effect around the
shadow regions. This is mostly due to inaccuracies in the
region segmentation with respect to the actual shadows.
However, the quality of the shadow removal in the inner
areas is quite high. Table 8 contains the actual error numbers
for the images depicted in Fig. 12. In the fifth row image we
can notice some boundaries between relit regions due to

Fig. 12. Shadow removal results. a) Input image (b) Ground truth shadow pixel mask with the region segmentation overlaid in blue. (c) Our shadow
removal results. (d) Ground truth shadow free image.

TABLE 8
Shadow Removal Performance on Qualitative Examples

Image Total Shadow Inner Shadow Inner Original

Fig. 12 1st row 8.88 9.91 9.81 29.64
Fig. 12 2nd row 13.76 12.30 12.21 37.49
Fig. 12 3rd row 6.47 11.18 11.09 24.16
Fig. 12 4th row 3.09 6.07 5.81 41.69
Fig. 12 5st row 4.55 11.54 11.20 43.97
Fig. 12 6nd row 6.89 12.96 12.66 28.25

RMSE from shadow removal on the images shown in Fig. 12. First col-
umn shows the total error. Second column depicts the error in shadow
regions. The inner shadow error is the error on the inner shadow region,
that shadow regions excluding their outer perimeters. Inner original is the
error in the shadow core pixels for the original image, with no shadow
removal performed.
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poor performance by our boundary processing. The image in
the sixth row depicts a case where some regions within the
person’s shadowwere not able to be recovered as no suitable
lit regionwas found by the classifier.

8 SUMMARY

We have proposed a framework for shadow detection and
shadow removal in single images. To detect shadows in an
image, we first divide it into multiple disjoint regions and
use a Least-Squares SVM to compute the shadow probabil-
ity of each region. In an MRF framework, we jointly opti-
mize the labels of the regions, taking into account
contextual influences of neighboring regions. We have per-
formed experiments on two challenging datasets, and
observed that our method achieves lower error rate than the
prior state-of-the-art; the reduction in balanced error rate is
as high as 27.3 percent on the UIUC dataset. Qualitatively,
we observe minor errors at the boundaries between shadow
and non-shadow areas. Moderate errors can be attributed to
the inability to reason about scene geometry and the propa-
gation of error from the segmentation process. We also find
multiple cases where there is significant difference between
the predicted shadow mask and the annotated mask, but
those correspond to imperfect annotation.

We conducted extensive experiments to evaluate the pro-
posed shadow detection method: Leave-one-out kernel opti-
mization. The main strength of LooKOP resides in its ability
to efficiently find the optimal kernel parameters using beam
search and leave-one-out estimates (Loo) of the error rate.
Our optimization procedure converges fast (after approxi-
mately 200 iterations). The use of Least Squares SVM with
its closed form solution and computationally cheap LOO
estimates is what makes our approach feasible. We have
shown that using a regular SVM trained with the optimal
kernel parameters found by LooKOP achieves similar perfo-
mance. Moreover, LooKOP is flexible enough to work with
different kernel metrics. We used LooKOP with all X 2 ker-
nels and obtained comparable perfomance.

We extended our shadow detection pipeline adding a
final shadow removal step. When we apply the proposed
removal method to the detected shadows, we achieve
results that outperform the state of the art in single image
shadow removal[10] by 5 percent in total error, with a 19
percent reduction in error on shadow pixels. The main con-
tribution of our shadow removal approach is a new region
relighting transformation based on histogram matching of
luminance values between the shadow region and the
neighboring lit region, plus addition of median based off-
sets in the a and b channels. Furthermore, we propose a new
classifier to automatically identify suitable pairs of lit-
shadow regions. We demonstrated that the iterative appli-
cation of the proposed transformation in positively classi-
fied pairs of regions outperforms the state of the art on the
shadow removal benchmark dataset. Our results are espe-
cially accurate in the core pixels of the shadow regions.
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