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Abstract

We propose a novel approach for dense non-rigid 3D
surface registration, which brings together Riemannian ge-
ometry and graphical models. To this end, we first introduce
a generic deformation model, called Canonical Distortion
Coefficients (CDCs), by characterizing the deformation of
every point on a surface using the distortions along its two
principle directions. This model subsumes the deformation
groups commonly used in surface registration such as isom-
etry and conformality, and is able to handle more complex
deformations. We also derive its discrete counterpart which
can be computed very efficiently in a closed form. Based on
these, we introduce a higher-order Markov Random Field
(MRF) model which seamlessly integrates our deformation
model and a geometry/texture similarity metric. Then we
jointly establish the optimal correspondences for all the
points via maximum a posteriori (MAP) inference. More-
over, we develop a parallel optimization algorithm to effi-
ciently perform the inference for the proposed higher-order
MRF model. The resulting registration algorithm outper-
forms state-of-the-art methods in both dense non-rigid 3D
surface registration and tracking.

1. Introduction
Surface registration is one of the most active research

topics in 3D computer vision, due to the wide availability of
3D data acquisition techniques/devices (e.g., [9, 18, 27, 33])
and in particular Microsoft Kinect [13]. It often serves as
a necessary step for numerous applications, such as shape
recognition/retrieval, deformation transfer, facial expres-
sion recognition and change detection [6, 23]. A main chal-
lenge in solving this problem lies in the fact that real-world
deformations often have very high degrees of freedom and
accurately characterizing these deformations requires so-

phisticated mathematical models that are generic enough to
represent these deformations and whose optimal configura-
tion can be efficiently inferred.

Most existing surface registration approaches rely on
some assumption on the deformation (e.g., rigid [2],
isometric [5] and conformal [26]), which serves as a
prior/regularization model and/or facilitates the search of
optimal correspondences. Despite their success in vari-
ous applications, accuracy will deteriorate drastically when
the real deformation deviates from the assumed group. To
overcome such a limitation, we first propose a novel de-
formation model that is able to represent a much wider
range of deformations. According to Riemannian geome-
try [8], a surface can be represented in a parametrized do-
main (local charts) so that the deformation at any point p
can be unambiguously (i.e., independently of parametriza-
tion and embedding) characterized by considering a partic-
ular class of parametrizations for that surface (called canon-
ical parametrizations). Based on this, we introduce Canon-
ical Distortion Coefficients (CDCs), defined as the distor-
tions along p’s two principle directions and computed on the
canonical parametrization domain. An intuitive explanation
of CDCs is that they characterize how an infinitesimal circle
is deformed into an infinitesimal ellipse at every point.

Furthermore, in the discrete setting where a surface is
represented as a simplicial complex (e.g., a planar or tetra-
hedral mesh), we show that the computation of CDCs at any
point on the continuous surface corresponds to the compu-
tation of CDCs for its corresponding facet in the discrete
setting, derived via the common piecewise linear assump-
tion in finite element methods [3]. Accordingly, the canoni-
cal parametrization at a particular point, which requires the
metric tensor to be Euclidean, simply corresponds to any
mapping of the facet from 3D to 2D that preserves edge
lengths and orientations. It follows that the CDCs for the
deformation of each facet can be computed in a closed form,
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Figure 1. Surface tracking results (best viewed in color). The left-most image shows the 3D textured shape in the first frame with a template
mesh (green). The following three images show the estimated configurations (with close-ups) of the template for three representative frames
obtained by our method. Note that large and anisotropic deformations are correctly handled.

which only requires solving linear equations.
Finally, we introduce a higher-order MRF-based ap-

proach for dense surface registration, which integrates the
above deformation model and geometry/texture similarity
in a single formulation and jointly searches for the opti-
mal correspondence for all the points via combinatorial op-
timization. Furthermore, we exploit the topological prop-
erties of such a class of MRFs and develop a parallel opti-
mization algorithm based on dual-optimization techniques
[28], which requires minimal memory and achieves signifi-
cant speedup via an implementation in distributed hardware.

In sum, the contributions of this paper are three-fold, in-
cluding the generic deformation model (CDCs), the higher-
order MRF-based approach for dense surface registration
and the parallel MRF inference algorithm. The whole ap-
proach brings together Riemannian geometry and graphical
models. On the one hand, our deformation model is generic,
leading to the fact that those deformation groups commonly
used in surface registration (e.g., isometry and conformal-
ity) fall into its special sub-classes. Due to this property,
our surface registration method is able to effectively handle
much more complex deformations such as the anisotropic or
locally twisting motions (Fig. 1), which is important for ad-
dressing challenging real-world cases. On the other hand,
the higher-order MRF surface registration approach takes
advantage of optimality and efficiency properties of graph-
ical models [24], which is further boosted by the developed
parallel inference algorithm. Via a series of experimental
comparisons with state-of-the-art methods, we demonstrate
that our approach achieves significant improvement in non-
rigid 3D surface registration and tracking.

The remainder of the paper is organized as follows: the
mathematical formulation of the deformation model is in-
troduced in Sec. 2; in Sec. 3, we present our higher-order
MRF model for surface registration, as well as its parallel
optimization; the experimental validation of the proposed
techniques in 3D surface registration and tracking is shown
in Sec. 4; finally, we conclude the whole work in Sec. 5.
Related work

Accurately characterizing the deformations of an arbi-
trary 3D object is a very challenging task due to the high

degrees of freedom exhibited in real-world deformations.
Among previous approaches, certain “rigidity” assumptions
have been widely made, either in extrinsic space or in intrin-
sic space, as a tradeoff between the accuracy in deformation
representation and the simplicity in computation.

When a shape is represented in extrinsic space, a simple
deformation model is the rigid deformation (i.e., rotation
and translation). Assuming two shapes undergo a (near)
rigid deformation between them, the Iterative Closest Points
(ICP) method [2] has been widely adopted for surface reg-
istration. However, global rigidity does not take into ac-
count bendable surfaces (e.g., garments or rubber bands).
In order to address this, the notion of local rigidity has been
proposed, which assumes that the deformation between the
local neighborhoods of two corresponding points is rigid
[7, 16, 20, 22], leading to a higher degrees of freedom of the
deformation. However, such a model does not make use of
the geometric properties of surface deformation and search-
ing for the correspondences between two surfaces with large
deformations directly in the original extrinsic space would
suffer from high computational complexity.

A more efficient way of handling large deformations is
to consider the intrinsic representation, which assumes that
each point of a surface is equipped with a metric tensor. The
notion of rigidity (i.e., isometry) can then be characterized
by assuming that the metric tensor remains the same dur-
ing the deformation of a surface. One popular approach to
matching two surfaces undergoing isometric deformations
is to consider the conformal mappings of the surfaces [26].
It benefits from a nice property: for surfaces undergoing
only isometric deformations, their conformal parametriza-
tions only differ by a Mobius transformation with very
few degrees of freedom [11]. However, finding a glob-
ally consistent parametrization/embedding is often too re-
strictive. Recent works proposed searching among multiple
parametrizations and/or combining multiple matching cues
(e.g., texture or Gaussian curvature) to improve matching
accuracy [10, 11, 25, 29, 31, 32]. Another popular approach
is to embed the surface into an Euclidean space such that
the Euclidean distance approximates the intrinsic proper-
ties of the surface [4, 12, 14, 19]. Nevertheless, when it
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Figure 2. The finite element method assumes the transformation
between facets to be piecewise linear and f( ~ab) = ~a′b′, f( ~ac) =
~a′c′. Under this assumption, the Jacobian for each mapping
4abc 7→ 4a′b′c′ can be computed in a closed form.

comes to dense and anisometric deformations, the accuracy
of the above methods would unavoidably deteriorate due to
the isometric assumption.

2. Canonical Distortion Coefficients
In this section, we introduce the Canonical Distortion

Coefficients (CDCs) for characterizing arbitrary diffeomor-
phisms. The continuous formulation (Sec. 2.2) is obtained
based on Riemannian geometry (Sec. 2.1). Its discrete
counterpart is derived via finite element analysis (Sec. 2.3).

2.1. Riemannian metric and parametrization

Let (M, gM) denote a surfaceM equipped with a Rie-
mannian metric gM. In Riemannian geometry [8], a surface
is defined by its local chartsM = Uα ∪ Uβ ∪ . . ., and each
open subset Uα is in 1− 1 correspondences to R2, denoted
by the local parametrization φα : Uα → R2. For any point
p ∈ Uα ⊂ M, a metric tensor is associated with p as a
symmetric positive definite matrix:

gα(p) =

(
gα11(p) gα12(p)
gα21(p) gα22(p)

)
. (1)

Since different local parametrizations must represent the
same surface, the following chain rule should be satisfied:

∀p ∈ Uα ∩ Uβ , gα(p) = Jαβ(p)
T gβ(p)Jαβ(p). (2)

Here, Jαβ is the Jacobian matrix of the transformation be-
tween the local coordinate systems ofUα andUβ . Any local
representation satisfying this transformation rule is a valid
parametrization of the surface. Since the metric tensor at
any point p is positive definite, it is always possible to apply
a proper linear transformation to its local parametrization
φα such that gα(p) is an identity matrix. We name this par-
ticular type of parametrization canonical parametrization:

Definition 1 (Canonical parametrization) For any p ∈
M, a parametrization φα : Uα → R2 is called canonical if
the metric tensor at p is the identity matrix.

Accordingly, the Jacobian matrix Jpq between the two
points p and q under their canonical parametrizations is

called the canonical Jacobian. In the following, we show
that considering the canonical parametrization and Jacobian
leads to a representation of arbitrary deformations that are
independent from both the intrinsic and extrinsic represen-
tations of the surface.

2.2. Canonical Distortion Coefficients

Let us consider arbitrary diffeomorphisms between the
parametrization domains of two surfaces. For any corre-
spondence p → q, p ∈ Uα ⊂ M and q ∈ Uβ ⊂ N , the
change of metric gα(p) → Jαβ(p)

T gβ(q)Jαβ(p) reflects
how an infinitesimal circle is deformed into an infinitesimal
ellipse. In particular, under canonical parametrizations for
points p and q (i.e., both gα(p) and gβ(q) are identity matri-
ces), the matrix JTpqJpq accurately characterizes such local
deformation, where Jpq is the canonical Jacobian mapping
p to q. If we only consider the change of shape (Fig. 2 (a)),
i.e., how a circle is deformed into an ellipse regardless of
its orientation, the distortion along its two principle direc-
tions can be represented by the two eigenvalues λ1 and λ2 of
JTpqJpq . Therefore, the local deformation between two sur-
faces can be characterized by the two eigenvalues for each
pair (p, q) of corresponding points. Formally, we define:

Definition 2 (Canonical Distortion Coefficients) Canoni-
cal Distortion Coefficients (CDCs) between points p and
q are defined as the eigenvalues of the matrix JTpqJpq
where Jpq is the Jacobian matrix between any canonical
parametrization at p and q.

CDCs are able to characterize a wide class of deforma-
tion groups. For instance, below are two typical classes of
deformations that can be characterized by CDCs:

1. In the case of the isometric deformation, a unit circle
is mapped to a unit circle, i.e., λ1 = λ2 = 1.

2. In the case of the conformal deformation, a unit circle
can be mapped to a circle with arbitrary radius [21],
i.e., λ1 = λ2 6= 0.

Our CDCs can be further connected to a general class of
diffeomorphisms characterized by the Beltrami-coefficients
(BCs) [1]. However, BCs are for conformal surface
parametrization, where the scaling factor is lost. The pro-
posed CDCs preserve the scale information which is im-
portant for surface registration. Besides, unlike the BC, the
CDC is directly extendable to nD. Note that the ability of
CDCs to encode scale information directly makes CDCs
suitable to characterize detailed, anisometric deformation
for dense surface registration.

2.3. Finite element discretization

The basic assumption in finite element analysis [3] is that
continuous space can be approximated using a set of basis



elements (e.g., polynomial functions defined on each facet)
with continuity preserved at the boundaries between the ba-
sis elements. Here, we consider the most common discrete
surface representation – the triangular mesh, with triangu-
lar facets as basis finite elements. In this setting, CDCs are
assumed to be constant for each triangular facet. Thus, the
canonical parametrization for a facet is Euclidean if its map-
ping to the 2D domain preserves all the edge lengths.

Next we consider the computation of the canonical Jaco-
bian (Sec. 2.1). In the continuous setting, the Jacobian ma-
trix at a point p represents a linear transformation that trans-
forms tangent vectors at p to tangent vectors at q. Given a
basis element 4abc, the tangent space at p is equivalent
to the linear space spanned by 4abc. Hence, the linear
mapping J(·) between two canonical domains 4abc and
4a′b′c′ should satisfy J( ~ab) = ~a′b′ and J( ~ac) = ~a′c′. The
Jacobian of a linear transformation between two triangles
is a 2 × 2 matrix and can be computed in a closed form.
Since J(·) is linear, it is guaranteed that J(~bc) = ~b′c′, i.e.,
the Jacobian for mapping p → q in the continuous case
is equivalent to a linear transformation matrix for mapping
~ab→ ~a′b′, ~ac→ ~a′c′ in the discrete case (Fig. 2).

Alg. 1 summarizes the algorithm for computing CDCs.
For an n-manifold surface, the computation of CDCs only
requires solving n linear equations and eigenvalues. Note
that although the computation looks analogous to [15, 17]
for surface parametrization due to the piecewise linear as-
sumption, Alg. 1 is derived in the context of Riemannian
geometry for surface deformation.

Algorithm 1: CDC computation for each triangular facet.

Input :4abc and its mapping4a′b′c′
Output : CDCs for mapping from4abc to4a′b′c′.
Step One: Map the triangles4abc and4a′b′c′ to 2D and
keep their orientation.
Step Two: Compute the 2× 2 linear transformation J
mapping ~ab to ~a′b′ and ~ac to ~a′c′.
Step Three: Compute the eigenvalues, λ1 and λ2 of JTJ .
Step Four: Output λ1 and λ2

3. Surface registration framework
In this section, we first introduce our MRF formulation

for surface registration. Then we present the parallel opti-
mization algorithm for the inference in the MRF.

3.1. Higher-order MRF formulation

Given two surfacesM and N either in a continuous or
a discrete (e.g., point clouds) representation, we consider
a triangulated set of n points V = {pu|pu ∈ M, u =
1, . . . , n}, where V ⊂ M are chosen as a standard tem-
plate. The goal is to determine the correspondences of V on

the other surface N .
Our higher-order MRF model has the same topology as

the graph G = (V,F) corresponding to the triangulation
of the set of points on the surfaceM, where V denotes the
vertex set and F ⊂ V3 denotes the triangular facet set. The
random variable Xu for each vertex u ∈ V represents the
correspondence of the vertex u on the surface N . Its real-
ization1 xu belongs to a set of possible matching candidates
indexed by Lu = {1, . . . , Lu}. We use x = (xu)u∈V to
denote the configuration of the whole MRF.

Regarding the MRF energy, we first define the unary po-
tential function θu(xu) as the difference in the feature de-
scriptor (e.g., texture or shape context) between u and its
correspondence xu:

θu(xu) = |feaM(u)− feaN (xu)|2,

where feaS(·) denotes the feature descriptor attached to
a point on surface S. Next, let λuvw(xu, xv, xw) denote
the CDCs computed from deforming 4uvw to 4xuxvxw
(Alg. 1). We define the higher-order potential as follows:

θuvw(xu, xv, xw) = ρ(λuvw(xu, xv, xw)),

where ρ(·) is a function that encodes the deformation con-
straints on the CDC values. Its definition in our surface
registration applications will be given in Eq. 5 of Sec. 4. Fi-
nally, given the above potential functions, surface registra-
tion boils down to the search of the optimal configuration x
that minimizes the following energy:

E(x) =
∑
u∈V

θu(xu) +
∑

(u,v,w)∈F

θuvw(xu, xv, xw). (3)

In the following section, we present the optimization algo-
rithm developed for the above problem.

3.2. Efficient higher-order MRF optimization

Efficient inference in higher-order MRFs is a very active
research problem and various techniques have been pro-
posed to deal with such a challenging problem in the past
decade, such as those based on order reduction (combined
with graph cuts), belief propagation, and/or relaxation tech-
niques [24]. However, the algorithms designed for general
MRFs often lack efficiency in terms of computation and/or
memory when solving MRFs with special topologies and/or
potential energy functions. In order to efficiently perform
the inference in our MRF model (Sec. 3.1), we exploit the
topology property of such a class of MRFs and develop
a parallel optimization algorithm, which requires minimal
memory and achieves significant speedup via an implemen-
tation in distributed hardware.

1For the sake of clarity and simplicity, xu will denote the correspond-
ing label in Lu when describing the optimization algorithm in Sec. 3.2.



Let us first derive the dual problem for the LP relaxation
of the minimization problem of the energy in Eq. 3. First, an
indicator variable τu;i is introduced to any u ∈ V and i ∈ L,
and τuvw;ijk to any (u, v, w) ∈ F and (i, j, k) ∈ L×L×L:

τu;i =

{
1 if xu = i

0 otherwise
τuvw;ijk =

{
1 if xu = i, xv = j, xw = k

0 otherwise
.

By defining θu;i = θu(i) and θuvw;ijk = θuvw(i, j, k), we
obtain the following integer LP formulation for the mini-
mization problem of the energy in Eq. 3:

min
τ

∑
u∈V

∑
i∈L

θu;iτu;i +
∑

(u,v,w)∈F

∑
(i,j,k)∈L3

θuvw;ijkτuvw;ijk

s.t.
∑
i

τu;i = 1, ∀u ∈ V∑
i,j,k

τuvw;ijk = 1, ∀(u, v, w) ∈ F

∑
j,k

τuvw;ijk = τu;i, ∀(u, v, w) ∈ F and i ∈ L

τu;i, τuvw;ijk ∈ {0, 1}.

By relaxing the domains of the variables τu;i and τuvw;ijk

to [0, 1], we obtain the LP-relaxation of the above problem
and then derive its dual problem as shown below:

max
M

∑
u

min
i
θu;i +

∑
(u,v,w)∈F

min
i,j,k

θuvw;ijk (4)

s.t. θu;i = θu;i +
∑

(u,v,w)∈F

Muvw;u:i, ∀u ∈ V and i ∈ L

θuvw;ijk = θuvw;ijk −Muvw;u:i −Muvw;v:j −Muvw;w:k,

∀(u, v, w) ∈ F and (i, j, k) ∈ L × L× L.

HereMuvw;u:i is the dual variable (message) corresponding
to the constraint

∑
j,k τuvw;ijk = τu;i (Fig. 3(a)).

The dual problem of Eq. 4 can be solved by min-sum
diffusion algorithm [28] (at convergence, the J-consistency
condition is satisfied) as shown in Alg. 2. Since after each
update of the message, only a reparametrization of the MRF
is performed, no extra memory is needed for storing all
the dual variables Muvw;u:i. Hence, the memory require-
ment for the Alg. 3 is only for storing primal variables, i.e.,
O(|V ||L|+ |F||L|3).

Algorithm 2: Min-sum diffusion algorithm.
repeat

for each Muvw;u:i do
Muvw;u:i− = 1

2 [θu;i −minj,k θuvw;ijk] and
reparameterize θu;i and θuvw;ijk according to the
constraints in Eq. 4.

end for
until convergence

Each message update in Alg. 2 only involves the pa-
rameters in a triangular facet 4uvw of the MRF. More-
over, in 4uvw, the update of the message for each label
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Figure 3. MRF optimization algorithm. (a) illustrates the message
passing (Eq. 4). (b) shows the speedup obtained by the parallel
implementation of Alg. 3. L is the number of labels for each node.

Muvw;u:i, i = {1, . . . , L} is independent from each other.
Hence, the algorithm can be naturally parallelized and ef-
ficiently executed in distributed hardware. To this end, we
first define the concept of independent facet set:

Definition 3 (Independent facet set) Given a graph G =
(V,F), a subset Fk ⊂ F is called independent facet set if
for any fi, fj ∈ Fk, i 6= j, fi ∩ fj = ∅.

The decomposition of a set F into subsets of independent
facet sets F = ∪iFi can be efficiently computed in poly-
nomial time by a simple greedy algorithm. Then, we can
implement Alg. 2 in parallel as shown in Alg. 3. The maxi-
mal speedup achieved in Alg. 3 is maxi(|Fi||L|). Fig. 3(b)
shows the experimental comparison on running time be-
tween the implementations with and without GPU accel-
erations, and demonstrates significant speedup (×100 times
with 128 CUDA cores) obtained with the parallel algorithm.

Algorithm 3: Parallel min-sum diffusion algorithm.

Decompose F into independent facet sets ∪iFi
repeat

for each Independent facet set Fi, in parallel for all
(u, v, w) ∈ Fi and k ∈ L do

Update the message Muvw;u:k, Muvw;v:k and
Muvw;w:k and do reparametrization (Alg. 2).

end for
until convergence

4. Experimental results
We evaluate our method in the surface registration and

tracking problems. The input to our algorithm are two 3D
surfaces in the case of registration (or a set of 3D surfaces
in the case of tracking), and a template triangular mesh
G = (V,F) which consists of a point set V sampled from
the first surfaceM and whose topology is defined by a facet
setF (e.g., Fig. 5 (a)). Our goal is to find the optimal match-
ing point xp on the other surface (or each of the successive
surfaces) N for each p ∈ V (e.g., Fig. 5 (c)).
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Figure 4. Expression deformation prior obtained from 3D scanned
data with markers. (a) and (c) show the 3D scan of the onset
and peak of a facial expression with large surface deformations
respectively. (b) and (d) are the corresponding triangular meshes
constructed from the markers. The color coding in (d) shows the
deformation intensity as illustrated in (e). The histogram of the
CDC values are shown in (f) and (g).

Estimation of deformation prior: To obtain the dis-
tribution of CDCs in real-world deformations, we first ob-
tain the ground truth data from 3D scanning systems with
reliable texture information (e.g., markers). As shown in
Fig. 4(a) and (c), the 3D dataset with markers are captured
using the system introduced in [27]. To capture the maxi-
mal range of CDCs, we select two frames with the largest
expression difference. Fig. 4 (b), (d), (f) and (g) visual-
ize the distribution of CDCs. As a result, we obtain the
ranges of λ1 and λ2 as I1 = [0.7, 5.66], I2 = [0.1, 4], re-
spectively, which can be used to impose priors for facial
expression deformation. In our experiments, a simple uni-
form distribution in the allowed range was used, by defining
the higher-order term in Eq. 3 as:

θuvw(xu, xv, xw) =

{
0 if λ1 ∈ I1 and λ2 ∈ I2
10 otherwise

, (5)

where λ1 and λ2 denote the CDCs obtained by matching
4uvw to 4xuxvxw. Note that penalty on the flip of trian-
gles can be easily included in such higher-order terms [31].
However, in our experiments, we found that the inclusion of
such terms does not improve the results.

4.1. Surface registration

For surface registration, we compare our method
with two recent methods: high-order graph matching
(HOGM) [31] and blended intrinsic maps (BIM) [10]. For
the purpose of a fair comparison with [31], we use the same
singleton term as in [31] and adopt a similar hierarchical
optimization scheme to perform the registration: first es-
tablishing sparse feature correspondences based on isomet-
ric deformation and then establishing the dense correspon-

(a) Input (b) Result by [31] and closeup (c) Our result and closeup

Figure 5. Surface registration result. (a) shows the input mesh with
sampling points and their triangulation. The algorithm by [31]
does not guarantee the quality of each triangular facet in the target
matching (b). In contrast, our algorithm considers the distortion of
each facet using CDCs and achieves better results (c).

dences based on our deformation model. Similar to [31],
a set of matching candidates for each p ∈ V is computed
using the candidate selection method2 proposed in [31] and
then the optimal correspondences of all points are jointly
estimated through the MRF inference presented in Sec. 3.
In our experiments, we set the candidate size L = 64. The
computation of all the L3 possible CDCs for one facet takes
only 2.0ms on average using GPU. Accordingly, the com-
putation of all the energy terms θuvw;ijk for a higher-order
graph with 165 vertices and 272 facets takes only 0.5s.

The qualitative results in Fig. 5 show that the unnatural
distortions of each triangular facet (Fig. 5(b)) in the result
of [31] are significantly reduced in the result obtained using
our method (Fig. 5(c)), which demonstrates the effective-
ness of the deformation constraints encoded in our MRF
model. Besides, the optimization technique in [31] requires
order reduction, which introduces a large number of auxil-
iary variables and prevents it from searching in a large label
set (due to the memory limitation). More visual results and
quantitative comparisons are given in Fig. 6 and Table 1 us-
ing the same quality measure (i.e., area ratios) as the one
used in [31], the assumption being that most large trian-
gle area changes are caused by wrong matches. Another
quantitative comparison using the metric proposed in [10]
is shown in Fig. 8. All results show that our method im-
proves the matching quality up to an order of magnitude.

Furthermore, we have compared our approach with a re-
cent intrinsic space based method [10] for dense surface
registration. Here, we use the normalized (by the number of
points evaluated) error evaluation metric proposed in [10]
for the quantitative comparison (Fig. 8). In all cases, our
method achieves lower errors. Note that [10] assumes the
mapping between two surfaces be bijective and there is no
explicit underlying deformation model in selecting the final
correspondence. In contrast, our deformation model was
explicitly encoded in the MRF model for selecting the op-
timal dense correspondence, which is a main reason for the
better performance.

Last, in order to test the performance of the proposed

2We refer the reader to [31] for the detail of the selection method.
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Figure 6. A challenging surface registration result using our
method (left). The quality of matching is measured by the ra-
tio of area change of each triangular facet, under the assumption
that most large area changes are caused by wrong matches. Our
method (b) has significantly fewer triangles with large area change
compared to a recent method (a) [31].

Data Method in [31] Our method
Face (smile) (2.26, 0.19, 67.83) (1.24, 0.86, 4.2)
Face (laugh) (1.75, 0.12, 111.11) (1.36, 0.82, 11.0)
Face (sad) (1.87, 0.19, 78.62) (1.48, 0.87, 7.52)

Table 1. Comparison with [31]. (·, ·, ·) denotes the average, mini-
mal and maximal area ratios between the original/matched facets.
The values are expected to be close to 1 for good registration.

approach in cases of significant anisometric deformations,
we design the following experiment. The 3D scan of a
highly deformable toy is captured by the system introduced
in [27] before and after a large deformation (Fig. 7). To es-
tablish the ground truth and estimate the deformation prior,
we manually select 20 facets and their matches based on
texture features to calculate the average CDC values. The
two surfaces are then matched without using texture infor-
mation, i.e., in Eq. 3, we only use the curvature cue for the
singleton term (data likelihood) and the deformation prior
for the higher-order term. Fig. 7(b) shows the result using
isometric assumption (λ1, λ2) = (1, 1) and Fig. 7(c) shows
the result using the learned average CDC prior as described
above, i.e., (λ1, λ2) = (1.028, 0.993). To compare the ac-
curacy achieved in the two cases, we compute the average
texture difference between the original area covered by the
triangulated mesh and the matched area on the second sur-
face (i.e., the blue deformed templates in Fig. 7). Experi-
mental results demonstrate that the use of CDCs leads to a
significantly lower error (0.005 v.s. 0.073) compared with
the use of the isometry assumption.

4.2. Template-based surface tracking

Finally, we apply our method to the challenging problem
of template-base surface tracking. For the singleton term in
Eq. 3, we use the robust metric proposed in [32] for a fair
comparison. To impose inter-frame consistency, two con-
secutive frames with the largest deformation change were
selected to obtain the range of CDCs between frames, i.e.,

(a) Original surface (b) With isometric assumption (c) With learnt CDC prior

Figure 7. The comparison between surface registration with iso-
metric assumption (b) and with learnt CDC prior (c).
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Figure 8. Comparisons based on the metric defined in [10].

I1 = [0.874, 1.143] and I2 = [0.846, 1.182] for λ1 and λ2
respectively. Also we handle drift error by imposing consis-
tency between the first frame and the current frame, using
the same deformation prior obtained in Fig. 4.

Figs. 1 and 9 show some tracking results on the BU-
4DFE database [30], consisting of 101 different sub-
jects each with 6 different expressions and around 100
frames/expression. A template is constructed in the first
frame and tracked in the subsequent frames. Because of the
temporal continuity in consecutive frames, sufficient match-
ing candidates (L = 64) can be obtained by only look-
ing at the neighborhood of each point. The tracking re-
sults demonstrate that our method is able to track the subtle
expression change correctly, even in the challenging case
where the deformation is highly anisometric.

We also compare with the harmonic map based method
in [27] and the pairwise MRF based method in [32]
(Fig. 10), based on tracking errors defined using aver-
age texture differences on 10 randomly selected subjects’
videos from the BU database (six different expressions per
subject). The results show that our method consistently out-
performs [27] and [32].

5. Conclusion
We have presented a generic deformation model, namely

CDCs, to characterize the space of deformations between
two surfaces, which can be efficiently computed in a closed
form in the discrete setting. Such a deformation model is
applied to surface registration by combining CDCs with
other geometric/photometric information within a higher-
order MRF framework, whose optimal configuration is in-



Figure 9. Surface tracking results on BU-4DFE database.
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Figure 10. Quantitative comparisons on BU-4DFE database.

ferred with an efficient parallel optimization algorithm. We
have demonstrated the potential of our approach in surface
registration and tracking, where our approach significantly
outperforms state-of-the-art methods. In the near future, we
are interested in exploring the group structure of the surface
deformation space represented by CDCs for facial expres-
sion recognition and deformation analysis/manipulation.
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