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ABSTRACT

Scene decomposition into its illuminant, shading, and re-
flectance intrinsic images is an essential step for scene un-
derstanding. Collecting intrinsic image groundtruth data is a
laborious task. The assumptions on which the ground-truth
procedures are based limit their application to simple scenes
with a single object taken in the absence of indirect light-
ing and interreflections. We investigate synthetic data for in-
trinsic image research since the extraction of ground truth is
straightforward, and it allows for scenes in more realistic sit-
uations (e.g, multiple illuminants and interreflections). With
this dataset we aim to motivate researchers to further explore
intrinsic image decomposition in complex scenes.

Index Terms— intrinsic images, synthetic data, re-
flectance modeling, illuminant estimation

1. INTRODUCTION

Decomposing the observed image into its intrinsic images
by separating them into a shading, depth, reflectance, and
illuminant color component is thought to be an essential step
in scene understanding [1]. Most intrinsic image models
have focused on separating reflectance from shading and are
mainly based on the observation that reflectance changes
produce sharp (high-frequency) intensity variations, while
shading transitions are usually smoother (low-frequency)
[2, 3]. Other methods [4, 5] have relaxed this assumption
by adding cues on global reflectance sparsity. In [5], cues
on color names were also used. Finally, a set of methods
have differed from the classic intrinsic image decomposi-
tion approach. In [6], specularities and interreflections have
been obtained assuming the dichromatic reflection model [7],
while in [8, 9] the classic problem was pushed a step forward
by estimating shape and illuminant information.

Initially, intrinsic image approaches showed interesting
qualitative results on small sets of scenes [10, 11, 3]. It was
not until Grosse et al. [12] built the MIT dataset for intrin-
sic image estimation that quantitative comparisons between
methods could be done. This dataset has proved to be a
useful evaluation tool. Its construction, however, presents
some drawbacks that prevent any extension in terms of num-
ber of scenes or generalization to real scenes. Such a real

Fig. 1. Two examples from the dataset under different illu-
mination conditions. From top to bottom: white illuminant,
single-colored light, and two distinct colored illuminants.

ground truth collection is indeed very laborious: the same
scene has to be captured twice, once with the original ob-
ject and once after grey-painting the object, to obtain the
shading ground truth; polarizing filters are used to separate
specular from Lambertian reflectance; and interreflections
need to be avoided because these would lead to false ground
truth images [12]. As a result, the MIT dataset presents some
drawbacks: only single object scenes are present, all of them
are captured under white illumination, more complex and
realistic lighting conditions (i.e. multiple illuminants) are not
considered, and interreflections are absent. In [9], the MIT
dataset was extended by synthetically relighting the images
to obtain a multi-illuminant dataset. However, this has not
solved the main drawback of the original dataset, namely the
absence of complex realistic scenes with multiple objects.



Therefore, evaluation of intrinsic image methods needs a new
and more general dataset.

Obtaining a precise ground truth for complex real scenes,
such as a landscape, would be hardly possible using the pro-
cedure described in [12]. Recently, the use of synthetic data
to train and test complex computer vision tasks has attracted
growing attention due to the increased accuracy with which
3D renderers visualize the world. In addition synthetic data
allows for easy access to the ground truth, making it possible
to prevent the expensive manual labeling process. Marin et al.
[13] and Vazquez et al. [14] show that a pedestrian detector
trained from virtual scenarios can obtain competitive results
on real-world data. Liebelt and Schmid [15] use synthetic
data to improve multi-view object class detection. Finally,
Rodriguez et al. [16] generate synthetic license plates to train
recognition system.

In this paper, we propose a synthetic dataset for intrinsic
image evaluation which includes not only single object scenes
with white illumination, but also multi-object scenes and mul-
tiple non-white illuminants with complex surrounding leading
to interreflections (Figure 1). Multispectral sensors have been
simulated in this paper in order to emulate a realistic visu-
alization as described in [17, 18]. The objective of this new
ground truth collection is to overcome the shortcomings of
the existing datasets in intrinsic image evaluation and show an
easy way to build ground truths for reflectance, shading, and
illumination from synthetic data which allows the collection
of a larger and more complex set of scenes. This dataset is
available online1 to further motivate research into more com-
plex reflectance models. To validate our dataset, we evaluate
and compare three existing methods [4, 5, 9].

2. MOTIVATION

Intrinsic image algorithms and datasets can be distinguished
by their assumptions on the underlying reflectance models.
Consider the reflection model [7] which models the color ob-
servation f c with c ∈ {R,G,B} as:

f c (x) = m (x)

∫
ω

s (λ,x) e (λ,x)ρc (λ) dλ, (1)

where the integral is over all wavelengths λ of the visible
spectrum ω. The material reflectance is given by s (λ,x),
e (λ,x) is the spectrum of the illuminant, ρc is the camera
sensitivity, and m is a scalar depending on the scene geome-
try (viewpoint, surface normal, and illuminant direction).

We will use this basic reflection model to demonstrate the
differences between existing datasets and our dataset. In the
MIT dataset [12] the illuminant is considered to be indepen-
dent of x and white, i.e. e (λ,x) = 1. This assumption is
shared by most of the intrinsic image methods [8, 4, 5]. Re-
cently, Barron and Malik [9] relaxed this assumption: they al-

1http://www.cic.uab.cat/Datasets/synthetic intrinsic image dataset

lowed the illuminant color to vary but only considered direct
illumination (ignoring interreflections). Their assumption on
the illuminant is given by e (λ,x) = e (λ, n (x)), where n (x)
is the surface normal at location x. They construct a dataset
by synthetically relighting the real-world MIT dataset [9].

In this paper, we go one step further and create a syn-
thetic dataset by using rendering techniques from the com-
puter graphics field. This allows us to remove the restric-
tion other datasets put on e (λ,x). The illuminant color and
strength can change from location to location. This allows
us to consider more complex reflection phenomena such as
self-reflection and interreflection. To the best of our knowl-
edge this is the first intrinsic image dataset which considers
these more complex reflection models. In the next section we
analyze rendering accuracy for such reflection phenomena.

Note that the above reflection model assumes that the ma-
terials have Lambertian reflectance. Even though specular
materials can be accurately rendered, we exclude them from
this dataset because most existing intrinsic image algorithms
are not able to handle non-Lambertian materials. The MIT
dataset [12] applies polarizing filters to provide both images
with and without specular reflection.

3. SYNTHETIC INTRINSIC IMAGE DATASET

Recent advancements in digital 3D modeling programs have
enabled the users to rely on these methods for graphical use,
from digital animations and visual effects in movies to com-
puter aided industrial design. Rendering is the process of gen-
erating a 2D image from a description of a 3D scene and is
often done using computer programs by calculating the pro-
jection of the 3D scene model over the virtual image plane.
Rendering programs are moving toward achieving more real-
istic results and better accuracy using physics-based models
in optics. There are various softwares available which embed
the known illumination and reflectance models [19].

In the current work, we have used Blender [20] to model
the 3D scenes. YafaRay [21] is used as a rendering software
for its photo-realism and physically plausible results. Both of
these applications are free and open source.

3.1. Global Lighting for Scene Rendering

In order to obtain more photo-realistic lighting results for 3D
scene rendering, a group of rendering algorithms have been
developed which are referred to as global illumination. These
methods, in addition to taking into account the light which
reaches the object surface directly from a light source, called
direct lighting, also calculate the energy which is reflected by
other surfaces in the scene from the same light source. The
latter is also known as indirect lighting. This indirect lighting
is what causes the reflections, shadows, ambient lighting, and
interreflections.



Fig. 2. Comparing different rendering methods: direct light-
ing (left) and photon mapping (right) on an example scene.

There are many popular algorithms for rendering global
illumination (e.g, radiosity, raytracing, and image-based
lighting). Among them, one of the most popular methods
is a two pass method called photon mapping [22] developed
by Henrik Wann Jensen. To achieve physically sound results
and photo-realism in our dataset we make use of the photon
mapping method embedded in YafaRay. Figure 2 shows the
importance of indirect lighting. For this purpose we compare
the final renderings of our dataset to the renderings which
only consider direct lighting (one bounce). The former ap-
pears more realistic since diffuse interreflection is preserved.

3.2. Analysis of Color Rendering Accuracy

For synthetic datasets to be useful to train and evaluate com-
puter vision algorithms, they should accurately model the
physical reality of the real world. Therefore, in this section,
we analyze the accuracy of color rendering based on the di-
agonal model as is typically done in graphics. To prevent
propagating the full multispectral data, which is computa-
tionally very expensive, rendering engines approximate Eq. 1
with

f̂ c =

∫
ω

s (λ)ρc (λ) dλ

∫
ω

e (λ)ρc (λ) dλ. (2)

Here we removed the dependence on x and the geometrical
term m, and focus on the color content of f . In vector notation
we could write this as

f̂ = s ◦ e, (3)

where we use bold to denote vectors, ◦ is the Hadamard
product, and we replaced s =

∫
ω

s (λ)ρc (λ) dλ and e =∫
ω

e (λ)ρc (λ) dλ. In real scenes the light which is coming

from objects is not only composed of reflection caused by di-
rect lighting of the illuminant, but part of the light is reflected
from other objects in the scene. Considering both direct and
interreflection from another surface we can write:

f̂ = s1 ◦ e+ s2 ◦ s1 ◦ e, (4)

where the superscript is used to distinguish the material
reflectance of different objects. The accuracy of the approx-
imations in Eq. 3 and Eq. 4 is dependent on the shape and
the number of sensors c considered. Typically rendering
machines apply three sensors c ∈ {R,G,B}, however it is
known that the rendering accuracy increases when consider-
ing more sensors [17, 18].

To test the accuracy of f̂ c we perform a statistical anal-
ysis. We use the 1269 Munsell color patches [23] and we
compute both f c and f̂ c. For sensors ρc we use Gaus-
sian shaped sensors which are equally spaced over the
visible spectrum. We compare the reconstruction error

ε =

∥∥∥f (x)− f̂ (x)
∥∥∥/∥f (x)∥ for the cases of three, six

and nine sensors. We consider both single bounce (Eq. 3)
and two bounces (Eq. 4). We use the standard D65 daylight
illuminant. Dark patches were discarded because they cause
the reconstruction error to be unstable.

One bounce Two bounces
sensors Mean (%) Max (%) Mean (%) Max (%)

3 0.58 2.88 1.38 23.84
6 0.19 1.25 0.55 9.06
9 0.12 0.86 0.34 3.77

Table 2. Reconstruction error for single and two bounce re-
flection for 3, 6, and 9 sensors.

Table 2 shows the results of the experiment. For a sin-
gle bounce the three sensor approximation, which is common
in graphics, is acceptable and only leads to a maximum error
of 2.88%. However, if we consider interreflections the maxi-
mum error reaches the unacceptable level of 23.84%. Based
on these results, we have chosen to use a 6 sensors system to
propagate the multispectral color information, resulting in a
maximum error of 9.06%. This can be conveniently achieved
by running existing rendering softwares (built for 3 channel
propagation) twice for three channels [17, 18]. The final 6-
D result image is projected back to a RGB image using lin-
ear regression. In the only available intrinsic image dataset
for multi-illuminants [9], illuminants were introduced syn-
thetically by using a 3 channel approximation, Based on our
analysis, this is sufficent as it only considers direct lighting.
Since this dataset only considers direct lighting, our analysis
shows that this is sufficient. However, in the case of inter-
reflections, synthetically relighting real-world scenes would
introduce significant error.

Next, we address the importance of indirect lighting in
scenes. For this purpose we compare the final renderings of
our complex scenes to the renderings which only consider di-
rect illumination (rendering programs allow for this separa-
tion). We compare the total energy in both renderings with

the ratio r =
∑
x

∥∥f1 (x)∥∥/∑
x
∥f∞ (x)∥ where f∞ is the fi-

nal rendering and f1 is the single bounce rendering. For the



Reflectance Shading
Single Objects Complex scenes Single Objects Complex scenes

Method WL 1L 2L WL 1L 2L WL 1L 2L WL 1L 2L
Barron & Malik 0.082 0.099 0.102 0.020 0.059 0.039 0.043 0.046 0.054 0.011 0.014 0.014

Gehler et al. 0.089 0.113 0.123 0.018 0.067 0.040 0.043 0.045 0.051 0.007 0.009 0.009
Serra et al. 0.063 0.069 0.076 0.027 0.041 0.033 0.021 0.022 0.025 0.006 0.006 0.007

Table 1. LMSE results of three intrinsic image methods on our dataset. For clarity, errors for reflectance and shading are
given separately. For both single objects and complex scenes, results for white illumination (WL), one illuminant (1L), and two
illuminants (2L) are averaged.

nine complex scenes we found an average of r = 0.83, show-
ing that a significant amount of lighting in the scene is coming
from interreflections.

3.3. Proposed dataset

Our dataset consists of two set of images: single objects and
complex scenes. In the first set, the aim is to simulate the
work on MIT dataset. The second set is to our knowledge
the first set of complex scenes for intrinsic image estimation
which has an accurate ground truth, not only for the typical
reflectance and shading decomposition, but also for the illu-
minant estimation. There are 8 objects in the first set. They
vary in complexity for their shape and color distribution. The
complex scenes, on the other hand, consist of various complex
objects (e.g, furniture) which result in diffuse interreflections
and complex shadows. Overall, there are 9 scenes in the sec-
ond set. All the colors of the objects present in the scenes
are taken from the Munsell colors since the multispectral re-
flectance values for them are recorded. Figure 3 shows exam-
ples of the ground truth we provide with the dataset. All the
single object and complex scenes in our dataset are rendered
under 4 different illumination conditions (i.e., white light, col-
ored light, and 2 cases of multiple illuminants with distinct
colors). This leads to a total of 32 images in the single-object
set and 36 in the complex-scene set. The illuminants are
randomly chosen from a list of Planckian and non-Planckian
lights from the Barnard dataset [24].

Fig. 3. Two examples of ground-truth decomposition. From
left to right: the rendered scene, reflectance component, and
shading-illumination.

4. EXPERIMENTS

In order to show that our dataset is suitable for evaluating
intrinsic image methods, we compare three different models

for intrinsic image decomposition which are currently state-
of-the-art [9, 4, 5]. For this experiment, we have used the
publicly available codes of the methods, with the default pa-
rameters. Therefore, we have not trained the models on this
specific dataset.

For each of the subsets of our dataset, namely single
objects and complex scenes, we have analyzed the three
methods on three illumination conditions: white light (WL),
one non-white illuminant (1L), and two non-white illumi-
nants (2L). The mean results for each illumination condition
have been computed.

Errors have been evaluated by using the local mean
squared error (LMSE) and considering the three RGB chan-
nels of the color image [12]. As reflectance images can be
recovered only up to a scale factor, we have multiplied the
estimated reflectance images by an α factor which has been
fitted for each local patch to minimize the MSE.

Table 1 summarizes the results obtained for reflectance
and shading. As expected, the error for all methods increases
when the illuminant is not white. The shading evaluation is
relatively invariant to illuminant changes because it discards
color information. The lower errors on the complex scenes
are caused by large uniform colored objects which result in
low LMSE. The method of Serra et al. [5] obtained the best
results. However, visual inspection of the results revealed that
the design of new error measures is a necessity for intrinsic
image evaluation, i.e. visual ranking of the accuracy did often
not agree with the LMSE error based ranking.

5. CONCLUSIONS

This paper shows that synthetic data constitute a valid medium
for intrinsic image evaluation. It encourages the collection of
large intrinsic synthetic image datasets which allow evalua-
tion also in complex scenes under multiple illuminants.
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