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Abstract

Convolutional Neural Networks (CNNs) are state-of-the-
art models for many image and video classification tasks.
However, training on large-size training samples is cur-
rently computationally impossible. Hence when the train-
ing data is multi-gigapixel images, only small patches of the
original images can be used as training input. Since there
is no guarantee that each patch is discriminative, we advo-
cate the use of Multiple Instance Learning (MIL) to combine
evidence from multiple patches sampled from the same im-
age. In this paper we propose a framework that integrates
MIL with CNNs. In our algorithm, patches of the images
or videos are treated as instances, where only the image- or
video-level label is given. Our algorithm iteratively identi-
fies discriminative patches in a high resolution image and
trains a CNN on them. In the test phase, instead of using
voting to the predict the label of the image, we train a lo-
gistic regression model to aggregate the patch-level predic-
tions. Our method selects discriminative patches more ro-
bustly through the use of Gaussian smoothing. We apply our
method to glioma (the most common brain cancer) subtype
classification based on multi-gigapixel whole slide images
(WSI) from The Cancer Genome Atlas (TCGA) dataset. We
can classify Glioblastoma (GBM) and Low-Grade Glioma
(LGG) with an accuracy of 97%. Furthermore, for the first
time, we attempt to classify the three most common sub-
types of LGG, a much more challenging task. We achieved
an accuracy of 57.1% which is similar to the inter-observer
agreement between experienced pathologists.

1. Introduction

For many image and video classification tasks, Convolu-
tional Neural Networks (CNNs) are currently the state-of-
the-art classifiers [22, 21, 5]. However, due to high com-
putational cost, CNNs cannot be applied to very high res-
olution images, such as Whole Slide Tissue Images (WSI).
We are motivated by the problem of WSI-based automatic
glioma classification. Gliomas are one of the most devas-
tating types of tumors. They are complex and highly fatal.
Better diagnosis and classification into grades and subtypes
of these tumors is critical to the study of disease onset and
progression as well as the development of targeted thera-
pies. The effects of cancer show as changes in tissue at
the cellular and sub-cellular scales. Thus, high resolution
(gigapixel) microscopy images of tissue slides provide rich
information with which to study gliomas. We need to train
a CNN model on patches extracted from the full-size im-
age. However, the ground truth labels of individual patches
are unknown, as only the image-level ground truth label is
given. Classification of gliomas into grades and subtypes
using tissue slides and microscopy images is a challenging
problem, because tumors are heterogeneous and may have
a mixture of structures and texture properties. In addition,
morphological indicators of transitions from one subtype to
another can be subtle. For these reasons, patch-level clas-
sifications are not necessarily consistent with the WSI-level
classification.

We propose using Multiple Instance Learning (MIL) as
part of a two-level model, shown in Fig. 1. The first-level
model is an Expectation Maximization (EM) based MIL
method combined into a CNN that outputs patch-level pre-
dictions. In particular, we assume that there is a hidden
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variable associated with each patch extracted from an im-
age that indicates whether the patch is discriminative or not.
Here, ”a patch being discriminative” means that the true
hidden label of the patch is the same as the true label of the
image. Initially, we consider all patches to be discriminative
and train the CNN model that outputs the cancer type prob-
ability for each input patch. We apply a spatial smoothing
to the resulting probability map and select only patches with
higher probability values as discriminative patches. We iter-
ate this process using the new set of discriminative patches
in an EM fashion until convergence. In the second-level, the
histogram of patch-level predictions is input into a multi-
class logistic regression that predicts the image-level label.

Figure 1: An overview of our workflow of glioma pathol-
ogy image classification (best viewed in color). The as-
sumption is that discriminative information is encoded in
high resolution details and some of the patches extracted
from the image do not contain such discriminative informa-
tion. Top: An EM-based MIL-CNN that iteratively iden-
tifies non-discriminative patches and eliminates them from
the training set. Bottom: The second-level model learns
how to aggregate patch-level predictions to the image-level
prediction.

Pathology image classification and segmentation is an

active field of research and development. There are three
major categories of algorithms and corresponding applica-
tions: Patch-level classification and/or segmentation meth-
ods [43, 8, 2, 34, 11] require that a lot of patch labels
are provided. Certain methods [14, 25] integrate patch-
level information into supervised WSI classification. One
method [25] uses a domain-specific pipeline for WSI-based
Glioblastoma (GBM) vs. Low-Grade Glioma (LGG) classi-
fication and detects discriminative regions such as necrotic
and microvascular proliferation areas are detected via a
fully supervised model. This method then applies a deci-
sion tree for the final prediction of classes. The domain-
specific discriminative features do not generalize to other
cancer types, not even to subtype glioma classification.
The need to integrate patch-level information without can-
cer type specific features led to MIL-based WSI classifica-
tion [13, 37, 38, 19].

In the MIL paradigm [15, 24, 3], unlabeled instances be-
long to labeled bags of instances. The goal is to predict
the label of a new bag and/or the label of each instance.
The Standard Multi-Instance (SMI) assumption [15] states
that for a binary classification problem, the bag is positive
if and only if there exists at least one positive instance in
the bag. This led to the MIL version of different clas-
sifiers [4, 41, 20], including MIL with Neural Networks
(NN) [32, 44, 23]. The Back Propagation for Multi-Instance
Problems (BP-MIP) [32, 44] performs back propagation
along the instance with the maximum response if the bag
is positive. This is inefficient because only one instance per
bag is trained in one training iteration on the whole bag. An
efficient neural network with MIL is proposed [23] with the
drawback that it only works on the feature space due to the
need of averaging over the instances.

In image classification, the image is the bag and image-
windows are the instances [26]. Thus, MIL-based CNNs
are applied to object recognition [28] and semantic seg-
mentation [30]. In these methods, the training error is only
propagated through the object-containing window which is
also assumed to be the window that has maximum pre-
diction confidence. We argue that this is not robust since
training only on high-confidence windows may lead to
overfitting. In recent semantic image segmentation ap-
proaches [9, 31, 29], a smoothing algorithm is applied on
the output probability (feature) maps of CNNs. In this way,
irrelevant windows can be identified more robustly.

We generalized the previous idea and extended it to the
patch-based image classification problem based on two as-
sumptions: First, in each image, there may exist some non-
discriminative patches. Their true latent labels do not match
the label of the image. Second, non-discriminative patches
also contribute to the image-level labels jointly. For ex-
ample [3], a beach image may contain a sand-patch and
a water-patch; neither of them are by themselves beach
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patches. Based on these two assumptions, our method con-
sists of two levels. The first-level model efficiently elimi-
nates non-discriminative patches from the final CNN train-
ing whereas the second-level logistic regression predicts the
image-level label based on the patch-level predictions [10].
The first layer model reduces the amount of noise and there-
fore improves performance. The second-level model mod-
els a more general multiple instance assumption [16] which
fits the assumption of our main application of WSI-based
glioma classification. It also can be interpreted as a stacked
generalization method [36].

Our main contributions are as follows.

1. We propose a new classification model that combines
MIL with CNNs that work in raw pixel space. It uti-
lizes the spatial relationship between patches extracted
from image to identify discriminative patches. Addi-
tionally, our algorithm adds very little computational
cost to the conventional supervised CNNs.

2. We propose a second-level model that can be applied
on datasets that do not meet the SMI assumption. On
the glioma classification dataset, this method outper-
forms the first-level model with the SMI assumption
significantly.

3. Our model achieves state-of-the-art results classifying
Glioblastoma (GBM) and Low-Grade Glioma (LGG)
on the TCGA dataset. Furthermore, for the first time,
we can classify three major subtypes of LGG with an
accuracy similar to inter-observer agreement between
experienced pathologists.

The rest of this paper is organized as follows. Sec. 2
describes the framework of the EM-based MIL algorithm.
Sec. 3 discusses the identification of discriminative patches.
Sec. 4 explains the second-level model that predicts the
image-level label by aggregating patch-level predictions.
Sec. 5 shows experimental results. The paper concludes in
Sec. 6. App. A gives glioma subtype details.

2. EM-based MIL with CNN
An overview of our EM-based method can be found in

Fig. 1. We model the high resolution image or video as a
bag and the patches extracted from it as instances. We have
a ground truth label for the whole image but not for the indi-
vidual patches. Assuming some instances are not discrimi-
native, i.e. the true label of the instances does not match the
label of the bag, whether an instance is discriminative or not
is modeled as a hidden binary variable.

We denote X = {X1, X2, . . . , XN} as the dataset con-
taining N bags. Each bag Xi = {Xi,1, Xi,2, . . . , Xi,Ni

}
consists of Ni instances, where Xi,j = 〈xi,j , yi〉 is the j-th
instance and its associated label in the i-th bag. Assuming

the bags are independent and identically distributed (i.i.d.),
the X and the hidden variables H are generated by the fol-
lowing generative model:

P (X,H) =

N∏
i=1

P (Xi | Hi)P (Hi)

=

N∏
i=1

(
P (Xi,1, Xi,2, . . . , Xi,Ni

| Hi)P (Hi)
)

,

(1)

where the hidden variable H = {H1, H2, . . . ,HN}, where
Hi = {Hi,1, Hi,2, . . . ,Hi,Ni

} and Hi,j is the hidden vari-
able that indicates whether instance xi,j is discriminative
for label yi of bag Xi. We further assume that all Xi,j

depends on Hi,j only and are independent with each other
given Hi,j . Thus

P (X,H) =

N∏
i=1

Ni∏
j=1

(
P (Xi,j | Hi,j)P (Hi)

)
. (2)

We maximize the data likelihood P (X) using the EM
algorithm.

1. At the initial E step, we set Hi,j = 1 for all i, j. This
means that all instances are considered discriminative.

2. M step: We update the model parameter θ to maximize
the data likelihood

θ ← argmax
θ

P (X | H; θ)

= argmax
θ

∏
xi,j∈D

P (xi,j , yi | θ)

×
∏

xp,q 6∈D

P (xp,q, yq | θ),

(3)

where D is the set of discriminative patches. We
assume a uniform generative model for all non-
discriminative instances. Therefore the optimization
problem in Eq. 3 can be simplified to

argmax
θ

∏
xi,j∈D

P (xi,j , yi | θ)

= argmax
θ

∏
xi,j∈D

P (yi | xi,j ; θ)P (xi,j).
(4)

Additionally we assume a uniform distribution over
xi,j . Thus Eq. 4 describes a discriminative model (in
this paper we use a CNN).
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3. E step: We estimate the hidden variables H . In par-
ticular, Hi,j = 1 if and only if P (Hi,j | X) is above
a certain threshold. In the case of image classifica-
tion, given the i-th image, P (Hi,j | X) is obtained by
applying Gaussian smoothing on P (yi | xi,j ; θ) (De-
tailed in Sec 3). This smoothing step utilizes the spatial
relationship of P (yi | xi,j ; θ) in the image. We then
iterate back to the M step till convergence.

Many MIL algorithms can be interpreted as a version
of this formulation. Based on the SMI assumption, the in-
stance with the maximum P (Hi,j | X) is considered as the
discriminative instance for the positive bag, as in the EM
Diverse Density (EM-DD) [42] and the BP-MIP [32, 44]
algorithms. In the latter case, a single gradient descent is
performed in the M step per positive bag, which makes the
algorithm computationally inefficient. In the field of seman-
tic image segmentation, [29] uses a fully connected Condi-
tional Random Field (CRF) to model P (H | X) and then
perform the relevant EM-based updates.

3. Discriminative instance selection
This section focuses on the E step of estimating P (H |

X) and the way to choose a threshold for determining
whether a patch is discriminative. After this step, the
patches xi,j that have P (Hi,j | X) larger than a thresh-
old Ti,j are considered as discriminative and are selected to
continue training the CNN.

To estimate P (Hi,j | X), it is straightforward to assume
that P (Hi,j | X) is correlated with P (yi | xi,j ; θ), i.e.
patches with lower P (yi | xi,j ; θ) tend to have lower proba-
bility xi,j to be discriminative. However, a hard-to-classify
patch, or a patch close to the decision boundary may have
low P (yi | xi,j ; θ) as well. These patches are informative
and should not be rejected as non-discriminative. There-
fore, to obtain a more robust P (Hi,j | X), we apply the
following two steps: First, we train two CNNs on two dif-
ferent scales in parallel and the prediction P (yi | xi,j ; θ)
is the averaged prediction of the two CNNs. Second, we
simply denoise the probability map P (yi | xi,j ; θ) of each
image with a Gaussian kernel to obtain P (Hi,j | X).

Choosing a thresholding scheme carefully yields sig-
nificantly better performance than a simpler thresholding
scheme [29]. We obtain the threshold Ti,j for P (Hi,j | X)
as follows: We note Si as the set of P (Hi,j | X) values for
all xi,j of the i-th image and Ec as the set of P (Hi,j | X)
values for all xi,j of the c-th class. We introduce the image-
level threshold Hi as the P1-th percentile of Si and the
class-level thresholdRi as the P2-th percentile ofEc, where
P1 and P2 are predefined parameters. Then the threshold
Ti,j is defined as the minimum value between Hi and Ri.
There are two advantages of our method. First, by using the
image-level threshold, there are at least 1 − P1 percent of

patches that are considered discriminative for each image.
Second, by using the class-level threshold, the thresholds
can be easily adapted to classes with different prior proba-
bilities.

Layer Filter size, stride Output size
Input - 400× 400× 3
Conv 10× 10, 2 196× 196× 80

ReLU+LRN - 196× 196× 80
Max-pool 6× 6, 4 49× 49× 80

Conv 5× 5, 1 45× 45× 120
ReLU+LRN - 45× 45× 120

Max-pool 3× 3, 2 22× 22× 120
Conv 3× 3, 1 20× 20× 160

ReLU - 20× 20× 160
Conv 3× 3, 1 18× 18× 200

ReLU - 18× 18× 200
Max-pool 3× 3, 2 9× 9× 200

FC - 320
ReLu+Drop - 320

FC - 320
ReLu+Drop - 320

FC - 6
Softmax - 6

Table 1: The architecture of our CNN used in glioma clas-
sification. The output size is given in width × height ×
the number of feature maps. ReLU+LRN is a sequence
of Rectified Linear Units (ReLU) followed by Local Re-
sponse Normalization (LRN). Similarily, ReLU+Drop is a
sequence of ReLU followed by dropout. The dropout prob-
ability is 0.5.

4. Image label prediction
In this section we describe how we combine the patch-

level classifiers of Sec. 3 to predict accurately the image-
level label. We input all the predictions of the patch-level
classifiers into a multi-class logistic regression that predicts
the image-level label. There are two reasons for combin-
ing multiple instances: First, on difficult datasets, we do not
want to assign an image-level prediction just based simply
based on a single patch-level prediction (as is the case of the
SMI assumption [15]). Second, even though certain patches
are not discriminative individually, their joint appearance
might be discriminative. For example, Oligoastrocytoma
(OA) (see App. A) is a ”mixed” type glioma that is diag-
nosed when two single glioma types (Oligodendroglioma
and Astrocytoma, possibly on different patches) are jointly
present on the slide.

In particular, the class histogram of the patch-level pre-
dictions is the input to our linear multi-class logistic regres-
sion model [6]. This model uses an L2 regularizer which is
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selected by cross-validation on a validation dataset. A lin-
ear model is sufficient in this case because the inputs of the
model are expected to be directly correlated with the output
labels. This model can be thought of a count-based multiple
instance learning method with two-level learning [35].

5. Experiments
We have evaluated our method on two datasets: The Can-

cer Genome Atlas (TCGA) dataset [1] for Whole Slide Im-
age (WSI) based glioma classification and the Kinect inter-
action dataset [39] for two-person interaction classification.

5.1. WSI-based glioma classification

We have evaluated our algorithm to the glioma classifi-
cation problem on the TCGA dataset. Based on large scale
experiments we show that our model outperforms existing
methods significantly.

5.1.1 TCGA dataset

The TCGA dataset contains detailed clinical information
and the Hematoxylin and Eosin (H&E) stained WSIes of
6 types of gliomas. A typical resolution of a WSI is 100k
by 50k pixels. Fig. 2 shows sample patches of each class.
The numbers of WSIes and patients in each class are shown
in Tab. 2. All classes are described in the App. A.

Glioma # of WSIes # of patients
GBM 510 209

OD 206 100
OA 183 106
DA 114 82
AA 36 29
AO 15 13

Table 2: The numbers of WSIes and patients in each class
from the TCGA dataset. For descriptions of each class, see
the App. A.

5.1.2 Patch extraction and augmentation

To train the CNN model, patches of size 500 by 500 are
extracted from the WSI. To capture structures in different
scales, we extract patches from two scales: 20X (0.5 mi-
crons per pixel) and 5X (2.0 microns per pixel). Patches
that contain less than 30% tissue sections or have too much
blood are discarded. For each WSI, patch stride is computed
carefully to make sure around 1000 valid patches per image
per scale are extracted. Therefore, in most cases the patches
are non-overlapping given the resolution of the WSI.

To prevent the CNN from severe overfitting, we perform
three kinds of data augmentation. First, a random S by S

sub-patch is selected, where S is a predefined hyperparame-
ter. Second, the sub-patch is randomly rotated and mirrored.
Third, the amount of Hematoxylin and eosin stained on the
tissue is randomly adjusted. This is done by decomposing
the RGB color of the tissue into H&E color space [33], fol-
lowed by multiplying the magnitude of H and E of every
pixel by two i.i.d. Gaussian random variables with expecta-
tion equal to one.

5.1.3 CNN architecture

Following previous work [21], the architecture of our CNN
is shown in Tab. 1. We used the CAFFE tool box [18] for
the CNN implementation. The network was trained on a
single NVidia Tesla 40K GPU.

5.1.4 Experiment setup

To test our method, WSIes of 80% of the patients are ran-
domly selected to train the model and the remaining 20%
for testing. Depending on the method, the training set is
further divided into two parts randomly: the CNN training
set and the logistic regression cross-validation set. The data
separation is performed twice and the results are averaged.

The algorithms tested are listed below.

1. NM-LBP: Nuclei Morphological features [12] and ro-
tation invariant Local Binary Patterns [27] are ex-
tracted from all the patches extracted from the image,
followed by SVM with radial basis function kernel [7].
We report this as a non-CNN baseline.

2. CNN-Vote: CNN followed by voting. Instead of train-
ing the second-level logistic regression, the final pre-
dicted label of the WSI is determined by voting from
the prediction of all its patches.

3. CNN-SMI: CNN followed by max-pooling. This
method follows the SMI assumption. The final pre-
dicted label of the WSI equals to the predicted label
of the patch with maximum probability over all other
patches and classes.

4. CNN-LR: CNN followed by our second-level multi-
class logistic regression to predict the image-level la-
bel. One tenth of the images is held out from the CNN
to train the second-level multi-class logistic regression
by 10-fold cross-validation.

5. EM-CNN-Vote: CNN-Vote with our EM-based MIL.
The percentile for class-level threshold P1 = 5%. The
percentile for image-level threshold P2 = 30%. See
Sec. 3 for the description of these parameters. In each
M step, the CNN is trained on all the discriminative
patches for 2 epochs.
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(a) GBM (b) OD (c) OA (d) DA (e) AA (f) AO

Figure 2: Some 20X sample patches of 6 types of gliomas from the TCGA dataset. The two patches in each column belong
to the same class. Notice the large intra-class heterogeneity.

6. EM-CNN-SMI: CNN-SMI with our EM-based MIL.

7. EM-CNN-LR: CNN-LR with our EM-based MIL.

8. NS-CNN-LR: No Gaussian Smoothing is applied to
estimate P (H | X). Other parts are the same as EM-
CNN-LR.

Algorithms Accuracy mAP Training Hrs
Chance 0.513 0.689 -
NS-LBP 0.629 0.734 32
CNN-Vote 0.710 0.812 210
CNN-SMI 0.710 0.822 210
CNN-LR 0.752 0.847 201
EM-CNN-Vote 0.733 0.837 243
EM-CNN-SMI 0.719 0.823 243
EM-CNN-LR 0.771 0.845 240
NS-CNN-LR 0.745 0.832 225

Table 3: Glioma classification results. All algorithms in this
table use multiscale patches (5X and 20X). The proposed
method EM-CNN-LR outperforms CNN-Vote and CNN-
SMI significantly.

5.1.5 Results

The results of our experiments are shown in Tab. 3. The
confusion matrix is given in Tab. 4. From the confusion ma-
trix, we observe that classification accuracy between GBM
and LGG is 97% (chance was 51.3%). A fully super-
vised method achieved 85% accuracy using a domain spe-
cific algorithm trained on ten manually labeled patches per
class [25]. To the best of our knowledge our method is the

Predictions
Ground Truth GBM OD OA DA AA AO

GBM 214 2 1
OD 1 47 22 2 1
OA 1 18 40 8 3 1
DA 3 9 6 20 1
AA 3 2 3 3 4
AO 2 2 3 1

Table 4: The confusion matrix of glioma classification. The
Oligoastrocytoma introduces the most confusions due to its
nature. See Sec. 5.1.5 for details.

first to classify automatically LGG subtypes, a much more
challenging classification task than the benchmark GBM vs.
LGG classification. We achieve 57.1% LGG-subtype clas-
sification accuracy with chance being 36.7%. Notice that
there are more confusions related to Oligoastrocytoma (OA)
because it is a mixed glioma that is challenging even for
pathologists to agree on. An experiment showed that the
inter-observer agreement of four experienced pathologists
in a LGG-labeling task similar to the one we are attempting
in this paper 1 was approximately 52% and that even after
reviewing the cases together, they agreed only around 69%
of the time [17].

We tried different patch sizes S and report training time
as well and accuracy in Fig. 4. Examples of discriminative
and non-discriminative patches identified by the E-step are
shown Fig. 3.

1 Our results are not directly comparable due to different composition
of datasets.
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(a) GBM (b) OD (c) OA (d) DA

Figure 3: Examples of automatically identified discrimina-
tive (first row) and non-discriminative (second row) patches
of four glioma types.
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200p 5X EM−CNN−LR

200p 20X EM−CNN−LR

400p 5X EM−CNN−LR

400p 20X EM−CNN−LR

400p multiscale CNN−LR

400p multiscale EM−CNN−LR

Figure 4: Training time and results for different sizes of
patches. Note that the multiscale settings and EM-based
approaches increase accuracy significantly.

5.2. Two-person interaction classification

We performed an additional experiment on the SBU
Kinect interaction dataset [40], a less challenging, well un-
derstood dataset, both as a sanity check and to test the ap-
plicability of our method to other types of large scale, hard
to annotate precisely image-based data. The goal of the
dataset is to detect two-person interaction activities in RGB-
D videos. We use the noisy version of the dataset [40].
Compared to the clean version, each video segment contains
five more frames at both its start and end. In total 260 video
segments of eight two-person interaction types are pro-
vided: “approaching”, “departing”, “kicking”, “punching”,
“pushing”, “hugging”, “shaking hands”, and “exchanging”.
The classification task is an MIL problem because some of
the frames do not contain the labeled video-level actions.

To train the CNN model, we only use depth frames. The
architecture of our CNN is similar to that in Table 1 but
has much smaller filters and fewer feature maps. The train-
ing error converges in a few hours on a single NVidia Tesla

40K GPU. The accuracy of the interaction classification is
shown in Table 5. An analysis of the non-discriminative
frame identification results is given in Figure 5. Since this
is an “easy” dataset, CNN performance is already high and
so our EM-based method does not improve them further in
this dataset. Nevertheless, it identifies non-discriminative
patches effectively. Since there is no evidence showing that
non-discriminative frames would contribute to the video-
level label in this dataset, there is no need to apply a second-
level logistic regression. In contrast, for the glioma clas-
sification task, a WSI of OA may contain two unoverlap-
ping regions of different gliomas (See App. A); therefore,
patches from these two regions decide the image-level label
jointly, and the second level LR is essential.

Algorithms Accuracy
Chance 0.165
MILBoost 0.873
MILBoost clean 0.911
SVM Linear 0.687
SVM Linear clean 0.876
CNN-Vote 0.926
CNN-SMI 0.920
CNN-LR 0.803
EM-CNN-Vote 0.923
EM-CNN-SMI 0.931
EM-CNN-LR 0.824

Table 5: The results of two-person interaction classification.
The SVM and MILBoost algorithm [41] uses skeleton fea-
tures extracted from the RGB-D frames [40]. Notice that
CNNs on the noisy dataset already outperfom MILBoost on
the clean dataset (MILBoost clean). See text for details.

6. Conclusions
We proposed a Multiple Instance Learning (MIL)

based Convolutional Neural Network (CNN) model with a
second-level logistic regression that can be applied to high
resolution image classification. In this method, we assume
that images are too large to apply CNN on whole images.
On the other hand, patches extracted from an image may
not be discriminative. Thus we follow a Multiple Instance
Learning paradigm. We model whether a patch is discrim-
inative or not by a hidden variable and apply EM to max-
imize the data likelihood. There are two key ideas of our
algorithm. First, a spatial prior regularizes the hidden vari-
ables. Second, the second-level model is applied on datasets
that do not meet the Standard Multiple Instance (SMI) as-
sumption. With our algorithm, we can classify three ma-
jor subtypes of Low-Grade Glioma (LGG) with an accu-
racy similar to inter-observer agreement between experi-
enced pathologists. As part of future work we plan to lever-
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Figure 5: The localization of identified non-discriminative
(irrelevant) frames. The identified non-discriminative
frames which do not contain the labeled video-level action
are concentrated at either the start or end of the video. This
phenomenon is clearer if temporal Gaussian smoothing is
applied (EM-CNN-SMI) compared to the algorithm with-
out smoothing (NS-CNN-SMI). In this noisy version of the
two-person interaction dataset, each video segment contains
five more frames at both its start and end. Therefore, the
non-discriminative frames are detected at the two ends of
the video as expected, which acts as a sanity check for our
claim of detecting non-discriminative frames.

age the non-discriminative patches as part of the dataset.
We will explore soft assignments of for the probability that
a patch is discriminative. We also plan to test our method
with images from other cancer types.

Appendices
A. Description of gliomas in the TCGA dataset

The Cancer Genome Atlas (TCGA) project has whole
slide tissue images from glioblastoma multiforme (GBM)
and lower grade glioma (LGG) patients. Gliomas are differ-
entiated into grades and sub-categories based on pathologic
evaluation of tissues. This evaluation includes assessment
of cell characteristics (such as shape and texture) as well as
tissue region characteristics (such as existence of necrotic
regions). Below is the list of glioma grades and subtypes
available at the TCGA repository.

1. GBM: Glioblastoma, ICD-O 9440/3, WHO grade IV.
GBM is the high grade glioma that are mostly found in
cerebral hemispheres. A Whole Slide Image (WSI) is
classified as GBM if and only if one patch can be clas-
sified as GBM with high confidence by a pathologist.

2. OD: Oligodendroglioma, ICD-O 9450/3, WHO grade

II.

3. OA: Oligoastrocytoma, ICD-O 9382/3, WHO grade
II; and Anaplastic oligoastrocytoma, ICD-O 9382/3,
WHO grade III. These two subtypes are mixed in one
class because they have the same International Classi-
fication of Diseases for Oncology (ICD-O) code. Also,
the two subtypes are both mixed gliomas of OD and
DA. In other words, a WSI of OA may contain two dis-
tinct regions of OD and DA. OA is very hard to classify
even by pathologists [17].

4. DA: Diffuse astrocytoma, ICD-O 9400/3, WHO grade
II.

5. AA: Anaplastic astrocytoma, ICD-O 9401/3, WHO
grade III.

6. AO: Anaplastic oligodendroglioma, ICD-O 9451/3,
WHO grade III.
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