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Abstract—We define Pathomics as the process of high 

throughput generation, interrogation, and mining of quantitative 

features from high-resolution histopathology tissue images. 

Analysis and mining of large volumes of imaging features has 

great potential to enhance our understanding of tumors. The 

basic Pathomics workflow consists of several steps: segmentation 

of tissue images to delineate the boundaries of nuclei, cells, and 

other structures; computation of size, shape, intensity, and 

texture features for each segmented object; classification of 

images and patients based on imaging features; and correlation 

of classification results with genomic signatures and clinical 

outcome. Executing a Pathomics workflow on a dataset of 

thousands of very high resolution (gigapixels) and heterogeneous 

histopathology images is a computationally challenging problem. 

In this paper, we use Convolutional Neural Networks (CNN) for 

automatic recognition of nuclear morphological attributes in 

histopathology images of glioma, the most common malignant 

brain tumor. We constructed a comprehensive multi-label 

dataset of glioma nuclei and applied two CNN based methods on 

this dataset. Both methods perform well recognizing some but 

not all morphological attributes and are complementary with 

each other. 

Keywords—Pathomics; Nucleus Classification; Convolutional 

Neural Network 

I. INTRODUCTION 

      Radiomics has emerged as a highly promising approach 

for providing a comprehensive quantification of tumor 

properties at macro-scales through high-throughput generation 

and interrogation of medical imaging features [15-17]. We 

define Pathomics as the process of high throughput 

generation, interrogation, and mining of quantitative features 

from high-resolution tissue images – the histopathology 

equivalent of Radiomics.  

Integrative, quantitative analyses of relationships among 

histopathology, spatially mapped molecular data, and clinical 

data have great potential to significantly enhance our 

understanding of disease mechanisms. Such analyses are 

motivated by studies that investigate tumor initiation, 

progression, heterogeneity, therapeutic target validation, 

cancer proliferation and metastasis and by research to 

characterize outcome and response to treatment using 

integrated morphology and molecular data.  

      Basic Pathomics workflows consist of a series of image 

segmentation, feature computation, classification, and 

correlation steps. The image segmentation step delineates the 

boundaries of nuclei, cells, and meso-scale structures such as 

crypts and ducts. Advanced digital microscopes can capture 

very high-resolution images (ranging from 20Kx20K to 

100Kx100K pixel resolutions) from whole slide tissue 

specimens. Segmentation of a single image can generate 

hundreds of thousands to millions of nuclei. The feature 

computation step computes a set of quantitative (size, shape, 

intensity, texture) attributes for each segmented structure and 

images. The classification step makes use of the features and 

image data to categorize objects, images and subjects from 

which the images are obtained. The correlation step compares 

and looks for relationships between classifications based on 

imaging features and genomic signatures and clinical outcome 

data. The workflow is generally an iterative one (as shown in 

Figure 1), because many image analysis methods are sensitive 

to input parameters and input data. The goal of the iterative 

process is to provide feedback and feedforward information to 

generate robust results efficiently.  

      In this paper we describe an application of Convolutional 

Neural Networks (CNNs) in the feature computation and 

classification step for automatic recognition of nuclear 

morphological features (also referred to here as attributes) in 

whole slide tissue images from Glioma cancer patients. 

Glioma is a malignant brain tumor that rises from glial cells 

[2] and is the leading cause of cancer-related deaths in people 

under age 20 [1]. In glioma histopathology images, 

morphological attributes of nuclei provide rich information for 

diagnosing and classifying glioma patients into respective 

subtypes and grades [3]. CNN [10] is the backbone of state-of-

the-art methods in many automatic image recognition 

applications. Given a training set of images with ground truth 

labels, a CNN can be trained to recognize the labels 

automatically given an input image. For example, in a ductal 
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carcinoma detection problem, a CNN model has been shown 

to achieve an F-measure of 71.80% which significantly 

outperforms previous methods [12]. Recently, CNN models 

have achieved the best results in multiple MICCAI challenges; 

for example, a multi-column CNN detection method won the 

MICCAI mitosis detection challenge in breast cancer [13]. 

CNNs with multiple-instance learning [14] achieved state-of-

the-art performance recognizing cancer subtypes.  

      Our approach is designed to automatically recognize the 

nuclear morphological features of a given glioma image using 

CNN. These features are Perinuclear halos, Gemistocyte, 

Nucleoli, Grooved, Hyperchromasia, Overlapping nuclei, 

Multinucleation, Mitosis and Apoptosis. 

Our work has two contributions. The first contribution 

is the multi-label modeling of the feature recognition and 

classification problem. Existing classification methods are 

single-label learning algorithms [5,6]. In other words, they 

only recognize one nuclear attribute at a time. However, one 

nucleus can have multiple morphological attributes. Thus, we 

model this as a multi-label learning algorithm [4]. The second 

contribution is that the proposed approach recognizes nine 

subtle, important and common morphological attributes of 

nuclei in glioma histopathology images with good accuracy. 

Our experimental results show an averaged Area Under the 

ROC Curve (AUC) of 0.8712. We build a multi-label glioma 

nuclei dataset that covers nine nuclear morphological 

attributes in six glioma subtypes. The dataset contains 2078 

glioma nucleus images each with nucleus in the image center. 

Figure 2 shows examples for each of the nine morphological 

attributes. Existing automatic nuclear attribute recognition 

methods only recognize a subset of important nuclear 

morphological attributes for a subset of glioma subtypes. For 

example, Thibault et al. [5] recognizes healthy and 

pathological nuclei. Kong et al. [6] classifies six 

morphological attributes in diffuse glioma only. 

      The rest of this paper is organized as follows. Section 2 

introduces our CNN-based approach. Section 3 presents the 

experimental results. Section 4 concludes the paper. 

 

II. CNN-BASED METHODS FOR NUCLEAR ATTRIBUTE 

CLASSIFICATION 

      We present two CNN-based methods for nucleus attribute 
classification: a semi-supervised CNN and a pre-trained CNN 
with Support Vector Machine (SVM). To model inter-attribute 
correlations in our multi-label learning problem, we adopt the 
two-round training method [11]. In particular, instead of 
training one classification model, we train two models. The 
predicted class distributions of the first classification model are 
used as features for the second classification model. In this 
way, the second model can learn the inter-attribute correlations. 

Figure 1. A core Pathomics workflow for segmentation, feature computation and classification steps. 



A. Semi-supervised CNN      

In contrast to fully-supervised methods, semi-supervised 
methods [18] utilize unlabeled instances (instances without 
ground truth labels) to boost classification performance. In the 
case of nuclear attribute classification, we have millions of 
nucleus images with unknown ground truth. To utilize these  
images, we use a Convolutional Auto-Encode (CAE) method 
[19] to initialize a classification CNN. A CAE is a specific type 
of neural network. In general, a CAE encodes input images as a 
set of activations of encoding neurons. It then decodes these 
activations into output (reconstructed) images. In order to 
achieve nontrivial solutions, in most cases, the number of 
encoding neurons is significantly smaller than the number of 
input image pixels. By minimizing the error (difference) 
between the output and input images, one trains a CAE to 
capture an intrinsic representation of input images. In other 
words, to reconstruct input images with encoding neurons, the 
CAE learns the patterns (appearance, texture, etc.) of input 
images. Figure 3 shows examples of input (original) and output 
(reconstructed) images. 

 In our work, we train an unsupervised CAE on millions of 
unlabeled nucleus images. Then the model parameters of our 
supervised nuclear classification CNN are initialized as the 
same as the model parameters in CAE. Figure 4 illustrates this 
process. The appearance and texture information of nuclei is 
learnt by the CAE model. This information is passed to the 
supervised classification CNN during its initialization step. The 
architecture of the CAE and CNN is similar to the VGG 
network [8] with fewer convolutional filters. 

 

 

 

B. Pretrained CNN features with SVM 

      It has been shown that the activations of hidden neurons 
can be viewed as features extracted from input images [20]. 
One can use CNNs as feature extractors and apply other 
supervised models such as Support Vector Machine (SVM) [9] 
for image classification. The advantage of this method is that 
no CNN training is required on the application dataset. In this 
work, we use the VGG 16-layer network [8] as a feature 
extractor. In particular, activations from neurons previous to 
the output layer are used as features. We apply this feature 
extractor on all nucleus images. Each image is represented by a 
CNN feature vector of length 4096. We then use this 4K 
features to train and test an SVM with Radial Basis Function 
(RBF) kernel. For SVM hyperparameters parameters that must 
be predefined before model training (in contrast to parameters 
that are learnt by model training), we adjust those parameters 
to maximize the experimental cross-validation error. In 
particular, we split the training set into five non-overlapping 
subsets. We train SVMs sets of hyperparameter assignments on 
four subsets and validate the classification performance on the 
remaining one. This procedure is repeated for five times before 
the classification results are averaged. The best-performing set 
of hyperparameter assignment is then used to train the SVM on 
the entire training set. For each nuclear attribute, we train a 
binary SVM classifier that outputs either does or does not have 
the target attribute, ignoring other nuclear attributes. Therefore, 
we have ten binary SVMs for ten nuclear attributes. 

 

 

 

 

       (a)                 (b)                  (c)                  (d)                (e)                  (f)                  (g)                 (h)                (i) 

Figure 2. Examples of glioma nucleus images. Each column shows two images of one morphological attribute. 

The morphological attribute describes the nucleus in the center of image. The attributes are (a) Perinuclear halos 

(b) Gemistocyte (c) Nucleoli (d) Grooved (e) Hyperchromasia (f) Overlapping nuclei (g) Multinucleation (h) 

Mitosis (i) Apoptosis. Note that images can have multiple labels. For example, Mitosis are usually also 

Hyperchromasia. 



Morphological Attributes #. Present #. Absent 

Perinuclear halos 78 2000 

Gemistocyte 51 2027 

Nucleoli 77 2001 

Grooved 14 2064 

Hyperchromasia 505 1573 

Overlapping nuclei 105 1973 

Multinucleation 43 2035 

Mitosis 53 2025 

Apoptosis 20 2058 

No nucleus 545 1533 

Table 1. The distribution of nuclear attributes in our nuclear 
attribute classification dataset. In this multi-label dataset, one 
nucleus image can have multiple morphological attributes. 

III. EXPERIMENTS 

      We apply the semi-supervised CNN and the pretrained 
CNN with SVM [9] to recognize nuclear morphological 
attributes. Our experiments achieved promising results. 

A. Nuclear attribute classification dataset 

      We aim to build a dataset of thousands of nucleus images 
with nuclear attribute ground truth. We first applied an 
automatic nucleus segmentation method to extract millions of 
nuclei. Segmented nuclei are stored as small images, which we 
refer to as nucleus images. Then a pathologist and a graduate 
student viewed these images together and assigned nuclear 
attributes to two thousand nucleus images. In the rest of this 
section, we describe this process in more detail.  

      To automatically segment nuclei, the color of a tissue 
image is normalized to a Hematoxylin and Eosin stained 
template image in the L*a*b color space. Then, the 

Figure 3. Randomly selected examples of original and CAE reconstructed images. Each 50 by 50 RGB images 

(shown on the left) is reconstructed (shown on the right) from decoding activations of 200 encoding neurons. We can 

see that though the reconstructed images are blur, most of the structural, appearance, and texture information are 

reconstructed. A classification CNN initialized by the CAE encodes this information. 
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Figure 4. Initializing the nuclear classification CNN with Convolutional Auto-encoder (CAE). Top: training a 

convolutional auto-encoder. Bottom: initializing the nuclear classification CNN. The model parameters in the 

“convolution + pooling” part of the classification CNN are assigned by model parameters in the CAE. 



hematoxylin channel is extracted through a color 
decomposition process. After that, the optimal threshold in the 
hematoxylin channel is computed and a localized region based 
level set method is used to determine the contour of each 
nucleus. In cases where several nuclei are clumped together, a 
hierarchical mean shift algorithm is used to separate the clump 
into individual nucleus. We then extract nucleus images of 50 
by 50 pixels around the centers of automatically segmented 
nuclei. The extracted images are in RGB space (Figure. 2). 

      A graduate student and a pathologist view samples of 
extracted nucleus images together. They assign all suitable 
attributes to each image. In case there are multiple nuclei 
presented in a nucleus image, they assign attributes according 
to the nucleus that is closest to the image center. Note that 
because the nucleus segmentation method is not perfect, some 
images do not contain any nucleus. To address this problem, 
we introduce the “no nucleus” attribute. If an images is labeled 
as “no nucleus”, no other attributes can be assigned. The 
distribution of attributes is summarized in Table 1.  

B. Classifier implementation 

      For the semi-supervised CNN, we use Theano [22] for the 
CAE and CNN implementation. To avoid overfitting, we apply 
data augmentation. Input images are randomly rotated, flipped. 
The color of input images are randomly adjusted. We use 
stochastic gradient descent with momentum for optimization 
and backpropagation for computing the gradient in the 
parameters space. The learning rates of the CAE and CNN are 
0.001 and 0.0005 respectively. The momentum is 0.975. It 
takes around 12 hours to train the CAE and 0.5 hours to train 
the CNN. Note that we only train one CAE. All CNNs are 
initialized by the same CAE. 

      For the pretrained CNN with SVM, we use MatConvNet 
[21] to extract VGG 16-layer network features and LIBSVM 
[9] for the SVM implementation. 

C. Experimental results 

      We apply five random-split validation and average the 
results. We use the Area Under the ROC Curve (AUC) as the 
evaluation metric. The AUC ranges from 0.5 (random 
prediction) to 1.0 (perfect prediction). Table 2 shows the AUC 
results of both methods. We achieved an encouraging averaged 
AUC of 0.8712. Notice that each method performs well on 
some but not all morphological attributes. Therefore, we 
achieved a better AUC of 0.9109 by combining these two 
methods. 

 AUC 

Morphological 
Attributes 

Semi-
supervised 

CNN 

VGG16 
+ SVM 

Best of two 
(per attribute) 

Perinuclear halos 0.8789 0.9257 0.9257 

Gemistocyte 0.8026 0.9548 0.9548 

Nucleoli 0.8366 0.9076 0.9076 

Grooved 0.8956 0.7296 0.8956 

Hyperchromasia 0.9450 0.8854 0.9450 

Overlapping nuclei 0.8969 0.8305 0.8969 

Multinucleation 0.7329 0.7507 0.7507 

Mitosis 0.8731 0.8559 0.8731 

Apoptosis 0.8676 0.9767 0.9767 

No nucleus 0.9828 0.9639 0.9828 

Averaged AUC 0.8712 0.8616 0.9109 

Table 2. The results of morphological attribute recognition. 

We achieved an encouraging averaged AUC of 0.8712. Notice 

that both methods perform well on some but not all 

morphological attributes and are complementary with each 

other. 

IV. CONCLUSIONS 

      In this paper, we discussed the general workflow of 
Pathomics. We employed a Convolutional Neural Network 
(CNN) in the classification step of a Pathomics workflow for 
automatic nuclear attribute recognition in glioma 
histopathology images and achieved promising results. In 
particular, we constructed a comprehensive multi-label glioma 
(the most common brain cancer) nuclear morphological 
attribute recognition dataset and applied two CNN based 
methods on this dataset. Both CNN based methods perform 
well recognizing some but not all morphological attributes and 
are complementary with each other. 
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