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Abstract

Despite recent advances in computer vision, image cate-
gorization aimed at recognizing the semantic category of an
image such as scene, objects or actions remains one of the
most challenging tasks in the field. However, human gaze
behavior can be harnessed to recognize different classes of
actions for automated image understanding. To quantify
the spatio-temporal information in gaze we use segments
in each image (person, upper-body, lower-body, context)
and derive gaze features, which include: number of tran-
sitions between segment pairs, avg/max of fixation-density
map per segment, dwell time per segment, and a measure
of when fixations were made on the person versus the con-
text. We evaluate our gaze features on a subset of images
from the challenging PASCAL VOC 2012 Action Classes
dataset, while visual features using a Convolutional Neu-
ral Network are obtained as a baseline. Two support vector
machine classifiers are trained, one with the gaze features
and the other with the visual features. Although the baseline
classifier outperforms the gaze classifier for classification
of 10 actions, analysis of classification results over reveals
four behaviorally meaningful action groups where classes
within each group are often confused by the gaze classifier.
When classifiers are retrained to discriminate between these
groups, the performance of the gaze classifier improves sig-
nificantly relative to the baseline. Furthermore, combining
gaze and the baseline outperforms both gaze alone and the
baseline alone, suggesting both are contributing to the clas-
sification decision and illustrating how gaze can improve
state of the art methods of automated action classification.

1. Introduction
Visual media such as images are powerful forms of com-

munication due to the vast amount of information they can

convey, but image understanding remains a tremendously
complex and nuanced task that is only reliably conducted by
humans. In particular, eye movement behavior is strongly
connected with the way humans interpret images and has
been widely studied in cognitive science [28, 8]. Recently,
several researchers have started to use eye movement data in
conjunction with automatic computer vision algorithms for
better understanding of images and videos. Human gaze is
used for many standard computer vision tasks such as im-
age segmentation [17, 19], object detection [30, 29, 18],
and face and text detection [11], but the usefulness of
human gaze for action recognition in still images has not
beeen studied yet. There exists a vast number of applica-
tions for gaze-enabled action classification, including im-
age retrieval, real world action detection (as with security
footage), and image annotation of large-scale datasets such
as ImageNet, Flickr, etc. Mathe and Sminchisescu [21]
propose prediction of gaze patterns for different behavioral
tasks, but eye movement data has not been directly used for
action classification. Even though some work has shown
that eye movement behavior leads to improved performance
for action recognition [16, 22] and action localization [20]
in videos, human gaze has only been used to identify salient
regions on which computer vision features are then com-
puted. Furthermore, sophisticated spatio-temporal gaze fea-
tures have not been studied for action recognition. Thus, the
focus of this study is to explore the usefulness of gaze data
for action recognition in still images.

Recognizing from a still image the action that humans
are performing is one of the most difficult facets of image
analysis, and a multitude of methods has been developed in
recent years. Reserachers have used low-level visual fea-
tures (e.g SIFT [14] and HOG [3]), high-level features
(e.g. attributes [27, 1], body parts and pose [25, 10, 9]
and human-object interaction [26, 24]) and more sophisti-
cated visual features such as Convolutional Neural Network
[2, 12]. Furthermore, the Bag-of-Words (BoW) [4] repre-
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sentation combined with Spatial Pyramid Matching (SPM)
[13] or Regularized Max Pooling [9] has been often used.

The PASCAL Visual Objects Classes (VOC) 2012 Ac-
tions image set is one of the most difficult publicly avail-
able datasets for action classification. Ten different ac-
tion classes, plus a trivial ‘other’ class, are identified:
‘walking’, ‘running’, ‘jumping’, ‘ridinghorse’, ‘ridingbike’,
‘phoning’, ‘takingphoto’, ‘usingcomputer’, ‘reading’, and
‘playinginstrument’. We analyze eye movement data col-
lected from Mathe and Sminchisescu [21], and propose
several novel gaze features for action classification. In order
to quantify behavioral patterns under simplified conditions,
we choose a subset of images containing exactly one whole
human performing an action. We automatically split the an-
notations as segments (e.g. person, upper-body, lower-body,
context) and derived gaze features, which includes: number
of transitions between segment pairs, avg/max of fixation-
density map per segment, dwell time per segment, and a
measure of when fixations were made on the person versus
the context.

Two Support Vector Machine (SVM) classifiers are
trained, one using visual features and one using gaze fea-
tures, and the confidence scores of the classifiers are com-
bined in a novel combination method. Although average
precision across the ten action categories was poor, the gaze
classifier revealed four distinct behaviorally-meaningful
subgroups where actions within each subgroup were highly
confusable. Retraining the classifiers to discriminate be-
tween these four subgroups resulted in significantly im-
proved performance for the gaze classifier. Moreover, the
gaze+vision classifier outperformed both the gaze-alone
and vision-alone classifiers, suggesting that gaze-features
and vision-features are each contributing to the classifica-
tion decision.

From a cognitive psychology perspective, we attempt to
analyze patterns in gaze across various actions and look
for inter-class differences as well as intra-class consistency
through spatial, temporal, and durational features. Our re-
sults have implications for both behavioral and computer
vision; gaze patterns can reveal how people group similar
actions, which in turn can improve automated action recog-
nition.

The paper is organized as follows: Section 2 provides a
detailed description of the dataset. In Section 3, we propose
several novel gaze features and describe the classification
methods. Section 4 shows the experimental results, and the
reasons for and meanings behind these results are discussed
in Section 5. Lastly, Section 6 concludes the paper.

2. Datasets
Images: The challenging PASCAL VOC 2012 Action
Classes dataset is divided into a training and validation set
of 4588 images and a test set of 4569 images for a total of

9157 images [5]. However, these images contain a large
amount of intra-class variation regarding the number of hu-
mans in an image, the number of actions being performed in
an image, and the fraction of the human found in an image
(such as a whole human, only a torso, only a head, or almost
none at all). For gaze data to be meaningful and comparable
across images, 50 images per class (for a total of 500) were
selected to depict exactly one whole person performing an
action. Some iterations of the action classification challenge
allow for annotations such as human bounding boxes on the
bodies of the humans [5]. The baseline computer vision
algorithm utilizes human bounding box annotations, so for
the sake of consistency, gaze features were computed using
the same annotations.
Eye Movement Data: Fixation data [21] were collected
with an SMI iView X HiSpeed 1250 tower-mounted eye
tracker over the entire PASCAL VOC 2012 Action Classes
dataset from 8 subjects who were asked to recognize the
actions in the images and indicate them from the labels pro-
vided by the PASCAL VOC dataset. Subjects were given
3 seconds to freely view an image, during which x- and y-
coordinate gaze position was recorded. The first of these
fixations is also discarded because subjects started each trial
by fixating a cross corresponding to the center of each im-
age. Figure 1 shows an example of human eye movement
data in the dataset.

3. Action Classification using Gaze Features

3.1. Analysis of Human Gaze

To discover gaze patterns, we explored different methods
of visualizing the fixation data. We first visualize gaze data
by plotting fixations for each subject and for each image
in the dataset, with saccades indicated by lines and order
indicated by color temperature. Aggregated fixation visual-
izations are also generated by plotting fixations for all sub-
jects on the same image. Spatial agreement between sub-
jects is indicated by more tightly-grouped fixations, while
temporal agreement is indicated by similar patterns of sac-
cade lines (Figure 1b). Fixations from all subjects were also
clustered using a Gaussian Mixture Model (GMM) [23].
Denser fixation clusters suggest areas of interest with high
subject agreement, whereas sparser fixation clusters sug-
gest idiosyncratic differences in viewing behavior perhaps
related to establishing scene context (Figure 1c). Lastly, we
generate fixation density maps (FDMs) computed using a
two-dimensional Gaussian distribution, with a sigma corre-
sponding to one degree of visual angle, centered on each
fixation and weighted by fixation duration. (Figure 1d).

By exploring the visualizations, we made several obser-
vations that could be useful for classification. First, the
number of fixations and the dwell time over the upper-body
and lower-body are significantly different between classes
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Figure 1: Various methods of visualization are used to elucidate gaze patterns. Examples of original images from the dataset
are shown in a. Aggregated fixations are illustrated in b, with different subjects distinguished by color. Earlier fixations are
drawn with darker circles, while later fixations are drawn with lighter circles. Results of fixation clustering with GMM are
shown in c with different colors representing different clusters. FDMs weighted by fixation duration are illustrated in d.

(Figure 3), as is the number of fixations over the context
(Figure 1c). Second, the number of transitions is also dif-
ferent. Moreover, the FDMs are clearly different among ac-
tion classes (see Figure 2, therefore, the FDM is a possible
gaze feature for the action classification. The temporal or-
ders of fixations are important information we must convey
in a feature as well.

3.2. Gaze Features

Given these observations, we propose several novel gaze
features for action classification. A heuristic approach was
taken to divide an image into useful segments for gaze
analysis. Upper- and lower-body segments of the person
in each image were identified by taking the ratio of the
width and height of the human bounding box and split-
ting the bounding box either horizontally or vertically for
those with greater heights or widths, respectively. In im-
ages with horizontally-split bounding boxes, the upper seg-

ment is assumed to be the upper body and the lower segment
is assumed to be the lower body. However, images with
vertically-split bounding boxes lack an intuitive method of
identifying the upper- and lower-body segments; instead a
head detector [15, 6] is run in each segment and the higher-
scoring segment is considered the upper body. The result-
ing three segments (upper-body, lower-body and context)
are used to obtain the number of gaze transitions between
each pair of segments. The total duration of fixations in
each segment is also computed (Figure 3).

Similarly, the human bounding box is divided into nine
equal segments and the number of transitions between each
pair of segments is calculated for a total of 36 gaze fea-
tures. The sparseness of these features is compensated by
the higher number of features generated by this method.
FDMs are also generated for the image and the mean and
max values of the bounded portion of the FDM are taken
for each subregion of the human bounding box (Figure 5).



Figure 2: Average FDMs generated from regions of duration-weighted FDMs bounded by human bounding boxes. Transi-
tions between upper and lower body are shown in the ’walking’, ’running’, ’jumping’, ’ridinghorse’ and ’ridingbike’ classes.

Figure 3: Gaze transitions between the upper body segment, the lower body segment and the context segment are counted for
each subject, yielding 3 gaze features.

Figure 4: Average fixation temporal density timelines from all images in the dataset for each class are illustrated. The mean
and maximum values in each segment are taken as features. Subjects looked at the person in the image within a second,
resulting in the peak observed at that time. The following decline in temporal density likely reflects later looks to context-
relevant objects. Although temporal density differs between classes, all classes showed a generally similar trend. Figure best
viewed in color.



Figure 5: Fixation density maps were split into nine equal
segments, from which the mean and maximum values of
each segment and the number of transitions between each
pair of segments are used as features.

Gaze Feature Dimension
9 Region (FDM mean/max) 18
9 Region (transitions) 36
Upper/Lower/Context (fixation duration) 3
Upper/Lower/Context (transitions) 3
Temporal Density Timeline (mean/max) 12

Table 1: We create several gaze features using different sets
of spatial segments (9 Region and Upper/Lower/Context) as
well as temporal information (Temporal Density Timeline).
Dimensions of each feature type are given.

Lastly, fixation temporal density is quantified in a man-
ner similar to spatial density by associating a vector of 300
values to each image to represent duration of the viewing
period in units of 10 milliseconds. A Gaussian distribution
is placed at each timestamp where a fixation within the hu-
man bounding box occurs, and the vector is divided into
equal segments from which the mean and maximum values
are taken as features (Figure 4). Six segments were chosen
to balance sparseness and resolution.

3.3. Action Classification

Support Vector Machine (SVM) classifiers are trained
for action recognition in still images. For the training set
we randomly select 25 images from each class for a total
of 250 images; the remaining images constitute the testing
set. In the process of training, a random subset of 50 im-
ages is selected from the training set as a validation set to
tune various parameters with 5-fold cross validation. For
the baseline, SVM is trained with a linear kernel, since the
CNN features with fixed subregions were demonstrated to

exhibit no significant difference between classification with
a linear kernel and with an RBF kernel [9]. A polynomial
kernel was used with the gaze features, since this kernel
was demonstrated to perform best overall. All features were
normalized before training SVMs. We conduct 1-vs-all bi-
nary classification for each action and measure performance
using Mean Average Precision (mAP), which is a standard
measurement used for many visual recognition challenges
[8]. To obtain mAP, we first compute the Average Precision
(AP) for each of the action classes, and the mAP is the aver-
age of the obtained APs. A confusion matrix was generated
for the gaze classifier to determine which actions were com-
monly confused. Frequently confused actions were grouped
and SVMs were retrained to account for the confusion.

3.4. Baseline and Feature Combination

For baseline comparison we derive purely visual fea-
tures using a Convolutional Neural Network (CNN). CNN
features have a substantially more sophisticated structure
than standard representations using low-level features, and
have shown excellent performance for image classification
[2, 12]. To extract CNN features, we use the publicly avail-
able Caffe implementation [2] of the CNN architecture de-
scribed by Krizhevsky et al [12]. There exist two different
baselines. For the first baseline, we extract a 4096 dimen-
sional CNN feature vector from the human bounding box.
This feature vector is referred to as CNN M 4096 in [2].
For the second baseline, we extract CNN features for 100
fixed subregions as in [9]. An image is divided into a grid
of 16 blocks (4x4) and analyzed in terms of 100 rectan-
gular subregions formed by contiguous chunks of blocks.
This method is called MultiReg in [9]. MultiReg is similar
to SPM, but it is based on rigid geometric correspondence
and features from a different set of subregions. The sec-
ond baseline is able to convey a spatial relationship between
body parts of the person.

The combination method is followed by Equation 1.

sc = ωsg + (1− ω)sb (1)

where sg and sb are SVM confidence scores for the gaze
and baseline classifiers, respectively, while sc is the SVM
confidence score of the combination method. We optimize
ω with 5-fold cross validation on training images and use sc

to compute average precision.

4. Experimental Results
Classifiers were trained using the CNN features com-

puted for 100 fixed subregions as well as using only the
CNN features corresponding to the entire human bounding
box (HBB). The combination method was implemented us-
ing both CNN feature classifiers as the ‘baseline’ classifier.
The computed APs for the gaze classifier were found to be



Figure 6: The confusion matrix for the gaze-alone classi-
fier suggests that certain similar actions tend to elicit simi-
lar gaze patterns. Classification results improve when these
actions are grouped as illustrated above.

comparable to those of the CNN classifiers for the ‘walk-
ing’, ‘phoning’ and ‘takingphoto’ classes (Table 2). APs for
confidence vector combination were very close to those of
the CNN feature classifiers and the combination using CNN
human bounding box features actually performed best in the
‘reading’ class, but the CNN classifier using 100 subregions
performed best overall.

Figure 6 shows the confusion matrix of the result. The
actions were divided into 4 groups of commonly confused
classes: 1) ‘walking’, ‘running’, and ‘jumping’; 2) ‘rid-
inghorse’ and ‘ridingbike’; 3) ‘phoning’ and ‘takingphoto’;
and 4) ‘reading’, ‘usingcomputer’, and ‘playinginstrument’.

4.1. Classification Results with Subgroups

The classifiers were retrained with new ground truth la-
bels associated with the aforementioned commonly con-
fused classes. The performance of the gaze classifier was
comparable to that of the CNN classifiers in most groups
and actually outperformed them in the ‘phoning + taking-
photo’ group. Moreover, the combination using CNN fea-
tures over 100 subregions performed best in the ‘using-
computer + reading + playinginstrument’ group, while the
combination using CNN human bounding box features per-
formed best in the remaining two class groups and per-
formed best overall, demonstrating that the best classifica-
tion results arise from a combination of gaze and CNN fea-
tures at the classifier level (Table 3).

5. Discussion

The gaze classifier yielded results that were compara-
ble to those of the CNN feature classifiers for single action
classification, so gaze-based classifiers have the potential to
serve as an alternative action classification method. When
frequently confused classes are grouped together and clas-
sifiers are retrained, the performance of the gaze classifier

improves dramatically and the method of combining confi-
dence outputs with optimized weights significantly outper-
forms the CNN classifiers, indicating that gaze can be used
as an effective supplement to existing visual features and
can give unique insight into the task of action classification.

5.1. Gaze Classifier Confusion

Figure 6 indicates some degree of confusion between
classes using the gaze-alone classifier. The most frequent
instances of confusion occur among the actions grouped
into the aforementioned four classes. The ‘walking’, ‘run-
ning’, and ‘jumping’ classes tend to be mistaken for each
other since the poses of people performing these actions are
very similar. The human process of discriminating between
these classes also yields similar gaze results. In particular,
subjects looked at faces, which were naturally interesting
areas of the image, and the legs, which contained informa-
tion about which of the three actions the person was per-
forming. Thus, for all three classes there were notable tran-
sition patterns from the upper- and lower-body segments of
the human bounding box.

The natural similarities between the ‘ridinghorse’ and
‘ridingbike’ classes also accounted for similar gaze pat-
terns, as subjects looked below the people in images to iden-
tify the horses or bikes they were riding. In certain images
where the horse or bike rider was facing sideways, sub-
jects also looked at the hands of humans riding bikes in the
same manner as they looked at the heads of horses, both
of which were located in front of the human and gave in-
formation about the action being performed in the image.
Without any other information about the image, these simi-
lar patterns contributed to the confusion between these two
classes. Gaze transitions between heads and legs of the
‘walking’, ‘running’, and ‘jumping’ classes were also simi-
lar to those between human heads and the horses or bikes in
the ‘ridinghorse’ and ‘ridingbike’ classes, respectively, so
confusion between all five classes was also observed.

The ‘phoning’ and ‘takingphoto’ classes, both involv-
ing small devices commonly held near the head, were
frequently confused since fixations were clustered around
the head for most images. However, since fixations on
phones/cameras were largely indistinguishable from fixa-
tions on the head, gaze patterns for the ‘phoning’ and ‘tak-
ingphoto’ classes were perceived to exhibit much greater
frequencies of head fixations than those for any other
classes. Thus, using gaze for classification of these two ac-
tions grouped together yielded excellent results that outper-
formed the baseline significantly (Table 3).

Since the ‘usingcomputer’, ‘reading’ and ‘playinginstru-
ment’ classes all involved interaction with an object that
was generally held away from the body, they prompted gaze
transitions between the head and hands. Since there tended
to be greater deformation in these classes than in any oth-



walk run jump horse bike phone photo comp’ read instru’ mAP
Gaze Features 46.72 41.75 41.65 70.63 34.15 47.58 46.24 38.74 35.01 36.08 43.86
CNN 35.22 74.69 74.03 91.22 98.70 36.20 42.53 74.34 59.73 60.95 64.76
CNN-MultiReg 58.03 77.70 87.47 98.41 96.63 49.29 57.94 72.84 58.46 67.24 72.40
Gaze + CNN 35.22 74.68 78.59 92.99 98.70 36.20 42.54 74.34 60.19 60.96 65.44
Gaze + CNN-MultiReg 58.03 77.70 87.47 94.75 96.63 49.29 57.94 72.84 58.46 67.24 72.04

Table 2: AP is computed for each classifier and for each action. Gaze is comparable with CNN in some classes, and
combination methods yield similar results as CNN, suggesting the baseline confidence vectors are contributing most to the
decision. Highest AP values for each class are bolded, as is the highest mAP.

walk + run + jump horse + bike phone + photo comp’ + read + instru’ mAP
Gaze Features 80.33 79.21 81.64 83.48 81.17
CNN 86.39 97.53 61.13 92.21 84.32
CNN-MultiReg 88.72 97.63 65.35 92.32 86.01
Gaze + CNN 92.29 98.99 76.09 93.93 90.33
Gaze + CNN-MultiReg 90.21 98.32 76.36 94.10 89.75

Table 3: AP values are computed for each classifier and for each group of commonly-confused classes. Gaze performs best
for the ’phoning + takingphoto’ group, while some combination of gaze and CNN performs best for all other groups. The
highest AP value for each group of classes is bolded, as is the highest mAP.

ers, intra-class variation in gaze patterns resulted in diffi-
cult classification and high confusion between these three
classes and, to a lesser extent, with other classes. In par-
ticular, confusion between these three classes and the ‘rid-
ingbike’ class is somewhat higher since gaze transitions be-
tween the head and hands occur to find handlebars of bikes.

6. Conclusions and Future Work

We proposed several novel gaze features for action clas-
sification on still images. The efficacy of gaze as a basis
for action classification was illustrated by its comparable
results to a state of the art computer vision algorithm and
the combination method demonstrated potential to outper-
form both the gaze-alone and vision-alone classifiers, sug-
gesting that gaze-features and vision-features are each con-
tributing to the classification decision. These results have
implications for both behavioral and computer vision; gaze
patterns can reveal how people group similar actions, which
in turn can improve automated action recognition. With the
proliferation of laptop webcams and front-facing cell phone
cameras, everyday devices have the potential to record eye
movement information of everyday users.

Gaze can also be used to deduce intentions of humans in
the image being viewed, which is very relevant for image
classification. For instance, eye movements may correlate
with the direction that humans are looking and indicate their
focus or may point out the locations of hands and reveal
salient regions related to the task being performed. These

higher-level features would benefit from more specific seg-
ments such as hands and faces, which could be found with
additional annotations or effective hand and face detectors.

However, more complex methods of combining gaze
with the state-of-the-art classification algorithms may of-
fer the most promising opportunities for improving classi-
fication performance. Hoai [9] propose the Regularized
Max Pooling (RMP) model, which allows for substantial
deformation for geometrically analogous images. It may be
possible to combine spatio-temporal information from fix-
ations with this method for better performance. Multiple
Kernel Learning (MKL) involves the use of a combination
of different kernel types instead of a single, best-performing
kernel [7]. A hierarchical approach may use a combina-
tion method to classify groups and visual features to clas-
sify within them. In future work we intend to use these
approaches for automated action recognition.
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