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Lighting is a critical element of portrait photography. However, good light-

ing design typically requires complex equipment and significant time and

expertise. Our work simplifies this task using a relighting technique that

transfers the desired illumination of one portrait onto another. The novelty

in our approach to this challenging problem is our formulation of relight-

ing as a mass transport problem. We start from standard color histogram

matching that only captures the overall tone of the illumination, and we

show how to use the mass-transport formulation to make it dependent on

facial geometry. We fit a three-dimensional (3D) morphable face model to

the portrait, and for each pixel, we combine the color value with the corre-

sponding 3D position and normal. We then solve a mass-transport problem

in this augmented space to generate a color remapping that achieves local-

ized, geometry-aware relighting. Our technique is robust to variations in

facial appearance and small errors in face reconstruction. As we demon-

strate, this allows our technique to handle a variety of portraits and illu-

mination conditions, including scenarios that are challenging for previous

methods.
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1 INTRODUCTION

Good lighting is a key component of portrait photography.

Professional photographers design complex configurations of

strobe lights and reflectors to accentuate different aspects of a

subject’s appearance and achieve a particular look. Designing

these lighting setups requires significant time and expertise,
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making high-quality portrait photography challenging for casual

photographers and time-consuming for professionals.

The goal of our work is to make portrait lighting easier by allow-

ing users to transfer the illumination from a reference portrait to

an input photograph to create high-quality relit images. We wish

to do this without any calibration of the lighting or any additional

meta-data, thereby enabling post-capture portrait relighting. In ad-

dition to allowing users to easily explore different lighting con-

figurations, our work has applications in portrait retouching and

post-production editing and compositing.

While face relighting has been studied extensively (Shashua

and Riklin-Raviv 2001; Wang et al. 2009; Wen et al. 2003), it re-

mains a challenging problem due to, for instance, variations in

appearance, pose, identity, and expression. Furthermore, human

observers are sensitive to the subtleties of facial appearance and

have a low tolerance to errors in processed face images. Standard

face-editing approaches fit low-dimensional parametric models to

facial appearance data to achieve robustness, but these models

often do not achieve high visual fidelity. We address these chal-

lenges with a novel approach to portrait relighting: we pose it as a

multi-dimensional mass transport problem that computes a non-

parametric mapping between the input and reference images.

We start with standard color histogram matching, which cap-

tures the global color and tone of lighting by transferring the

color distribution of the reference onto the input portrait. This

approach ignores the fact that shading depends on face geome-

try and unsurprisingly produces subpar results. We extend this

technique to make it aware of the geometry of the face. First, we

fit a generic three-dimensional (3D) model to the portrait (Yang

et al. 2011). We use this model to augment the color at each

pixel with position and normal information. We then exploit the

known formulation of histogram matching as a mass-transport

problem and extend it from color space to the higher-dimensional

{colors} × {positions} × {normals} space. This generates a color

mapping that is aware of face geometry and is able to capture the

localized, directional nature of lighting changes. We further make

this process robust to variations in face appearance and geometry

by smoothing the color distributions of the input and reference.

Despite the high-dimensionality of the exact mapping, we explain

how this can be achieved using stochastic sampling, which allows

us to use an existing mass-transport solver (Rabin et al. 2012) to

efficiently compute our results.

Our approach has several advantages. Being non-parametric,

it makes few assumptions on face appearance and illumination,

which enables it to handle a wide range of lighting conditions and

subjects, including non-photorealistic images. The robustness re-

sulting from the regularization allows us to rely on a generic 3D

model and makes our results robust to possible minor misalign-

ment. We demonstrate these properties on a variety of subjects and
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illuminations and show via a user study that our algorithm pro-

duces plausible relighting results that are superior in many cases

to other relighting techniques.

Contributions. In summary, our contributions are:

1. A novel approach to face relighting that uses a mass-

transport formulation to transfer illumination between

images.

2. A regularization scheme that makes the technique robust to

variations in face appearance and geometry.

3. A complete pipeline that improves the state of the art in face

relighting and compositing.

2 RELATED WORK

Single-Image Face Relighting. Face relighting using a sin-

gle image has been studied extensively in the context of face

recognition (Adini et al. 1997; Georghiades et al. 2001). Shashua

and Riklin-Raviv (2001) proposed the quotient (or ratio) image

technique for face relighting, where an input face image is relit

by multiplying it by the ratio of a known reference face captured

under novel lighting and the original input lighting.

Subsequent work relaxed the requirement for reference images

under calibrated illumination by reconstructing face geometry and

using it to estimate low-frequency illumination (Wang et al. 2009;

Wen et al. 2003). Ratio images have also been used to transfer sub-

tle shading variations caused by changes in expression (Liu et al.

2001) and match lighting for face compositing (Bitouk et al. 2008).

Chen et al. (2011) use edge-preserving filters to create base and de-

tail illumination layers, which are used to transfer low-frequency

lighting between images. Blanz and Vetter (1999) proposed using

low-dimensional shape and texture models to reconstruct face ge-

ometry, albedo, and scene lighting from a single image. They used a

combination of ambient illumination and a single directional light

source. This was later extended to handle complex illumination

and harsh lighting (Wang et al. 2009).

These techniques assume specific appearance models, for exam-

ple, Lambertian shading under distant lighting, and require accu-

rate 3D reconstruction. They perform well when these assump-

tions are satisfied, but as we shall see in the Results section, their

accuracy decreases when these assumptions do not hold. For in-

stance, some sophisticated lighting setups may not be well repre-

sented by these models and 3D reconstruction often suffers from

minor inaccuracy and misalignment. In contrast, our formulation

does not assume a specific illumination model and is robust to

small imperfections, which allows it to perform well on cases

where other techniques fail.

Lightstage Face Relighting. Debevec et al. (2000) estimated the

reflectance field of a subject’s face from images captured under a

dense set of illumination directions. This data can be used to drive

that subject’s facial performances under arbitrary illumination

(Alexander et al. 2009). Peers et al. (2007) used the reflectance data

of one subject to compute ratio images, which are used to relight

another subject’s facial performance. While these techniques

produce very impressive relit faces, they depend on complex

calibrated acquisition setups. On the other hand, our work is a

lightweight face relighting technique that does not require any

additional data.

Color Transfer for Relighting. Color transfer techniques

(Reinhard et al. 2001) match color and tone statistics between

images and can capture the overall tone of the reference illumi-

nation. Pitié et al. (2005) proposed a multi-dimensional histogram

matching scheme that transfers the full 3D color distributions of

a reference photograph to the input. Our mass transport formu-

lation extends these techniques by incorporating geometry, and

by using a different optimization scheme to produce more robust

transfer results. Recent work has used localized color transfer to

produce results that are more representative of lighting variations

(Laffont et al. 2014; Shih et al. 2013). In particular, Shih et al. (2014)

transferred a particular photographer’s style, including lighting,

to a given image. Their technique assumes the effect of lighting

is low-frequency and as we show, it has limited ability to handle

configurations like side illumination and high-contrast shading.

Mass Transport for Image Editing. Bonneel et al. (2011)

used mass transport to interpolate displacements between high-

dimensional distributions and apply it to problems such as BRDF

interpolation and histogram transfer. Solomon et al. (2015) pro-

posed an algorithm for computing optimal mass transport on geo-

metric domains using an approximate distance metric that can be

evaluated efficiently using convolutions. Rabin et al. (2012) pro-

posed an efficient approximate mass transport solver that uses a

series of one-dimensional (1D) histogram matching operations on

the axes of the problem space to compute the Sliced Wasserstein

distance. They applied this algorithm to the problem of texture

mixing. Similar to these works, our approach uses mass trans-

port but for a different application, portrait relighting. Further-

more, while these existing techniques use mass transport in the

domain on which their application data are defined, for example,

the 3D space of colors for histogram transfer, we cast the relighting

problem in the higher-dimensional space {colors} × {positions} ×
{normals} to make our algorithm aware of local face geometry.

3 MASS-TRANSPORT FORMULATION

In this section, we describe the core component of our approach,

the mass transport formulation. We first express color histogram

transfer as a mass-transport problem in the context of portrait

relighting and introduce an algorithm that incorporates positions

and normals.

Given an input image I and a reference image R, we create a relit

output image O with the lighting of the reference and the pose,

identity, and expression of the input photograph. We fit a 3D face

model to the two-dimensional (2D) portrait using the Expression

Flow algorithm (Yang et al. 2011). We project the 3D positions

and surface normals of the 3D model onto the image plane to get

per-pixel positions and normals. This gives us a color–position–

normal vector (c, p,n) at every pixel of the input and reference

images. We transfer lighting from the reference to the input

image by matching the distributions of these high-dimensional

vectors in the joint space {colors} × {positions} × {normals}.
From this matching, we retain only the colors of the transformed

input distribution and use them in conjunction with the original

positions to create the final relit image. Figure 1 illustrates the

pipeline of our technique.
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Fig. 1. Pipeline of portrait lighting transfer. We fit a generic 3D face model to the input and reference images. We use this model to extract per-pixel

positions (2D) and normals (3D), extrapolate them from the face to the background, and concatenate them with the image RGB channels. We then compute

the optimal mass transport from the input to the reference using the 8D data to obtain our output relit image. The output position and normal channels

are discarded. Images courtesy: Flickr user Geoff Stearns (input), Flickr user rpavich (reference).

Fig. 2. Comparison of different transport strategies. Color-only transfer matches the tone of the lighting but not the angular distribution (c). Incorporating

position leads to localized variations (d), which are further improved by adding normals (e). These results have some artifacts because of large jumps in

the transport; adding regularization via sampling eliminates them to produce a visually pleasing result (f). Images courtesy: Flickr user Sven Walter (input),

Flickr user Brian Holland (reference).

3.1 Reformulating Color Histogram Transfer

Reinhard et al. (2001) matched the color of two images by

transferring the color statistics from one image to the other.

Pitié et al. (2005) extended this by transferring the full 3D color

histogram, thereby encompassing all color-related statistics. As

shown in Figure 2, for face relighting, this approach generates

approximate results that only capture the overall color and tone

of the lighting. We will discuss this issue in more detail later, but

first, we present the previously known interpretation of the color

histogram matching process as a mass-transport problem. This

interpretation will be the foundation of our solution to generating

better face relighting results .

Histogram transfer is known to be related to mass transport,

for example, see Bonneel et al. (2011). Intuitively, the input and

reference histograms can be seen as sand heaps, and one seeks to

move the sand to transform the input heap into the reference heap

while minimizing the amount of work (defined by the product of

the transported mass by the distance over which it is transported).

In the context of color histogram transfer, the mass-transport

Fig. 3. When two histograms differ, the mass-transport solution often

generates an irregular mapping. For example, the input samples at the bot-

tom are close to each other but are mapped to different reference values (a).

Adding new samples to approximate Gaussian convolution (b) generates a

smoother mapping, that is, nearby samples are transformed similarly (c).
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Fig. 4. We show the effect of different position and normals weights on the relit result for the input (a) and reference image (b) shown above. Setting the

weights to 0 results in color-only transfer, where only the overall color and brightness of the lighting is captured (c). Our technique sets the weights to 1, to

transfer the lighting from the left (d). Increasing the weight to 10 (e) and 50 (f) progressively approaches a pure warping technique and the result takes on

the appearance of the reference subject. At high weights, our stochastic sampling regularization creates noisy results. Removing the sampling and setting

the weights to 50 makes the warping of the reference clear (g). Images courtesy: Flickr user John Ragai (input), Flickr user David Spinks (reference).

approach seeks to match the target histogram by modifying the

input colors as little as possible, which is a desirable property for

many applications. Formally, the mass-transport problem in the

context of color histogram transfer is defined as follows: We use

HI and HR to denote the normalized color histograms of the input

and reference images, respectively, and i and j to index the input

and reference colors. For the distance between input pixel with

color i and reference pixel with color j, we use the L2 norm in

color space, ‖ci − cj ‖, where ci and cj are 3D vectors representing

i and j colors. With this notation, the mass-transport problem

seeks to minimize:

arg minTi j

∑

i

∑

j

‖ci − cj ‖2 Ti j , (1a)

such that: Ti j ≥ 0, (1b)
∑

j Ti j = HI (ci ), (1c)
∑

i Ti j = HR (cj ), (1d)

where the unknowns Ti j represent the proportion of the pixels

with color i that are assigned to color j. The sum in Equation (1a)

represents the total amount of work needed to transform HI into

HR . The constraint Equation (1b) enforces the non-negativity of

the masses, and Equations (1c) and (1d) ensure that the entire in-

put histogram is matched to the entire reference histogram. The

minimal amount of work (Equation (1a)) is known as the Earth

Mover’s Distance (Rubner et al. 2000) or the Wasserstein Distance

(Villani 2003, 2008) between the input and reference histograms.

Equations (1) are often referred to as the Kantorovich formulation

of the transport problem and amounts to a linear program (Villani

2003, 2008).

Deriving a Mapping. Transport T creates correspondences be-

tween the input and reference colors. The solution of the above

mass-transport formulation (Equations (1)) is a coupling, that is, an

input color may be associated to more than one reference color. In

our context, a coupling of this form is undesirable, because it could

introduce discontinuities in regions of uniform color. Instead, we

seek a solution that is a mapping, that is, all the pixels with the

same color are associated to the same reference color. Formally,

we are interested in the case where each input color ci is assigned

a single reference color. We name ji the index of that reference

color and f the function that maps ci to cji , that is, f (ci ) = cji . In

this context, the transport problem becomes

arg minf

∑

i

‖ci − f (ci )‖2 HI (ci ), (2a)

such that: Hf (I ) = HR . (2b)

The energy above (Equations (2)) is known as the Monge formula-

tion of the transport problem and unlike the coupling case, it may

not always have a solution, for instance, when the input and ref-

erence images have different numbers of colors. That being said,

there exist solvers that provide approximate solutions, for exam-

ple, see Bonneel et al. (2011) and Rabin et al. (2012). We use the

Sliced Wasserstein Distance algorithm (Rabin et al. 2012) that es-

timates a mapping f such that Hf (I ) ≈ HR . As we shall see in our

validation section, this is sufficient to generate visually pleasing re-

sults. We further describe the Sliced Wasserstein Distance solver

and its characteristics in Section 3.4.

3.2 Incorporating Positions and Normals

The problem with the color transfer technique discussed in the

previous section is that it ignores the geometry of the face. For

instance, a pixel on the forehead in the input image might have

the same color as a pixel on the cheek. The color-only transfer will

map both of these pixels to the same reference color leading to

a relit result that does not capture the geometric dependence of

lighting changes (Figure 2(c)).

We address this problem by accounting for the position and nor-

mal at each pixel in addition to its color. The position p and normal

n of a pixel are obtained by fitting a 3D face model to the image

and projecting the 3D positions and normals onto the image. Our

approach extends the formulation of Equations (2) by adding a po-

sition and a normal component to the distance function and to

the histograms. For the sake of clarity, we introduce s = (c, p,n),
the vector concatenating the color, position, and normal of a pixel.

This leads to the following problem:

arg min
f̂

∑

i

∑

j

(
wc ‖ci − f̂c (si )‖2 +wp ‖pi − f̂p (si )‖2

+wn ‖ni − f̂n (si )‖2
)
̂HI (si ), (3a)
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Fig. 5. Skin tone preserving lighting transfer. Relighting the input (a) by

the reference (b) in RGB space transfers skin color too (c), while doing so

using lightness only (L in Lab) retains the original skin and light colors (d).

Images courtesy: Flickr user Dmitry Kolesnikov (input), Sabphoto/Adobe

Stock (reference).

such that: ̂H
f̂ (I )
= ̂HR , (3b)

where ̂HI and ̂HR denote the normalized input and reference his-

tograms in the {colors} × {positions} × {normals} product space,

f̂c, f̂p, and f̂n are the color, position, and normal components of f̂ ,

respectively, and wc, wp, and wn are weights that control the rel-

ative influence of the colors, positions, and normals, respectively,

in the transfer process.

The color-only approach (Equations (2)) minimizes only color

variations and can map spatially distant pixels to each other, as

long as their colors are similar enough. Incorporating positions

and normals into the transport formulation (Equations (3)) makes

the mapping account for facial geometry. The position term ‖pi −
f̂p (si )‖ penalizes long-range pairings and favors local correspon-

dences that preserve the spatial layout of the reference illumina-

tion. Similarly, the normal term ‖ni − f̂n (si )‖ discourages corre-

spondences between points oriented differently. This is especially

useful in regions such as the two sides of the nose that are spatially

Fig. 6. Two-scale manipulation pipeline. Input (a) and reference (b) are

down-sampled to generate a low-resolution relit result 1 (c). Input and

up-sampled result 1 are filtered by an edge-preserving filter (He et al.

2013). The detail (represented by the additive residual (d)) of the input is

transferred to the up-sampled-and-filtered result 1 to generate our light-

ing transfer result (e) at the original resolution. In a post-processing step,

the user can choose to replace the background for better visual effect (f).

Images courtesy: Flickr user Geoff Stearns (input), Flickr user rpavich (ref-

erence).

Fig. 7. Our two-scale method accelerates the relighting process, while also

alleviating noise from over-sharpened contrast (see zoom-in on left).
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Fig. 8. Comparison with previous work. Input images (a), reference portraits (b), relighting using spherical harmonics-based radiance maps (Wen et al.

2003) (c), with edge-preserving filters (Chen et al. 2011) (d), large-scale illumination transfer (Shih et al. 2014) (e), and our technique (f). Our technique

is able to produce robust relit results even when there are significant pose and/or identity variations and the lighting changes are very extreme (e.g., the

red-blue split lighting at the bottom). Methods in (c) and (d) only allow manipulation inside the face region (i.e., a fitted morphable model mask region)

with no straightforward extension that can apply to a background region. For (e) and (f), we use identical background and identical (manually defined)

portrait mask within each row. Images courtesy: Flickr user Geoff Stearns ((a)-1), Flickr user rpavich ((b)-1), Flickr user Eva Rinaldi ((a)-2), Sabphoto/Adobe

Stock ((a)-3, (b)-3), Flickr user Rod Waddington ((a)-4).

close but are often lit differently. Figure 2 illustrates the benefits of

each term in Equation (3a).

Similar to Equations (2), the transport that minimizes Equa-

tions (3) creates a mapping f̂ that generates an output with the his-

togram ̂HR when applied to I . Because this transport is defined in

the product space, it modifies the input pixel positions and normals

in addition to their colors, that is, it alters the colors and warps the

face geometry. Since our goal is to transfer only the reference light-

ing while retaining the input face geometry, we restrict the effect

of the transport to the color space c, that is, we only apply f̂c to

the input image I .

3.3 Regularization via Stochastic Sampling

So far, we have implicitly assumed that two faces under the same

illumination generate images with similar histograms. But in prac-

tice, real-world variations in face geometry, pose, and lighting lead

to differences in the histograms that can degrade the quality of the

result if not handled properly. For example, if the shadow regions

on the reference face are larger, a strict transfer introduces shad-

ows in regions of the input face that should be lit. Variations in skin

texture can also lead to local perturbations. In terms of transport,

two different faces generate distributions with minor mismatches,

for example, with slightly different proportions of dark pixels. This
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Fig. 9. Relighting the input image (a, rendered using a light stage dataset

(Weyrich et al. 2006)) using the reference images (b, rendered under three

different light setups) produces results (c, d) that reasonably approximate

the angular distribution of the lighting in the ground truth images (e).

generates a mapping with discontinuities, which in turn creates

the minor degradations seen in Figure 2.

We address this problem by regularizing the transport to pre-

vent large local disparities in the correspondences. The Appendix

details how we smooth the mapping function f̂c using stochas-

tic sampling. In short, we replace each sample (c, p,n) by ns sto-

chastic samples with the same position p and n but color c + ν ,

where the random vectorν follows a Gaussian distributionGσ . In-

tuitively, the additional samples offer new correspondence options

that allow the solver to find a smoother mapping. Compared to

entropy-based regularization (Solomon et al. 2015), our approach

has the advantage that it still produces a mapping. Figure 3 shows

the effect of this technique, and Figure 2(e) compares it to the no-

regularization case.

3.4 Solving the Mass-Transport Problem

The mass-transport formulation described in Equations (3) can

be solved using linear program solvers. However, these solvers

Fig. 10. Comparison with regularized OT (Ferradans et al. 2014). Input:

Figure 2(a); Reference: Figure 2(b). (a) Regularized OT result on color space

only; (b) Regularized OT result on the joint space of color, position and

normal (the changes of position and normal are discarded after transport

computation); (c) Our result. Our result is better in both lighting transfer

and visual quality.

Fig. 11. The variance/deviation of resulting pixel values, by Algorithm 1,

w.r.t. update rate (τ ), amount of stochastic sampling (ss), and number of

iterations. (a) Average of the resulting pixels’ variances from 10 trials (with

random F each time). Stochastic sampling and low update rate effectively

reduce the variance of results. (b) Average of resulting pixels’ deviations.

The final choice of τ (0.2) and number of iterations (300) is a balance be-

tween result quality and running time. Please refer to the online Supple-

mental Material2 for a visual comparison of results by varying τ and sto-

chastic sampling.

are computationally intractable for a large number of points. Our

particular problem is challenging for these methods; relighting

a 640 × 480 image requires estimating the transport of a million

points (with stochastic sampling) in an eight-dimensional (8D)

space. Instead of solving for the exact transport, we use the solver

proposed by Rabin et al. (2012), which approximates the transport

energy (Equation (1a)), a.k.a., the Wasserstein distance, by the sum

of 1D transport energies that correspond to projections onto arbi-

trary axes. This approximation is known as the Sliced Wasserstein

Distance and leads to an iterative algorithm that solves a series of

1D mass-transport problems, which can be done efficiently using

1D histogram matching.

The algorithm works as follows: For simplicity, we assume that

each pixel corresponds to a unique (c, p,n) triplet and that i and

j can also be used to index pixels. If two pixels share the sample

ACM Transactions on Graphics, Vol. 37, No. 1, Article 2. Publication date: October 2017.
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ALGORITHM 1: Face Relighting Pseudo-code

Input: Input image I and mask MI

Reference image R and mask MR

Output: Output image O

// Fit a 3D face model to the input and reference portraits

Estimate 3D positions and normals for I and R

// Create arrays of 8D points from the input and reference pixels

SI ← empty array

for each pixel i of image I do

if pixel i inside mask MI then

for k ← 0 to ns − 1 do // Create ns stochastic samples

Draw random 3D vector ν according to Gσ

SI [nsi + k]← (ci + ν, pi , ni )

end

end

end

Construct SR similarly using the reference pixels

// Initialize the output points with the input pixels

SO ← empty array

for each pixel i of I do

SO [i]← (ci , pi , ni )

end

// Repeatedly transform the points

for k ← 1 to niter do

Select random 8D coordinate system F
Express all the samples of SI , SR , and SO in F
for d ← 1 to 8 do

Compute 1D histogram transfer function τd along d th axis

end

for each sample s of SI do

s̃← (τ1 (s1), τ2 (s2), . . . ) // with s = (s1, s2, . . . )
s← α s̃ + (1 − α )s

end

Transform the samples in SO similarly

end

// Keep only the color for the output

for each pixel o of image O do

(co, po, no ) ← SO [o]

O[o]← co

end

triplet, then we create a sample for each and our solver handles

the situation seamlessly. We omit that degenerate case to simplify

the presentation and pseudo-code (Algorithm 1). We name si (t ) =
(ci (t ), pi (t ),ni (t )) the input sample points after iteration t . At each

iteration, the input and reference points are projected onto the axes

of a randomly oriented coordinate system. A 1D histogram transfer

along each axis of this coordinate system is performed between

the projected input and reference points to create the intermediate

input values s̃i (t ). The modified input points at the (t + 1) iteration

are obtained by taking a partial step in this direction, that is, si (t +
1) = (1 − α )si (t ) + α s̃i . In practice, we use α = 0.2 as in Bonneel

et al. (2015a) and niter = 300 iterations. Algorithm 1 summarizes

this process.

Fig. 12. Statistics of user study responses for lighting transfer quality eval-

uation. Our technique significantly outperforms previous work (Shih et al.

2014) in the quality of the lighting transfer.

This algorithm transport, we use the solver proposed by Rabin

et al. ( is equivalent to the N -dimensional PDF transfer technique

of Pitié et al. (2005), the difference being that they move the input

points by a full step (i.e., α = 1) in each iteration. In practice, we

found that the algorithm by Pitié et al. requires only about 20 itera-

tions, which makes it faster, but its output varies between runs. In

comparison, the Sliced Wasserstein solver is slower but produces

consistent results. In our article, we use the latter to demonstrate

reproducible results but practitioners who can tolerate result vari-

ability and value speed may be better served by the former.

3.5 Discussion

While our mass transport formulation globally matches the input

and reference distributions, it also captures localized lighting vari-

ations. As previously noted, the geometric components of the dis-

tributions, positions and normals, encourage mappings between

pixels with similar location and orientation, leading to color trans-

fer between consistent geometric regions. Also, instead of commit-

ting to the original 3D geometry, our technique implicitly refines

the position and normals to better align the images. This makes it

robust to errors in the 3D face reconstruction that often compro-

mise the quality of results from previous methods.

Our technique can be thought of as a combination of two com-

ponents: geometric warping (adjusting the positions and normals

to better match colors) and color blending (manipulating the colors

to better explain the geometric correspondences). The influence of

each component on the final result is controlled by the weights

(wc,wp,wn) of the different terms in the mass transport formu-

lation (Equations (3)). Setting the position and normal weights to

zero, i.e., wp = wn = 0, results in color-only transfer. As seen in

Figure 4, when these weights are set to high values, for example,

wp = wn = 50 and wc = 1, the geometric warping takes over, and

the output looks like a warped version of the reference subject.

While our stochastic sampling-based regularization plays a cru-

cial role in avoiding artifacts, at high geometric weights, it gen-

erates noisy results, because the transfer starts approaching per-

pixel warping. We found that wc = wp = wn = 1 results is a good

balance between the components and produces the best results.
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Fig. 13. Our technique can also be used with non-photorealistic images. We can transfer lighting from a real image to a painting (top, left), between

paintings (top, right), and from a painting to a real portrait (bottom, left). In addition, our technique allows for an intuitive way to “design” lighting; users

can scribble shadows and bright regions on a photograph and use it as a reference to relight the image. Image courtesy: Flickr user Eva Rinaldi (portrait of

Julie Andrews).

Fig. 14. Face Swapping: when the eyes and nose in this input image (b) are Poisson-blended with the reference (a), the difference in the illumination gradient

causes unrealistic color shifts (e.g., the unnatural cheek color). Our technique eliminates the lighting inconsistency (d), leading to a photorealistic result (e).

Images courtesy: Flickr user Geoff Stearns (input), Flickr user rpavich (reference).

4 IMPLEMENTATION

4.1 Implementation

In our prototype, each pixel is represented by its 3D RGB color,

a 2D vector describing its position on the fitted face model, and

a unit 3D vector for its normal.1 For the position component, we

use the x and y coordinates of the corresponding point on the 3D

face model, where x stands for the left–right axis and y for the

down–up axis. We also experimented with adding the z coordi-

nate (for the back–front axis) but did not observe any difference.

1Normals are inherently two-dimensional quantities, that is, nz can be derived from
nx and ny , but for simplicity, we use the full 3D normal representation.

We did not include it in our final prototype to reduce its compu-

tational complexity. For the regularization, we use ns = 5 stochas-

tic samples at each pixel and a standard deviation σ = 0.1 for the

Gaussian distribution Gσ (assuming that each RGB channel spans

[0; 1]). When matching the input image to the reference, we do

not explicitly build the 8D histograms or the 16-dimensional (16D)

transport. The Sliced Wasserstein Distance algorithm allows us to

maintain a list of all the samples, which can be modified in place.

We setwc = wp = wn = 1 throughout all experiments. Unless oth-

erwise specified, we used 600 × 500 images, which took about 3min

to process using MATLAB code. We present a faster implementa-

tion using two-scale manipulation in Section 4.2.
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Handling non-face regions. The 3D face model gives us posi-

tions and normals only on the face region of the portraits. We

smoothly extrapolate the positions and normals to the rest of the

image by solving a Poisson system with gradients set to zero. We

compute the matching functions using only the face samples but

apply them to the entire image. In particular, in every iteration of

the matching process, we compute the 1D histogram transfer func-

tions only using the samples on the face mesh and apply them to

every sample. Algorithm 1 summarizes the entire pipeline of our

portrait relighting technique.

Skin tone preserving relighting. Operating on the joint space

of pixels’ colors, positions, and normals allows us to transfer the

color of both light and skin reflectance from the reference to the

input. If the input and chosen reference differ in skin reflectance,

then the corresponding result may exhibit a shift in the perceived

light color (Figures 5(a) and 5(c)). In our framework, the user can

also transfer only the lighting direction, by simply replacing the

pixel colors c with lightness, for example, L channel in Lab color

space, in Algorithm 1, and keeping the color channels (e.g., a and

b channels) the same as in the input (Figure 5(d)).

4.2 Two-Scale Manipulation

We now introduce our complete pipeline for portrait lighting

transfer: a two-scale variant of Algorithm 1 (Figure 6) that can

accelerate lighting transfer for high resolution images, while also

reducing the amount of noise in the result (Figure 7).

With a fixed number of stochastic regularization samples and

iterations, the complexity of Algorithm 1 isO (N logN ), withN be-

ing the number of pixels in the input-reference image pair. Since

this algorithm usually takes hundreds of iterations to converge to

a satisfying result, it is prohibitively slow for large input images.

However, face illumination effects are mostly large-scale or low-

frequency (Haddon and Forsyth 1998; Jacobs et al. 1998); for exam-

ple, the residual detail in Figure 6(d) contains very few illumination

cues. As a result, it is possible to relight the image at a coarse scale

and retain the details at original scale.

Our proposed two-scale pipeline, illustrated in Figure 6, is as

follows:

(1) We first down-sample the input and reference images to a

coarser scale (lower resolution) and generate a relit result at

this scale.

(2) Similar to the work of Bae et al. (2006), we decompose the

input into two components using an edge-aware smooth-

ing filter (He et al. 2013): a smoothed base and an additive

residual.

(3) We up-sample the result from step (1) and apply step (2) to

the up-sampled image.

(4) We add up the relit base from (3) and the residual from (2)

to synthesize the final result of the two-scale manipulation.

For input and reference images with resolution 1000 × 1320, the

transport computation time is reduced from about 700s to about

55s with the two-scale manipulation and 1
4 ×

1
4 down-sampling

in our MATLAB implementation, using the same amount of regu-

larization (4× stochastic sampling) and same number of iterations

(200). This scheme also has the effect of smoothing out the contrast

Fig. 15. Input and reference portraits with overlaid user-specified masks

(a, b). Matching using the face mask (including forehead) causes artifacts

in the forehead region because of occlusions by the hat (c), but using the

user specified mask avoids these issues (d). Image courtesy: Flickr user Eva

Rinaldi (Input), Flickr user Loren Kerns (Reference).

Fig. 16. Relighting an input image with harsh lighting brightens the shad-

owed regions that are typically noisy. The low image quality in these re-

gions leads to poor results. Images courtesy: Sabphoto/Adobe Stock (input

and reference).

enhancement caused by the mass transport operation, leading to

less noise and artifacts in the results (Figure 7). Finally, users can

choose to post-process the image by replacing the background of

the output for better visual effect (Figure 6(f)) with existing por-

trait segmentation tools (e.g., see Shen et al. (2016)).
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Fig. 17. Effect of pose difference between input and reference. We relight photos under different views (top) using a single frontal-facing reference image

(bottom, first). The results (bottom) look best when the input and reference image have similar pose, and become less plausible at large angles.

5 EXPERIMENTAL RESULTS

We now demonstrate our portrait relighting algorithm and com-

pare it to existing techniques. We then show additional results on

related applications such as illumination painting, relighting from

paintings, and realistic compositing. We provide more results in

our online Supplemental Material,2 where we also include exam-

ples in higher resolution.

5.1 Results and Qualitative Comparisons

In Figure 18, we transfer lighting from reference images that vary

significantly in terms of identity, pose, expression, and gender. In

all of these cases, we automatically produce artifact-free results

that closely mimic the reference lighting.

Comparisons with Previous Relighting Methods. We com-

pare our technique to three previous face relighting methods. The

method of Wen et al. (2003) models facial appearance with spher-

ical harmonics. They fit a morphable model to the portraits and

estimate the input and reference radiance maps. With these radi-

ance maps, they compute a ratio image used to relight the input

image. For our comparison, we used the same morphable model

used in our algorithm. As can be seen in Figure 8(c), this technique

relies heavily on the accuracy of the 3D reconstruction and

violations of the appearance model or errors in the reconstruction

introduce artifacts in the results. In addition, this technique only

relights the face region, where the geometry is available. Chen

et al. (2011) (Figure 8(d)) apply edge-preserving filters to separate

shading into base and detail layers, and transfer the base illumina-

tion from the reference to relight the input. This technique is an

improvement over that of Wen et al., but often transfers the refer-

ence appearance without capturing the lighting. The portrait style

transfer of Shih et al. (2014) relights images by transferring low-

frequency color variations. This leads to better results (Figure 8(e))

than the other two techniques. However, this technique relies on

accurate alignment between the two images, and errors in corre-

spondence lead to artifacts when the reference lighting is strongly

directional. Our results (Figure 8(f)) are substantially better on

these hard cases. They capture the reference lighting more accu-

rately and do not have local artifacts. This is an advantage of our

2http://www3.cs.stonybrook.edu/∼cvl/content/portrait-relighting/prl.html.

regularized mass-transport formulation that increases robustness

to errors in alignment and challenging lighting conditions.

Comparison with Ground Truth. We also compared our relight-

ing results to ground truth images. We used a multi-light dataset

for two subjects, captured in a light stage (Weyrich et al. 2006), to

render ground truth images under a set of reference illuminations.

We then used images of Subject B, acquired under three differ-

ent illuminations, to relight an input image of Subject A acquired

under a fourth illumination. We then compared our results with

the ground truth acquisition of Subject A under the three refer-

ence illuminations. As Figure 9 illustrates, our technique is able to

capture the angular distribution of the reference illumination well,

without any knowledge of the lighting in these images, and in spite

of the differences between the two subjects.

Comparison with Regularized Discrete OT. We compare

our approach to the regularized discrete optimal transport by

Ferradans et al. (2014). This technique introduces a relaxed mass-

preserving constraint to the linear-programming formulation

that alleviates visual artifacts caused by exact color matching

(that is addressed using stochastic sampling regularization in our

method). To make the linear programming solver tractable, they

substantially reduce the number of particles by clustering the

data (K-means) in color space. In the context of geometry-aware

relighting, where position p and normal n dimensions are added to

the data space, this method is less effective in capturing local color

distributions and leads to piecewise color artifacts (Figure 10).

Also, while their results capture the global tone of lighting, they

fail directional variations in lighting (Figure 10(a)), even when

geometric dimensions are added to the data (Figure 10(b)). In

contrast, our method faithfully captures the change of the color

distribution and generates visually plausible results (Figure 10(c)).

Recent work in fast regularized optimal transport (Solomon

et al. 2015) makes use of Sinkhorn iterations (Cuturi 2013) and re-

quires heat kernel convolutions in the space of the couplings. Be-

cause this space is 16-dimensional in the context of relighting (8D

for each the input and output spaces), this approach is not practical

for our application. In contrast, in our approximation using Sliced

Wasserstein Distance (Rabin et al. 2012), the computation cost is

only linear with the data dimensionality, and the 1D matching can

be parallelized in each iteration.
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Fig. 18. Relighting results on a set of portrait images (shown on the diagonal in red boxes). The same original photograph is used as an input image (rows)

and as a reference image (columns), that is, the image on (row a, column b) uses (a,a) as the input and (b,b) as the reference. As this figure shows, our

technique is able to transfer illumination between images, in spite of differences in pose, expression, gender, and ethnicity. Image courtesy: Flickr user Eva

Rinaldi (1,1), Flickr user Abhi (2,2), Ari Levinson (3,3), Flickr user DoD News (4,4).
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Moreover, experimentally, we show that the regularization by

stochastic sampling, not only reduces visual artifacts but also in-

creases numerical stability of the results. We generate relighting

results multiple times with the proposed Algorithm 1, with dif-

ferent amounts of stochastic regularization samples, and random

coordinate systems (rotations) F , as well as different update rates

τ . The special case of τ = 1 and without stochastic sampling, re-

produces the N-dimensional probability distribution transfer al-

gorithm of Pitié et al. (2005) (on color-position-normal space).

Figure 11(a) shows the average of the pixel value variances across

different trials. With larger τ and less amount of regularization, the

results exhibit larger variance. We show the visual differences from

errors of pixel values under different parameter settings on our on-

line Supplemental Material.2 Proper stochastic sampling regular-

ization and a small update rate significantly reduce visual artifacts.

From Figure 11(a), we observe that the variance reduces slowly

with larger than 4× regularization. Therefore, in our implementa-

tion, we fix the number of stochastic sampling to 4. We also show,

in Figure 11(b), the convergence properties of the Sliced Wasser-

stein Distance algorithm w.r.t. the number of iterations and update

rate. In our implementation, we fix the number of iterations to 300

and τ = 0.2 to balance the running time and visual quality of the

results.

5.2 User Study

We conducted a quantitative evaluation of our technique, as well as

comparisons with previous state-of-the-art work (Shih et al. 2014),

via a user study that evaluates the perceptual quality of the light-

ing transfer, and the visual realism of results. The input dataset we

used is the Flickr dataset of headshot portraits, collected by Shih

et al. (2014), which contains 98 high-resolution casual portraits.

Our lighting reference dataset consists of 21 portrait photos span-

ning ethnicity, gender, age, pose, expression, and lighting. The user

study shows that our technique significantly outperforms prior art

in both lighting transfer quality and visual realism of the results.

Quality of lighting transfer. In this questionnaire, we present

users with three images: input, reference, and at random, either

the full-color transfer result generated by our algorithm with two-

scale manipulation Ofull
2 or the result generated by the method of

Shih et al. (2014) Ostyle. Both Ofull
2 and Ostyle transfer the skin tone

and the light color. All results are generated completely automati-

cally. We ask users to evaluate the quality of the lighting transfer

(from the input to the example) using a single choice out of four

options:

(1) Convincing lighting transfer,

(2) Acceptable lighting transfer,

(3) Limited lighting transfer,

(4) Poor lighting transfer.

In the 5,629 responses that we collected (Figure 12), 71% of Ofull
2

are rated 1 (Convincing) or 2 (Acceptable) (37% are rated 1), while

36% of Ostyle are rated 1 or 2 (13% are rated 1).

Visual realism of the results. We evaluate the visual realism of

the relit results by comparing the results with unedited real im-

ages. In each comparison, we present users with two images simul-

taneously: (1) an unedited portrait (image from the input dataset);

and (2) a relit result, randomly picked from the following three op-

tions: Ostyle, Ofull
2 , and lightness transfer using our two-scale ap-

proximation Olightness
2 ; images (1) and (2) are not necessarily from

the same subject. We ask users to decide which image looks more

realistic (allowing a tie). From the 2,400 comparisons that we col-

lected, users indicated that 31.7% of Ofull
2 images look more or as

realistic as the unedited images, while this number for Olightness
2

and Ostyle are 40% and 11.5%, respectively.

5.3 Applications

Relighting with non-photorealistic examples. The robustness

of our technique to differences in the input and reference images

allows us to go beyond actual photographs, and to transfer illumi-

nation between real images and paintings. This is demonstrated in

Figure 13

Sketch-based relighting. We can even use a rough user

sketch of shadows and highlights to drive the relighting process

(Figures 13(d) and 13(e)). This could be used as a “lighting design”

tool to allow easy exploration of different illuminations.

Compositing with relighting.Compositing images can lead to

unnatural results when there are differences in their appearance.

While previous work has proposed ways to fix inconsistencies

along the boundary (Pérez et al. 2003) and differences in textures

and noise (Sunkavalli et al. 2010), lighting is still an issue. By us-

ing our technique, users can eliminate lighting inconsistencies be-

tween images and create photorealistic composites (Figure 14).

5.4 Discussion

In some cases, the face might be occluded by hair or accessories

with widely different textures. This can lead to artifacts in the re-

sults. We can handle such cases by using a user-defined mask (in

lieu of the face mask) to drive the transfer. Figure 15 illustrates how

this can lead to significantly better results.

Matching a flat histogram to a histogram with strong peaks is

challenging with our formulation; this means that we are not able

to create sharp highlights, or sharp shadows when the input im-

age is largely flat. We are also limited in our ability to remove very

dark shadows; brightening such low SNR regions can render poor

results (Figure 16), which is outside the scope of this work. More-

over, our technique does not handle specularities well. Handling

specularities will likely require an explicit separation of specular

highlights on the face, and we leave this for future work.

In general, given an input face image, the reference portraits

should ideally have a similar pose to provide sufficient statistics

of pixel positions and normals. With the mass transport formula-

tion, our method is robust to a certain range of pose differences.

In Figure 17, we show an example of relighting photos taken un-

der different views, using a single reference. We observe that as

the pose difference between the input and reference increases, the

results become less convincing.

We show in the online Supplemental Material2 that applying

our technique to video data frame-by-frame generates reason-

able relighting results, with the exception of subtle temporal

inconsistency on the background. Such temporal fluctuations
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could be potentially addressed by another line of work (Bonneel

et al. 2015b).

Finally, not every reference illumination is compatible with ev-

ery input image. While our technique does a good transfer of il-

lumination in many cases, some of the resulting outputs may not

be aesthetically pleasing because of these incompatibilities (e.g.,

Figure 8, bottom).

6 CONCLUSIONS

We have presented an effective algorithm to transfer the lighting

from a reference portrait image onto another portrait image of a

different subject possibly with a different pose and expression. We

have introduced a new formulation of the relighting problem as a

mass-transport problem and shown how to regularize it using sto-

chastic sampling. Although our method is predominantly image-

based and relies on a global solver, it is able to successfully account

for local facial geometry to produce high-quality relit portraits as

demonstrated in our results.

APPENDIX: ADDING COLOR NOISE TO REGULARIZE
THE MAPPING

In this appendix, we explain how we regularize the mapping f̂c by

adding color noise to the data. Intuitively, we seek to smooth f̂c,

which we could naively do by convolving it with a Gaussian, for

instance. However, this would imply that we explicitly compute,

store, and process an 8D function, which is not practical. Instead,

in this section, we explain how to modify the input and reference

data so solving the mass transport problem with the Sliced Wasser-

stein algorithm directly generates a smooth function. While a re-

sult independent of the solver being used would be more desirable,

the smoothness of the transport function is known to be a thorny

problem even in seemingly simple cases (Villani 2008, Chapter 12).

Our approach builds upon the observation that continuous func-

tions are smooth and that Gaussian convolution is an effective

way to smooth a function. We first consider the case of two 1D

datasets {Ui } and {Vi }, for example, gray-scale images. It is known

that histogram transfer is achieved by computing the normalized

histogramsHU andHV , and their corresponding cumulative distri-

bution functionsCU (z) =
∫ z

−∞ HU andCV (z) =
∫ z

−∞ HV , and com-

posing them to get the transfer function τ = C−1
V
◦CU . For τ to be

continuous, it is sufficient thatCU andC−1
V

are continuous. ForCU ,

a convolution by a Gaussian kernelGσ is sufficient, that is, we use

Gσ ⊗ CU instead of CU . And since CV is monotonically increas-

ing from 0 to 1, it is also sufficient to convolve CV by a Gaussian

kernel to ensure that CV is invertible and C−1
V

is continuous. Last,

we observe that the integral commutes with the convolution, that

is, Gσ ⊗ CU (z) = Gσ ⊗
∫ z

−∞ HU =
∫ z

−∞ (Gσ ⊗ HU ), which means

that it is sufficient to apply the convolution on the histograms. Fur-

ther, since the Sliced Wasserstein solver handles high-dimensional

datasets by repeatedly applying one-dimensional transfers, the

above result on an 1D dataset is sufficient to guarantee that con-

volving the input data with a Gaussian kernel generates a contin-

uous mapping.

In our context, the data are higher-dimensional, because each

data point is represented by a (c, p,n) vector (Equation (3)).

However, only the colors may have a discontinuous distribution—

the positions form a uniform distribution over the image do-

main, and the normals are smoothly distributed, because faces are

smooth shapes. Because of this, convolving the positions and nor-

mals with a Gaussian has a negligible effect, since it amounts to

applying a low-pass filter to band-limited data. In practice, we only

smooth the color components of the data. Because of the high di-

mensionality of the data, explicitly representing the histograms

to perform the convolutions is impractical. Instead, we use sto-

chastic sampling, that is, we replace each color value by ns sam-

ples randomly generated from a Gσ distribution centered on the

original color; we keep the position and normal unchanged. This

achieves our goal, that is, by replacing each input and reference

point (c, p,n) by ns stochastic samples (c + ν , p,n) where ν is a

random 3D vector drawn from Gaussian distribution Gσ , we en-

sure that the solution of the mass-transport problem (Equation (3))

directly generates a smooth mapping f̂c, and we do this only by

manipulating discrete samples and never explicitly represent an

8D function nor perform a 16D convolution.

In our prototype, we speed up the computation by using only

(ns − 1) stochastic samples and adding the original samples to the

set of samples used to compute the transport (SI in Algorithm 1).

This simplifies the computation, because we do not need to main-

tain a separate sample set for the original samples and the sto-

chastic samples. Formally, this amounts to sampling the distribu-

tion 1
ns
δ + ns−1

ns
Gσ with δ the Dirac distribution. This is a close

approximation of Gσ and has little influence on the results.

REFERENCES
Yael Adini, Yael Moses, and Shimon Ullman. 1997. Face recognition: The problem of

compensating for changes in illumination direction. IEEE Trans. PAMI 19, 7 (1997),
721.

Oleg Alexander, Mike Rogers, William Lambeth, Matt Chiang, and Paul Debevec.
2009. The digital emily project: Photoreal facial modeling and animation. In Pro-
ceedings of the ACM SIGGRAPH 2009 Courses. 12.

Soonmin Bae, Sylvain Paris, and Frédo Durand. 2006. Two-scale tone management for
photographic look. ACM Trans. Graph. 25, 3 (2006), 637.

Dmitri Bitouk, Neeraj Kumar, Samreen Dhillon, Peter Belhumeur, and Shree K. Nayar.
2008. Face swapping: Automatically replacing faces in photographs. ACM Trans.
Graph. 27, 3 (2008), 39.

Volker Blanz and Thomas Vetter. 1999. A morphable model for the synthesis of 3D
faces. In Proceedings of SIGGRAPH. 187.

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. 2015a. Sliced and
radon wasserstein barycenters of measures. J. Math. Imag. Vision 51, 1 (2015), 22.

Nicolas Bonneel, James Tompkin, Kalyan Sunkavalli, Deqing Sun, Sylvain Paris, and
Hanspeter Pfister. 2015b. Blind video temporal consistency. ACM Trans. Graph.
34, 6 (2015).

Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich. 2011.
Displacement interpolation using lagrangian mass transport. ACM Trans. Graph.
30, 6 (2011), 158.

Xiaowu Chen, Mengmeng Chen, Xin Jin, and Qinping Zhao. 2011. Face illumina-
tion transfer through edge-preserving filters. In Proceedings of CVPR. IEEE, 281–
287.

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed computation of optimal transport.
In Proceedings of NIPS. 2292–2300.

Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker, Westley Sarokin, and
Mark Sagar. 2000. Acquiring the reflectance field of a human face. In Proceedings
of SIGGRAPH. 145.

Sira Ferradans, Nicolas Papadakis, Gabriel Peyré, and Jean-François Aujol. 2014. Reg-
ularized discrete optimal transport. SIAM J. Imag. Sci. 7, 3 (2014), 1853.

Athinodoros S. Georghiades, Peter N. Belhumeur, and David J. Kriegman. 2001. From
few to many: Illumination cone models for face recognition under variable light-
ing and pose. IEEE Trans. PAMI 23, 6 (2001), 643.

John Haddon and David Forsyth. 1998. Shading primitives: Finding folds and shallow
grooves. In Proceedings of ICCV. IEEE, 236–241.

ACM Transactions on Graphics, Vol. 37, No. 1, Article 2. Publication date: October 2017.



Portrait Lighting Transfer Using a Mass Transport Approach • 2:15

Kaiming He, Jian Sun, and Xiaoou Tang. 2013. Guided image filtering. IEEE Trans.
PAMI 35, 6 (2013), 1397.

David W. Jacobs, Peter N. Belhumeur, and Ronen Basri. 1998. Comparing images under
variable illumination. In Proceedings of CVPR. IEEE, 610–617.

Pierre-Yves Laffont, Zhile Ren, Xiaofeng Tao, Chao Qian, and James Hays. 2014. Tran-
sient attributes for high-level understanding and editing of outdoor scenes. ACM
Trans. Graph. 33, 4 (2014), 1.

Zicheng Liu, Ying Shan, and Zhengyou Zhang. 2001. Expressive expression mapping
with ratio images. In Proceedings of SIGGRAPH. 271–276.

Pieter Peers, Naoki Tamura, Wojciech Matusik, and Paul Debevec. 2007. Post-
production facial performance relighting using reflectance transfer. ACM Trans.
Graph. 26, 3 (2007), 52.

Patrick Pérez, Michel Gangnet, and Andrew Blake. 2003. Poisson image editing. ACM
Trans. Graph. 22, 3 (2003), 313.

Francois Pitie, C. Kokaram Anil, and Rozenn Dahyot. 2005. N-dimensional probability
density function transfer and its application to color transfer. In Proceedings of
ICCV. IEEE, 1434–1439.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. 2012. Wasserstein barycen-
ter and its application to texture mixing. In Scale Space and Variational Methods
in Computer Vision. Springer, 435.

E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley. 2001. Color transfer between
images. Comput. Graph. Appl. IEEE 21, 5 (2001), 34–41.

Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. 2000. The earth mover’s distance
as a metric for image retrieval. Int. J. Comput. Vis. 40, 2 (2000), 99.

Amnon Shashua and Tammy Riklin-Raviv. 2001. The quotient image: Class-based
re-rendering and recognition with varying illuminations. IEEE Trans. PAMI 23,
2 (2001), 129.

Xiaoyong Shen, Aaron Hertzmann, Jiaya Jia, Sylvain Paris, Brian Price, Eli Shecht-
man, and Ian Sachs. 2016. Automatic portrait segmentation for image stylization.
Comput. Graph. Forum 35, 2 (2016), 93.

YiChang Shih, Sylvain Paris, Connelly Barnes, William T. Freeman, and Frédo Durand.
2014. Style transfer for headshot portraits. ACM Trans. Graph. 33, 4 (2014), 148.

Yichang Shih, Sylvain Paris, Frédo Durand, and William T. Freeman. 2013. Data-driven
hallucination of different times of day from a single outdoor photo. ACM Trans.
Graph. 32, 6 (2013), 200.

Justin Solomon, Fernando de Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher,
Andy Nguyen, Tao Du, and Leonidas Guibas. 2015. Convolutional wasserstein dis-
tances: Efficient optimal transportation on geometric domains. ACM Trans. Graph.
34, 4 (2015), 66.

Kalyan Sunkavalli, Micah K. Johnson, Wojciech Matusik, and Hanspeter Pfister. 2010.
Multi-scale image harmonization. ACM Trans. Graph. 29, 4 (2010), 125.

Cédric Villani. 2003. Topics in Optimal Transportation (Graduate Studies in Mathemat-
ics, Vol. 58). American Mathematical Society.

Cédric Villani. 2008. Optimal Transport: Old and New (1st ed.).
Yang Wang, Lei Zhang, Zicheng Liu, Gang Hua, Zhen Wen, Zhengyou Zhang, and

Dimitris Samaras. 2009. Face relighting from a single image under arbitrary un-
known lighting conditions. IEEE Trans. PAMI 31, 11 (2009), 1968.

Zhen Wen, Zicheng Liu, and Thomas S. Huang. 2003. Face relighting with radiance
environment maps. In Proceedings of CVPR, Vol. 2. IEEE, II–158.

Tim Weyrich, Wojciech Matusik, Hanspeter Pfister, Bernd Bickel, Craig Donner,
Chien Tu, Janet McAndless, Jinho Lee, Addy Ngan, Henrik Wann Jensen, and
Markus Gross. 2006. Analysis of human faces using a measurement-based skin
reflectance model. ACM Trans. Graph. 25, 3 (2006), 1013.

Fei Yang, Jue Wang, Eli Shechtman, Lubomir Bourdev, and Dimitri Metaxas. 2011.
Expression flow for 3D-aware face component transfer. ACM Trans. Graph. 30, 4
(2011), 60.

Received October 2017; revised March 2017; accepted April 2017

ACM Transactions on Graphics, Vol. 37, No. 1, Article 2. Publication date: October 2017.


