
KE MA ET AL.: VISUAL INFRASTRUCTURE ASSESSMENT IN THE WILD 1

Large-scale Continual Road Inspection:
Visual Infrastructure Assessment in the Wild

Ke Ma1

kemma@cs.stonybrook.edu

Minh Hoai1

minhhoai@cs.stonybrook.edu

Dimitris Samaras12

samaras@cs.stonybrook.edu

1 Computer Vision Lab
Stony Brook University
Stony Brook, NY, USA

2 CentraleSupélec.
Université Paris-Saclay
France

Abstract

This work develops a method to inspect the quality of pavement conditions based
on images captured from moving vehicles. This task is challenging because the ap-
pearance of road surfaces varies tremendously, depending on the construction materials
(e.g., concrete, asphalt), the weather conditions (e.g., rain, snow), the illumination con-
ditions (e.g., sunny, shadow), and the interference of other structures (e.g., manholes,
road marks). This problem is amplified by the lack of a sufficiently large and diverse
dataset for training a pavement classifier. Our first contribution in this paper is the de-
velopment of a method to create a large-scale dataset of pavement images. Specifically,
using map and GPS information, we match the ratings by government inspectors found in
public databases to Google Street View images, creating a dataset containing more than
700K images from 70K street segments. We use the dataset to develop a deep-learning
method for road assessment, which is based on Convolutional Neural Networks, Fisher
Vector encoding, and UnderBagging random forests. This method achieves an accuracy
of 58.2% and significantly outperforms various other texture classification methods.

1 Introduction

This paper is motivated by the lack of a reliable method to tackle a challenging real-world
problem: image-based road degradation assessment. Solving this problem is essential to
improving road condition monitoring. Currently, this task is the responsibility of local and
state maintenance departments, and they rely on pavement specialists or dedicated vehicles
to physically visit and inspect damages. This approach is labor intensive and therefore cannot
be performed regularly. In New York for example, state roads are only inspected about once
a year. One possible solution is to crowdsource the monitoring task to road users. Unfortu-
nately, road users are not trained to provide objective opinions, they tend to be negative and
report that all roads are bad. We envision here an alternative crowd-sourcing solution where
instead of sending opinions, road users send images from their mobile phones or dashcams.
These images will then be analyzed and road conditions evaluated in an automated process.
Figure 1 provides the overview of our proposed work toward this direction.

© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



CN
N

La
st

 
Co

nv
ol

ut
io

na
l 

La
ye

r L1 normalization

Aggregate through 
all images within one 

street segment

Fisher 
Vector

Ra
nd

om
 F

or
es

t Condition: 
POOR
FAIR
GOOD

Images belonging to one street segment VGG16 Responses of deep filter banks

Figure 1: Large-scale automatic visual road inspection. The proposed method for auto-
matic pavement rating is based on convolutional neural networks, Fisher Vector encoding,
and random forest classifiers.

At a first glance, image-based pavement inspection seems to be a straightforward ap-
plication of computer vision, where existing image and texture classification methods (e.g.,
[5, 19, 24, 41, 43, 44, 45, 47]) can be used. Unfortunately, this problem is challenging due to
several reasons: 1) There is no sufficiently large and diverse dataset to train a deep-learning
pavement classifier. 2) We need a method for fine-grained visual classification. Conventional
texture classification or material recognition methods are designed to distinguish between
categories of different materials. The appearance difference between two materials is much
more pronounced than the difference between a material and its degraded version. What dis-
tinguishes between a fair and a good road might be a few cracks that do not occur uniformly.
3) Some levels of road degradation are rare, posing challenges to the creation of balanced
training sets. 4) Labeling the level of degradation is more subjective than labeling distinct
material categories. 5) We need to classify images taken in the wild, under diverse environ-
mental conditions. Unlike many texture classification studies, we need to analyze images
that do not just contain pavement. Crowd sourced images in the wild will contain structures
unrelated to pavement conditions, such as cars, trees, and manholes.

To solve the first problem, we leverage maintenance records of transportation infrastruc-
ture publicly available online. Meanwhile, infrastructure images are easily accessible via
map services such as Google Street View. So we can exploit these two data troves to create a
dataset for material weathering classification. This is our first contribution in this paper. In
order to localize infrastructure, records always contain coordinates from Global Positioning
System (GPS), which we can utilize to fetch the corresponding images from Google Street
View. Unlike other datasets where images are collected first and workers label the images
later, we match a pre-existing set of labels to a set of images based on GPS information.

We demonstrate the effectiveness of this dataset creation method by building a pave-
ment condition rating dataset for New York City. The records come from open data at the
Department of Transportation (DoT). Our second contribution is this dataset. This is the
first public large-scale dataset designed for studies in classifying material degradation levels,
rather than classifying different material categories. This is also the first large-scale dataset
for pavement condition rating studies.

The third contribution of this paper is a deep learning method that handles this chal-
lenging dataset. We utilize Fisher Vectors with Convolutional Neural Networks (FV-CNN), a
superior method for texture classification to extract descriptors. Since street segments of dif-
ferent lengths have different numbers of images, we use Fisher Vectors to encode these street
segments into fixed length descriptors. This orderless pooling also helps to solve the problem
of degradation levels not being uniformly distributed along the street. We demonstrate that:
1) limiting the receptive field of CNN by processing image patches, and 2) L1 normalization
of the features of the last convolutional layer safeguard that the network is not attracted by
the irrelevant objects like pedestrians and vehicles on the road. Finally, we address the im-
balance of data categories by using UnderBagging [15], also known as EasyEnsemble [28],
to train a random forest, where each tree is trained using a balanced subset.
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Figure 2: Dataset creation pipeline. We start from publicly available pavement condition
rating records from New York City’s Department of Transportation. The street view corre-
sponding to the longitude and latitude coordinates is fetched automatically via the Google
Street View API and added to the dataset.

2 Previous Work

Material Datasets. Existing material datasets can be roughly divided into two categories:
i) the images contain only the labeled material, or ii) the images contain unrelated “material
in the wild” content. For example, the CUReT dataset [12] has over 60 different materi-
als, under 200 different viewing and illumination conditions, supporting the development of
3D textons [24]. A more diverse dataset is KTH-TIPS [6], which consists of material sam-
ples at multiple scales and multiple instances per category. The STAF dataset [18] records
time-varying appearance of 26 material instances in 30 instances in time. More recently, the
dataset for fine-grained material recognition in [21] focuses on fabric subtypes such as cot-
ton, denim, and silk. The images in these datasets are taken under controlled environments.
Compared to them, the FMD dataset [36] is a great step towards cataloging materials in the
wild. It contains 10 material categories with 100 examples each. The images were drawn
from Flickr and captured under unknown real-world conditions. However, FMD is too small
to cover the diversity of the real-world materials and the hand-picked images are subjective.
Similar to FMD, 4DLF [46] is a dataset of 12 categories, each with 100 images captured
with a light field camera. The OpenSurfaces (OS) dataset [3] was the first large-scale dataset
for material recognition and segmentation from natural images. It contained 105,000 images
and was later curated by Cimpoi et al. [9] and augmented with some of the 47 attributes
from DTD dataset [8] to produce the OSA dataset [9], a new dataset of 53,915 images. The
MINC dataset [4] further increases the size of the materials dataset by an order of magni-
tude. It contains 3 million images. Rare categories are well sampled and diversity is also
maintained.

Texture Classification. Texture reflects material properties of objects thus material recog-
nition is often addressed as texture classification. Most studies focus on improving texture
descriptors and orderless pooling. Early work used low-level image cues to describe texture:
3D textons [24], MR8 filter banks [41], and Local Binary Patterns [33]. Later SIFT [29] and
dense SIFT features were widely used as texture descriptors. Recently, two texture descrip-
tors were developed based on Convolutional Neural Networks (CNNs): FC-CNN [16] and
FV-CNN [9]. FC-CNN extracts the output of the penultimate Fully-Connected layer while
FV-CNN only uses the outputs of the last convolutional layer. To aggregate these features
throughout an image and encode them into a fixed length feature vector, different pooling
methods have been proposed. The three most popular orderless pooling methods are Bag
of Words (BoW) [11], Vectors of Linearly Aggregated Descriptors (VLAD) [20] and Fisher
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Vectors (FV) [34]. BoW is solely based on counting. VLAD uses first order statistics of the
descriptors whereas FV also uses second order statistics. In many applications, FV achieves
the best results [21]. More recently, bilinear orderless pooling [26] unifies all three orderless
pooling methods mentioned above. The bilinear CNN model is shown to be superior to FV-
CNN in fine-grained objects recognition but achieves similar result to FV-CNN in texture
recognition [25]. A recent study [27] shows that FV-CNN is still the state of the art method
for texture classification, especially for materials with large appearance variation.

Pavement Condition Rating. Attempts to introduce computer vision into pavement condi-
tion rating go back to 1990 [35]. Recent work includes pavement crack assessment [32, 40]
and pothole localization via stereo vision [22]. However, these studies still rely on low level
image cues such as LBP with hard thresholds on the response map [17, 31, 38] and are
evaluated on small private datasets, which discourages comparison and generalization.

3 Dataset
We have collected an image dataset of road surfaces that contains more than 700K images
from about 70K street segments. The dataset was created by downloading Google Street
View images that are referenced in road condition reports. This is the first large-scale dataset
for road surface inspection. Although we are not the first to use Google Maps to create a
dataset, we follow a novel workflow for using the Google Street View API. Compared to
some datasets (e.g., datasets for 3D city modeling [30, 39], image localization [48], and
privacy protection [14]) where the data is first collected and subsequently labeled by human
annotators, we start from the available annotation and retrieve images that correspond to the
annotation, as shown in Fig. 2. Recently, similar methods were also applied by Lee et al. [23]
and Arietta et al. [1] to create datasets. They focus more on the visual attributes of urban
architecture.

POOR FAIR GOOD

Figure 3: Examples of pavement images. For each
condition, two street segments are shown, each with
two images. Images were cropped from the original
640×640 images.

Images Streets

POOR 4650 518
(0.6%) (0.7%)

FAIR 200553 20612
(28.2%) (28.8%)

GOOD 506317 50471
(71.2%) (70.5%)

Total 711520 71601
(100%) (100%)

Table 1: Data statistics – the
numbers and percentages of im-
ages and street segments in each
pavement condition.

3.1 Data Sources

Roads are generally inspected by local and state governments’ maintenance departments,
and inspection reports are usually available to the public. For our dataset, we use the public
records from New York City Department of Transportation. There are two benefits for using
NYC data. First, the records of NYC contain GPS data for each street inspected. GPS data
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(a) Rainy day (b) Too many cars (c) Snow cover (d) Tree shadow

Figure 4: Image clutter and nuisance conditions.

can be used in Google Street View to localize images. Second, as one of the biggest cities
in the world, Google Street View images of New York are updated more frequently than
other areas. We can easily find many images in Manhattan that were captured in 2016. This
reduces the time gap between image acquisition and the corresponding pavement rating for
more accurate labels.

The inspection records of New York City have many entries, but the most relevant pieces
information for our purpose are: longitude, latitude, rating score, rating category, and rating
date. In particular, longitude and latitude coordinates are used in Google Street View API to
fetch images and the rating date is used to estimate the time gap between the rating scores
and the images. Along with the records, the meta-data provides a conversion table for con-
verting from the rating score to the rating category. The rating score ranges from 1 to 10,
corresponding to three rating categories: “good” (8 to 10), “fair” (4 to 7), and “poor” (1 to 3).
We choose rating categories over rating scores, because rating categories are less sensitive to
time gaps. Therefore, this is a three-class classification problem.

The Google Street View API allows automatic image retrieval by specifying desired
GPS coordinates and several other image and camera parameters. We used the following
parameter settings: the desired output image size is 640×640, the field of view is 90°, the
heading angle is the direction of the street, and the pitch angle is −50°.

3.2 Dataset properties

The pavement report of New York City contains 81,209 street segments. There are 71,601
rated street segments available on Google Street View. We collected a dataset of 711,520
images for those segments, summarized in Tab. 1:

Image resolution and region of interest. Each image has a resolution of 640×640 pixels.
The image was retrieved at a −50° pitch angle, and the bottom of the original image might
have contained the front of the vehicle on which the camera is mounted. Post-processing
often leaves discernible artifacts, as shown in Fig. 4 (a) and (b), hence we crop the image
and only retain the top 640×224 area.

Image clutter. The images do not only contain pavement. They often contain other struc-
tures such as cars, pedestrians, trees, and manholes. This makes our dataset challenging and
different from other texture datasets like OS [3] and KHT-TIPS [6], where the entire images
show the texture patterns or the segmentation mask for the target texture area is available.
This is one reason why the direct application of the state-of-the-art texture classification
method [9] yields poor performance. One can consider a smaller image region, but it is also
not guaranteed to solely contain pavement. More importantly, this will limit our consider-
ation to a narrow part of a street that might not reflect the entire road condition. Pavement
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degradation can appear non-uniformly on a road.

Subtle inter-class differences. Images in our dataset are taken under diverse environmental
conditions, unlike other texture datasets collected under controlled conditions [12, 21]. In
our dataset, images from the same category can look drastically different, depending on
the construction materials (e.g., concrete, asphalt, composite) and weather and illumination
conditions (e.g., sunny, snow, shadow). Inter-class differences can be very subtle compared
to intra-class differences. The difference between fair and good conditions might be a few
cracks that do not occur uniformly in an image, which are more subtle than shadows and line
markings (Fig. 4). As shown in Sec. 5, these distractions severely affect the performance of
texture classification methods.

Label noise. The estimated time gap between when an image was taken and when it was
rated is 1.2 year (estimated on a small subset of the data). This time gap can lead to a
discrepancy between some images and their rating labels.

Class imbalance. Only 0.7% of the pavement data is rated poor. The other two categories,
fair and good, correspond to 28.8% and 70.5% of the data respectively. Given this imbal-
anced data distribution, the classifier might be biased against returning the POOR label.
Because one purpose of our work is to monitor road conditions and identify roads in poor
condition that need to be repaired, class imbalance must be carefully taken into account.

4 Pavement classification method
We develop a pavement classification method based on FV-CNN [9], a method that combines
CNN features and Fisher Vector encoding [34]. FV-CNN is the state-of-the-art method for
texture classification, especially for coarse-grain texture classification [25, 27]. It inputs an
image (at any size) and extracts the features after the last convolutional layer. The output is
a feature block of the size m×n× p where m and n are determined by the size of the input
image, and p is the number of output channels. The output can be considered as multiple
p-dimensional feature vectors. The feature vectors for multiple images of a road segment are
pooled and encoded using Fisher Vector, yielding a fixed length descriptor. The descriptor is
L2 normalized and fed into a linear SVM classifier.

Unfortunately a direct application of FV-CNN to pavement classification yields poor
performance due to the challenges explained in the previous section. We propose to address
these challenges with the following improvements:

1. We use image patches instead of the entire image to extract the descriptor. This is
to prevent the network from focusing on non-pavement elements. The root of the problem
is that the VGG-D [37] network used in our framework was trained to detect objects rather
than subtle pavement cracks. If we were to pass the whole image to the network, feature
responses corresponding to non-pavement elements such as vehicles and traffic signs would
be much stronger than feature responses in the pavement regions. When the Fisher Vectors
are normalized, the dynamic range of pavement responses would be severely squashed. The
subtle signals that distinguish between different pavement conditions would therefore be
dominated by the higher dynamic range of other distraction structures. Thus, we should use
image patches instead of the entire image.

We also considered pavement segmentation as a pre-processing step, but found it inef-
fective. Pavement segmentation is a difficult problem on its own. On one hand, we do not
have pixel level annotation of the road images to train a pavement segmentation network. On
the other hand, off-the-shelf semantics segmentation methods such as SegNet [2] performs
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(a) input image (b) semantic segmentation output
Figure 5: Poor results of an off-the-shelf pavement segmentation method [2]. Most of
the pavement is predicted as building (red pixels).

poorly on our dataset as shown in Fig. 5(b).
2. We normalize the CNN feature vector. This step is critical to reduce distraction impact,

by converting feature vectors to the same scale. Since we extract the output after a ReLU
operation, which guarantees non-negativity, either L1 or L2 normalization is possible. Both
L1 and L2 normalization improve performance, but L1 is better.

3. We use UnderBagging random forest as the classifier. UnderBagging enables us to
train a random forest [10] where each tree is trained using a class-balanced subset: we use all
the data points from the class with the smallest number of data points and randomly sample
the same number of data points from the other classes. Though each tree is trained with a
small number of samples and the data dimension is high, at each split point of the tree, only a
small portion of the features is considered. Decisions from multiple trees are fused together,
reducing the effect of overfitting. The ensemble of trees, trained with class-balanced datasets,
can handle the imbalance of classes well.

For a classifier like SVM, we can also assign different class weights to the training sam-
ples. It is equivalent to duplicating the data points of the minority class several times. But
this approach is sensitive to the choice of the regularization parameter C. For a large C, the
SVM will overfit to the minority class. For a small C, the margin term in the SVM objec-
tive will dominate the total loss, and it weakens the effects of the class weights. As will be
seen in Sec. 5.3, with FV-CNN patch feature, UnderBagging random forest handles the class
imbalance better than SVM.

5 Experiments

5.1 Train/test/validation partition
We divide our dataset into disjoint train, validation, and test subsets. This is done by dividing
the street segments instead of individual images; this is to ensure that images of the same
street segment are placed in the same subset, maximizing the independence between training
and test data. From the total of 71,601 street segments, the first half is used as the test set.
For the second half, three quarters are assigned to the train set and the remaining is used for
validation. The partition is random with one constraint that the proportion of images in each
pavement category is preserved. The results reported in Sec. 5.3 are obtained on the test set.

5.2 Descriptors and classifiers
We experiment with three different descriptor types: SIFT, FC-CNN, and FV-CNN, and two
types of classifiers: SVMs and random forests.

SIFT. As a baseline, we implement a classifier using dense SIFT followed by pooling by

7



Model FV-SIFT FC-CNN FV-CNN FV-CNN FV-CNN FV-CNN
SVM SVM Image SVM Patch SVM Patch L1 SVM Patch L1 RF

POOR 78.0 68.3 1.2 18.5 33.6 72.2
FAIR 35.8 35.2 41.8 36.1 30.6 50.7
GOOD 46.6 42.6 84.4 86.7 85.9 51.7

AVG 53.5 48.7 42.5 47.1 50.0 58.2

Table 2: Experiment Setup and Results. The table shows the percentage accuracy for each
of the three classes individually, as well as the average accuracy for theb three classes in the
last row. “Image” means the input of network is the whole image (640×224), while “Patch”
means we use 64×64 image patches as the network input. “RF” is short for random forest.
Models with “L1” are using normalized features.

Fisher Vector at street segment level using VLFeat library [42]. The window size used to
extract dense SIFT is 64×64 with a step size of 32×32. For Fisher Vector encoding, we use
a Gaussian Mixture Model (GMM) with 256 Gaussians.

FC-CNN. We implement a classifier that is based on the FC-CNN descriptor. It uses the
outputs of the penultimate fully-connected layer as features. The VGG-D model used in all
the experiments and the CNN implementation are provided by Keras [7] with a Tensorflow 1

backend. All the images are resized to 224×224. The outputs is 4096-dimensional. We first
project this high dimension feature vector to 512 dimensions using PCA, preserving 86% of
the data variance of the data. We then use Fisher Vector to pool at street segment level. The
number of GMM centers is set to 64.

FV-CNN. We consider several variant methods for computing FV-CNN features. To demon-
strate the effects of the size of receptive fields, we compare two input options, using 1) the
original size 640×224 as in [9]; 2) 64×64 image patches. To study the effects of normal-
ization, we consider L1 normalization.

SVM. We experiment with linear SVMs [13]. The best C is found by grid search on the
validation set. Only the best results of each method are shown in Section 5.3. The weight
for each class used in training is: 97.4 for “poor”, 2.4 for “fair” and 1 for “good”, which is
reciprocal to the number of samples of each class.

Random forests. We propose to use a random forest classifier. We set the number of trees
to be 300 and the number of features that each split considers is 256 (the dimension of the
feature vector is 65536).

5.3 Results
The results of our experiments are summarized in Tab. 5.2. The average accuracy at chance
is 33.3%. The best recognition result is achieved using a random forest classifier, with FV-
CNN features, patch input, and L1 normalization. The classification accuracy for the three
categories poor, fair, and good are 72.2%, 50.7% and 51.7%, respectively, and the average
accuracy is 58.2%. Switching from random forest to SVM lowers the average accuracy to
50.0%. If L1 normalization is also removed, the average accuracy drops to 47.1%. Replacing

1http://tensorflow.org
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POOR-POOR POOR-POOR FAIR-FAIR GOOD-GOOD

POOR-GOOD POOR-FAIR FAIR-POOR GOOD-POOR

Figure 6: Success and failure cases. The tag-pair under each image indicates the ground
truth and our prediction. For example, POOR-FAIR means the ground truth label is POOR
while our prediction is FAIR. So the first row shows the success cases. The second row
shows the failure cases.

patches with the whole image at its original size (640× 224) has an average accuracy of
42.5%, 4.6% lower than when using patches. If we switch features from FV-CNN to FC-
CNN, we achieve an average accuracy of 48.7%, 9.5% lower than our best result. SIFT
performs better compared to FC-CNN. It achieves 53.3% average accuracy, but still 4.9%
lower than the best.

There is still ample space for improvement. Besides the comparison with the expert
annotation, we also conducted a user study evaluating a non-expert annotation of this dataset.
We randomly selected 300 street segments from the test set, 100 segments per class and ask
7 non experts to label these images. This resulted in an average accuracy if 51.4% with a
standard deviation of 3.5%. The best non-expert rater achieved 55.0% accuracy compared
to the expert rated ground truth. Subjective rating results diverge drastically among the non-
expert raters. Their ratings agree at only 15.3% of all 300 data points. For these 46 data
points, their accuracy is 74.1%. The low performance of non-expert raters might be due to
the label noise caused by time gap mentioned in Section 3.1, and from the fact that non-
experts might not be aware of features that affect pavement quality. The above statistics
demonstrate the method we present can surpass the performance of non-expert raters. The
diverse and subjective rating results among non-experts also prove that this is a challenging
classification problem.

Several success and failure cases are shown in Figure 6. The first label of the label pair
below each image is the ground truth rating and the other one is our prediction. The first row
shows success cases, and the second row show failure cases. Some of them are likely caused
by label noise like the first segment in this row. Some are affected by distractors on the road
like in the third segment, where the salt brine that was sprayed on the road for anti-icing
appears like a defect.
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6 Conclusions and Future Work
We have presented a new approach to create datasets for computer vision tasks. We used
public records with GPS data and images from Google Street View to create a large-scale
pavement condition rating dataset. This is the first public large-scale dataset for classifying
material in different degradation levels. Crucial modifications of FV-CNN, led to an average
accuracy of 58.2% on the proposed dataset.

The “label-to-image” approach can also be used to create other datasets. Similar to
pavements, condition reports of bridges and tunnels are also publicly available2. Images of
bridges and tunnels can also be retrieved in a similar way.

In the future, if the time stamp of the StreetView images becomes automatically avail-
able, we can also study how the texture changes with time. Time varying texture synthesis
can also benefit from this work.
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