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Can a Single Brain Region Predict a Disorder?
Jean Honorio, Dardo Tomasi, Rita Z. Goldstein, Hoi-Chung Leung, and Dimitris Samaras

Abstract—We perform prediction of diverse disorders (Cocaine
Use, Schizophrenia and Alzheimer’s disease) in unseen subjects
from brain fMRI. First, we show that for multi-subject prediction
of simple cognitive states (e.g. motor vs. calculation and reading),
voxels-as-features methods produce clusters that are similar for
different leave-one-subject-out folds; while for group classification
(e.g. cocaine addicted vs. control subjects), voxels are scattered
and less stable. Therefore, we chose to use a single region per
experimental condition and a majority vote classifier. Interest-
ingly, our method outperforms state-of-the-art techniques. Our
method can integrate multiple experimental conditions and suc-
cessfully predict disorders in unseen subjects (leave-one-subject-
out generalization accuracy: 89.3% and 90.9% for Cocaine Use,
96.4% for Schizophrenia and 81.5% for Alzheimer’s disease).
Our experimental results not only span diverse disorders, but also
different experimental designs (block design and event related
tasks), facilities, magnetic fields (1.5Tesla, 3Tesla, 4Tesla) and
speed of acquisition (interscan interval from 1600ms to 3500ms).
We further argue that our method produces a meaningful low
dimensional representation that retains discriminability.

Index Terms—Functional magnetic resonance imaging (fMRI),
brain, pattern recognition and classification

I. INTRODUCTION

FUNCTIONAL magnetic resonance imaging (fMRI) has
enabled scientists to look into the activity of the human

brain. Neural activity can be captured by fMRI by taking
advantage of the hemodynamic response, i.e. the increase in
blood flow to the local vasculature that accompanies neural
activity.

Classification is a procedure that assigns a given piece of
input data into one of a given number of categories (i.e.
classes). A classifier is a function that performs such an
assignment. The input data (i.e. example) is represented as
a set of variables (i.e. features). The classifier has a number
of parameters that are learnt from a training set of examples.
The goal of the learning procedure is to make the classifier
accurately predict examples in the training set (by minimizing
the training error). After training, the classifier can be used
to predict the classes of unseen examples (testing set). If
the accuracy in the unseen examples (i.e. the generalization
accuracy) is high, we say that the method generalizes. Notice
that a low training error does not necessarily translate into a
high generalization accuracy. If a large number of examples is
available, we could split the dataset into two sets (training and
testing) in order to measure the generalization accuracy. Given
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that fMRI datasets have small number of subjects (examples),
we need to use methods such as cross-validation, in which
several splits of training and testing sets are performed over
the same dataset. A more detailed presentation of classification
in fMRI datasets can be found in [1].

Classification on brain fMRI is challenging because: (i) the
datasets are very high dimensional, with tens of thousands
of voxels per subject (ii) the number of available subjects is
small due to the cost and time needed to capture information;
in practice, most datasets have only a few tens of subjects (iii)
the signal is noisy and (iv) there is high subject variability.

In this paper, our driving research question is whether
specific disorders (Cocaine Use, Schizophrenia or Alzheimer’s
disease) affect brain function in a way that is observable
through brain activation in fMRI. We propose to use clas-
sification, not as a diagnostic tool, but as a way to measure
the importance of such differential brain activations between
people with a disorder in comparison to control subjects.
Differences in brain activation between the disorder group
and the control group are important if classification allows
for good prediction1 of disorders. For this reason we chose
to rely solely on features extracted from fMRI data and avoid
the use of demographics, behavioral information and structural
MRI as used in diagnostic tools [2]. Since we are interested
in the prediction of disorders in unseen test subjects, we use
cross-validation. Finally, nothing prevents our features from
being used as part of a more sophisticated diagnostic tool, but
this is outside the scope of this paper.

We can categorize approaches for fMRI classification along
several concepts: (i) features (ii) classifier (iii) neuropsycho-
logical task (iv) type of analysis and (v) whether a predefined
set of regions of interest (ROIs) is used. We summarize a
variety of existing approaches in Table I.

In this paper, we review two types of analysis: group
classification and the prediction of cognitive states. In group
classification [1]–[10], we try to infer the group membership
(e.g. cocaine addicted, Schizophrenia or Alzheimer’s disease
vs. control) of a given subject while both subject groups
undergo the same experimental conditions. In the prediction of
cognitive states [1], [11]–[25], the classification task consists
in discovering the experimental condition (e.g. motor vs.
calculation and reading) that the subject was undergoing. The
prediction of cognitive states has been typically performed in
two fashions: single-subject classifiers are trained from data
from repetitions of a particular subject, while multi-subject
classifiers are trained from data from several subjects.

A possible drawback for methods that require ROIs is that
the researcher needs either prior knowledge of the underlying

1The term “prediction” is used as in [1], i.e. classification predicts the class
of unseen subjects.



2

TABLE I
SUMMARY OF APPROACHES FOR FMRI CLASSIFICATION: group classification (GC), single-subject prediction of cognitive states (SS) AND multi-subject

prediction of cognitive states (MS). WE ALSO SHOW WHETHER A PREDEFINED SET OF REGIONS OF INTEREST (ROIS=YES) WAS USED. ABBREVIATIONS:
PRINCIPAL COMPONENT ANALYSIS (PCA), INDEPENDENT COMPONENT ANALYSIS (ICA), RECURSIVE FEATURE ELIMINATION (RFE), GAUSSIAN NAÏVE

BAYES (GNB), k-NEAREST NEIGHBORS (kNN), FISHER LINEAR DISCRIMINANT (FLD), SUPPORT VECTOR MACHINES (SVM). a spectral regression
discriminant analysis IN THE REFERRED PAPER b DID NOT REPORT CLASSIFICATION RESULTS c projection pursuit IN THE REFERRED PAPER

Ref Features Classifier Dataset Analysis ROIs
[3] ICA Random forests Resting-state on Schizophrenia vs. control subjects; flicker

task on Alzheimer’s disease, older and young subjects
GC No

[4] Most active voxels Regularized FLDa Reading, calculation, motor and visual task to classify gen-
der, lateralization, dyslexia, fluency

GC No

[5] PCA FLD Category-exemplar word pair and working memory task on
Alzheimer’s disease, Schizophrenia or mild traumatic brain
injury vs. control subjects

GC No

[6] PCA Linear SVM Sad facial affect task on depressed vs. control subjects GC No
[1] Most discriminative, most active

voxels and searchlight accuracy
GNB, kNN, FLD
and SVM

Tutorial MS,GC No

[7] ICA, most active voxels neural networks Auditory oddball task on Bipolar or Schizophrenia vs.
control subjects

GC Yes

[8] Temporal mean response FLD Color-word task on canabis addicted vs. control subjects GCb Yes
[9] ICA FLDc Auditory oddball task on Schizophrenia vs. control subjects GC Yes
[10] Most temporally dissimilar areas

between classes
Similarity to aver-
age per class

Color-word task on Schizophrenia vs. control subjects GC Yes

[2] Demographics, head motion, be-
havioral, volumetric, activation
and hemodynamics

Random forests and
linear SVM

Flicker task on Alzheimer’s disease, older and young sub-
jects

GC Yes

[11] 16×16×16mm3 cubes Gaussian SVM Lie detection MS No
[12] PCA Gaussian SVM Lie detection MS No
[13] Most discriminative and most ac-

tive voxels
GNB and linear
SVM

Picture vs. sentences MS No

[14] PCA Linear SVM Face vs. location matching MS No
[15] All voxels Regularized logistic

regression
Music vs. speech MS No

[16] Most active voxels kNN and linear
SVM

Picture vs. sentences MS Yes

[17] Most active voxels Linear SVM Memory encoding and motor task SS No
[18] RFE Linear SVM Categories of sounds SS No
[19] RFE Linear SVM Faces vs. houses SS No
[20] All voxels Linear SVM Static force vs. control task SS No
[21] Most active voxels Gaussian SVM Right hand vs. left hand vs. right foot vs. calculation vs.

internal speech/word generation vs. visual
SS No

[22] Mutual information Linear SVM Chairs of different sizes and shapes SS No
[23] Most active voxels Linear SVM Categories of images SS Yes
[24] All voxels Linear SVM Categories of sounds SS Yes
[25] All voxels Adaboost Motor vs. visual vs. auditory vs. calculation SS Yes

brain process or an additional dataset in order to find the set
of ROIs. If one selects the set of ROIs from the same dataset
(double dipping) the significance of the cross-validation results
is compromised [26].

Several feature extraction methods have been proposed:
principal component analysis [5], [6]; independent component
analysis [9]; average value on a coarse image resolution by
using non-overlapping 16×16×16mm3 cubes of voxels [11];
most discriminative voxels [13] by ranking them indepen-
dently with Gaussian classifiers; most active voxels [16] by
ranking them independently with a two sample T-statistic for
the difference of means, unequal sample sizes and unequal
variances; searchlight accuracy2 [1] by using a Gaussian naı̈ve
Bayes classifier on the 3×3×3 voxel neighborhood as feature
set; and recursive feature elimination3 [18], [19] which starts
with all the voxels and performs several iterations of training
a support vector machine and removing the least influential

2Searchlight methods were originally proposed by [27] for hypothesis
testing.

3Recursive feature elimination was originally proposed by [28] for gene
selection.

voxels (smallest weight in absolute value) in the resulting
classifier. This recursive elimination is executed until the
desired number of voxels is reached. Additionally, the use
of all voxels has been proposed in [15], [20], [24], [25].
We call voxels-as-features methods to those feature extraction
methods that select a subset of voxels and use such voxels
as independent features for classification. These include: most
discriminative voxels [13], most active voxels [16], searchlight
accuracy [1] and recursive feature elimination [18], [19].

On the other hand, different classification techniques have
also been applied: Gaussian naı̈ve Bayes [13]; k-nearest
neighbors [16]; Fisher linear discriminant [4], [5], [8], [9];
logistic regression [15]; support vector machines [13], [16];
and Adaboost [25]. Please, see Table I for further details.

As we will show in this paper, only one brain region (i.e. one
feature) per experimental condition is enough for accurate pre-
diction of disorders in unseen test subjects. Furthermore, our
method outperforms state-of-the-art techniques. One possible
explanation could be that only one brain region differs between
people with a disorder in comparison to control subjects. We
do not favor this interpretation since in this case we would
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expect good accuracies for all methods under comparison,
which we did not find experimentally. In fact, we believe
that the change in activity patterns can be quite complex.
Our argument is that given the small number of subjects
compared to the number of voxels, and given the complexity of
the underlying process, voxels-as-features methods (i.e. most
discriminative voxels, most active voxels, searchlight accuracy,
recursive feature elimination) fail to select the voxels that
allow to generalize to unseen subjects. We also show that
our method outperforms techniques that use a coarse image
resolution (i.e. the cubes of voxels method of [11]) or even
the methods that compute low dimensional representations
without losing any information (i.e. principal and independent
component analysis when using all components). As a sanity
check, we show that feature extraction is necessary for the
datasets in our evaluation, since using all the original voxels
does not lead to good generalization accuracy. Finally, we
believe that for larger number of subjects and less noisy data,
our method could become unstable even in simple cases (e.g.
two equally predictive regions on each side of the brain) and
will not generalize well in cases in which it is necessary
to combine information from distant brain regions (e.g. a
distributed network).

It is reasonable to expect that instability in feature extrac-
tion produces instability in the learning algorithm. That is,
instability in feature extraction affects the resulting classifier
function for different training sets. In the machine learning
literature, there are several theoretical results relating stability
of the learning algorithm and generalization [29]–[32]. Indeed,
it was recently shown that stability is necessary and sufficient
for learnability [33].

Section II presents the methods used in our experiments.
Experimental results are shown and discussed in Section III.
Main contributions and results are summarized in Section IV.

II. METHODS

We observed in our datasets that if feature extraction is un-
stable under cross-validation, i.e. different regions are picked
for different training sets, then generalization accuracy drops.
Furthermore, we argue that since stable methods produce
consistently similar regions, they allow for an easier inter-
pretation. Our goal is to find regions that are discriminative
and stable. As we will show in Sub-Section III-C, voxels-
as-features methods produce voxels that are scattered and
unstable under cross-validation. This makes us hypothesize
that only the biggest discriminative clusters are the stable ones.
While initially, we were not expecting the number of clusters
to be extremely low, we show that for the datasets in our
evaluation, using only one region gives very good results.

Threshold-split region [34] consists of picking the biggest
region (on the training set) with increased activation in one
class when compared to the other class. This feature extraction
method is very simple, but it leads to regions that allow good
classification and are very stable under cross-validation. We
use decision stump classifiers in order to find voxels with
activation being higher or lower than a specified threshold. Let
x be the activation for one voxel. A decision stump, formally

defined as in eq.(1), classifies its input x by comparing it with
a threshold θ and a polarity p ∈ {−1,+1}. We learn the
parameters p and θ by minimizing the classification error in
the training set.

hp,θ(x) =

{
“Disorder group′′ if px < pθ

“Control group′′ otherwise
(1)

Fig. 1 shows our feature extraction and classification
pipeline. We perform leave-one-subject-out, i.e. we held out
each of the subjects in turn while training on the other
subjects. For each experimental condition we perform the
following steps in the training set: Step 1. we rank each
voxel independently according to its training error by using
the classifier in eq.(1) on contrast maps4 Step 2. we keep
only voxels in the 99.5% percentile which produces a set of
spatial clusters, we then compute the number of voxels in
each cluster by using 18-connectivity5 and Step 3. we take the
mean activation from the voxels in the biggest cluster as the
single feature that is used for each experimental condition. For
instance, for the sensorimotor condition of the Schizophrenia
dataset, we compute the training error at separating subjects
into schizophrenic or controls in Step 1, and the result in Step
3 is a single feature representing the activation in the biggest
discriminative region when using the sensorimotor condition
only.

In order to classify an unseen testing subject, we use a
decision stump for each experimental condition on the single
feature identified in Step 3. Our final classifier is a majority
vote of the different experimental conditions. When there is a
tie, the classifier assigns the subject to the “Disorder group”
(i.e. Cocaine Use, Schizophrenia or Alzheimer’s disease).
Given two conditions for instance, the classifier assigns the
subject to the “Disorder group” if at least one experimental
condition classified the subject in the “Disorder group”.

There is a minor difference between selecting voxels in
the 99.5% percentile and selecting the top 0.5% performing
voxels. In the former method, we first compute the ranking R
below which 99.5% of the voxels fall. Then, we select voxels
that are greater than or equal to R. In the latter method, we
sort all rankings in a decreasing order and select the top 0.5%
performing voxels. Since there is usually several voxels with
the same ranking, the latter method might exclude voxels that
are as good as the worst selected voxel.

III. EXPERIMENTS

A. Datasets and Image Acquisition

We apply our method on four group classification problems
on brain fMRI, to find differences in brain activation between
cocaine addicted, Schizophrenia or Alzheimer’s disease versus
control subjects. We also present the Fast Acquisition dataset
that we use for testing our hypothesis of stability of feature
extraction.

4A contrast map is a 3D image with intensities representing the activation
for each voxel.

5Two voxels are 18-neighbors when they share a face or an edge.
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Fig. 1. Our feature extraction and classification pipeline on the Schizophrenia dataset.

First Cocaine Use Dataset. The overall neuropsychological
experiment follows a block design that includes six sessions,
each consisting of three monetary reward conditions (45¢,
1¢, 0¢). For each condition a screen displayed the monetary
reward and presented a sequence of nine “Go” or nine “No-
go” stimuli (two different fractal images). The subject was
instructed to press a button after a “Go” stimulus and not
to press the button after a “No-go” stimulus. Subjects were
rewarded for correct performance depending on the monetary
condition, receiving up to $50. The dataset contains 16 cocaine
addicted subjects (age mean±SD 42.8±4.6, 4 female) and 12
control subjects (age mean±SD 37.6±7.1, 4 female) [35].

Second Cocaine Use Dataset. The overall neuropsychological
experiment follows a block design that includes six sessions,
each of them under different conditions, i.e. one of three
monetary reward conditions (50¢, 25¢, 0¢) and one of two
cues (drug words, neutral words). In this paper, we focus
on monetary conditions only. For each condition a screen
displayed the monetary reward and presented a sequence of
forty words in four different colors (yellow, blue, red or green).
Drug cues were regular drug words, non-English or slang drug
words were not used (as they may have not been recognized
by the control subjects). Neutral cues were household words
matched to the drug words on length, frequency in the English
language, and part of speech (noun, adjective, adverb, verb).
The subject was instructed to press one of four buttons
matching the color of the word they had just read. Subjects
were rewarded for correct performance depending on the
monetary condition, receiving up to $75. The dataset contains
16 cocaine addicted subjects (age mean±SD 43.3±7.8, 4
female) and 17 control subjects (age mean±SD 38.9±7.1, 5
female) [36]. Only sessions with <50% errors were used. An
error corresponds to the subject pressing the button of the
wrong color, or not pressing any button at all for a given
word.

For both Cocaine Use datasets, MRI scanning was per-
formed on a 4Tesla whole-body Varian/Siemens system. The
blood-oxygen-level dependent (BOLD) responses were mea-
sured as a function of time using a T2*-weighted single-
shot gradient-echo EPI sequence (TE/TR=20/3500ms for the

first Cocaine Use dataset, TE/TR=20/1600ms for the second
Cocaine Use dataset, 4mm slice thickness, 1mm gap, typically
33 coronal slices, 20cm FOV, 64×64 matrix size, 3.1×3.1mm
in-plane resolution, 90◦ flip angle, 200kHz bandwidth with
ramp sampling, 91 time points for the first Cocaine Use
dataset, 128 time points for the second Cocaine Use dataset,
and 4 dummy scans to be discarded to avoid non-equilibrium
effects in the fMRI signal). Padding was used to minimize
subject motion, which was also monitored immediately after
each fMRI run. Anatomical brain images were acquired using
a T1-weighted 3D-MDEFT sequence and a modified T2-
weighted Hyperecho sequence to rule out gross morphological
abnormalities.

Schizophrenia Dataset. The sensorimotor task follows a
block design that includes two sessions, each consisting of
only one condition presented in seven blocks of 16s. For each
block, a checkerboard stimulus was presented 21 times at
irregular intervals. When the checkerboard appeared, subjects
were instructed to press a button. The auditory oddball task
follows an event related design that includes four sessions,
each consisting of only one condition. Each session con-
sisted of 95% standard tones (1000Hz) and 5% oddball tones
(1200Hz). The subject was instructed to focus on the fixation
cross while listening to the tones and to press a button
each time they heard a deviant tone. The working memory
task follows a block design that includes three sessions,
each consisting of three conditions (one-digit, three-digits
and five-digits). In this paper, we focus on the five-digits
condition only since it is the only stable condition under
cross-validation. Subjects were asked to memorize a set of
either one, three or five digits. They were then presented
with 14 probes (single digits) and asked to indicate whether
or not the probe was a member of the memorized set. For
each session, two memory sets for each of the three load
conditions (one, three or five digits) were presented. The
dataset was downloaded from the Function BIRN Data Repos-
itory (http://fbirnbdr.nbirn.net:8080/BDR/), Acces-
sion Number 2007-BDR-6UHZ1, facility 0018. The dataset
contains 13 schizophrenic subjects (age mean±SD 44.5±9.1,
4 female) and 15 control subjects (age mean±SD 40.9±11.7,
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6 female). Only the first scanning visit was used in order
to avoid task habituation effects. Only subjects with at least
two sessions on each task (sensorimotor, auditory oddball and
working memory) were used.

Whole-brain images were acquired using a 3Tesla Siemens
Trio system. The BOLD responses were acquired using a T2*-
weighted gradient echo EPI sequences (TE/TR=30/2000ms,
4mm slice thickness, 1mm gap, 27 slices axial-oblique
anterior-posterior commissure (AC-PC) aligned, 20cm FOV,
64×64 matrix size, 90◦ flip angle, 120 time points for the
sensorimotor task, 140 time points for the auditory oddball
task, 177 time points for the working memory task, and
3 dummy scans to be discarded to avoid non-equilibrium
effects in the fMRI signal). Anatomical brain images were
acquired using a T1-weighted 3D-MPRAGE sequence and a
T2 sequence.

Alzheimer’s Disease Dataset. The overall neuropsychological
experiment follows an event related design that includes four
sessions, each consisting of two conditions (one-trial and two-
trial). The basic task paradigm consisted of presentation of a
flickering (black to white) checkerboard. Subjects pressed a
key upon stimulus onset. Task trials either involved stimuli
presented in isolation (one-trial condition) or in pairs with
an inter-trial interval of 5.36s (two-trial condition). One-trial
and two-trial conditions were pseudorandomly intermixed such
that eight trials of one type and seven of the other appeared in
each session. The dataset was downloaded from the fMRI Data
Center (http://www.fmridc.org/), Accession Number 2-
2000-1118W. The dataset contains 13 older adults with mild
dementia of the Alzheimer’s type (age mean±SD 77.2±4.9,
7 female) and 14 non-demented older adults (age mean±SD
74.9±6.8, 9 female) [37].

MRI scanning was performed on a 1.5Tesla Siemens Mag-
netom Vision system. Functional images were collected with
an asymmetric spin-echo sequence sensitive to BOLD-contrast
(TE/TR=37/2680ms, 8mm slice thickness, 16 slices AC-PC
aligned, 24cm FOV, 64×64 matrix size, 3.75×3.75mm in-
plane resolution, 90◦ flip angle, 128 time points, and 4 dummy
scans to be discarded to avoid non-equilibrium effects in the
fMRI signal). A series of three to four anatomical brain images
were acquired using a T1-weighted 3D-MPRAGE sequence.

Fast Acquisition Dataset. The overall neuropsychological
experiment follows an event related design that includes only
one session consisting of four main conditions: checkerboard
(horizontal and vertical), motor (left and right hand action),
calculations and reading sentences. For the latter three condi-
tions, the subject received both audio and video instructions.
The dataset contains 48 healthy control subjects [38].

Functional images were acquired on a 3T Brucker scan-
ner using an EPI sequence (TE/TR=30/2400ms, 4mm slice
thickness, 34 slices, 24cm FOV, 64×64 matrix size, 128 time
points, and 4 dummy scans to be discarded to avoid non-
equilibrium effects in the fMRI signal). Anatomical T1 images
were acquired with a spatial resolution of 1×1×1.2mm.

B. Preprocessing

For all the datasets, we only included sessions with
motion <2.5mm/degrees. Subsequent analyses were per-
formed with the statistical parametric mapping package
SPM2 (http://www.fil.ion.ucl.ac.uk/spm/). A six-
parameter rigid body transformation (3 rotations, 3 transla-
tions) was used for image realignment and to correct for head
motion. The realigned datasets were spatially registered to the
standard Talairach frame using a voxel size of 3×3×3mm3.
An 8mm full-width half-maximum Gaussian kernel was used
to smooth the data. Smoothing reduces the amount of spatial
noise as well as the impact of small innacuracies in the spatial
registration across subjects. As it is well known, excessive
smoothing also causes the loss of “local” details in the original
image. We believe that our choice of smoothing gives a good
trade-off for the above effects. Furthermore, smoothing does
not cause “global” information loss [39].

In order to compute contrast maps for each subject, ex-
perimental condition and session, we used a general linear
model (GLM) [40] with box-car design convolved with a
canonical hemodynamic response function (HRF), low-pass
filters (HRF) and high-pass filters (cut-off frequency: 1/750s
for the first Cocaine Use dataset; 1/520s for the second
Cocaine Use dataset; 1/550s for the sensorimotor task, 1/650s
for the auditory oddball task, 1/800s for the working memory
task on the Schizophrenia dataset; 1/750s for the Alzheimer’s
Disease dataset; 1/128s for the fast acquisition dataset).

For the first Cocaine Use dataset, the GLM contained three
regressors (45¢, 1¢, 0¢) for each of the six sessions. For
the second Cocaine Use dataset, the GLM contained a single
regressor for each of six sessions corresponding to one of
three monetary reward conditions (50¢, 25¢, 0¢) and one of
two cues (drug words, neutral words). For the Schizophrenia
dataset, the GLM contained a single regressor corresponding
to the checkerboard stimulus for the single session of the
sensorimotor task; a single regressor corresponding to the
oddball tones for each of the four sessions of the auditory
oddball task; and three regressors (one-digit, three-digits and
five-digits) corresponding to the block of memorization and
presentation of probes for each of the three sessions of the
working memory task. For the Alzheimer’s Disease dataset,
the GLM contained two regressors (one-trial, two-trial) for
each of the four sessions. For the single session of the Fast
Acquisition dataset, the GLM contained ten regressors (hor-
izontal and vertical checkerboard, left and right hand action
with audio and video instructions, calculations with audio and
video instructions, reading sentences with audio and video
instructions). We additionally included six motion regressors
(3 rotations, 3 translations) for all event related tasks.

In order to compute contrast maps for each subject and ex-
perimental condition, we averaged the contrast maps that were
produced by the GLMs (per subject, experimental condition
and session). After computing these average contrast maps
and before using them in our pipeline, we applied grand mean
scaling independently per subject and experimental condition,
since scale between different subjects can significantly differ.

Note that in our experiments, we use only one image per
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Fig. 2. First column: 100 most discriminative voxels for two (randomly selected) leave-one-subject-out folds. Second to fifth columns: histograms of the
percentage of voxels by their frequency of selection for different voxels-as-features methods: (a) 45¢ condition on the first Cocaine Use dataset, (b) 50¢
condition on the second Cocaine Use dataset, (c) working memory task on the Schizophrenia dataset, (d) two-trial condition on the Alzheimer’s Disease
dataset, and (e) motor vs. calculation and reading on the Fast Acquisition dataset. Note that voxels cluster into similar (stable) regions for the prediction
of cognitive states (e) across different leave-one-subject-out folds. Voxels are scattered and less stable for group classification (a,b,c,d). With the exception
of RFE, histograms show that for the prediction of cognitive states (e) almost all voxels are selected across several folds (large green bar on the right) and
almost none is selected across few folds only (imperceptible red bar on the left). For group classification (a,b,c,d) fewer voxels are selected across several
folds (smaller green bar on the right) and several voxels are also selected across few folds only (red bar on the left). RFE exhibits instability for all datasets
(a,b,c,d,e).

subject and experimental condition. We point out to the reader
that in the case of the Fast Acquisition dataset, we are not
following common practice for multi-subject prediction of
cognitive states, which is to perform prediction per subject and
every single presentation of the experimental condition. We
chose to follow our setting, since our goal is to discuss stability
of feature extraction in comparison to group classification.

C. Feature Extraction Stability
Recall that voxels-as-features methods are those feature

extraction methods that select a subset of voxels and use
such voxels as independent features for classification. These
include: most discriminative voxels [13], most active voxels
[16], searchlight accuracy [1] and recursive feature elimination
(RFE) [18], [19]. In contrast, threshold-split region takes the

mean activation from the voxels in the biggest discriminative
cluster as the single feature that is used for each experimental
condition.

We first observe that for multi-subject prediction of sim-
ple cognitive states (e.g. motor vs. calculation and reading),
voxels-as-features methods produce clusters that are similar for
different leave-one-subject-out folds as shown in Fig. 2. For
group classification (e.g. cocaine addicted, Schizophrenia or
Alzheimer’s disease vs. control subjects), voxels are scattered
and less stable. We hypothesize that multi-subject prediction of
more complex cognitive states shows the same characteristics
as those of group classification, but we leave this topic for
future research. Due to the instability of voxels-as-features
methods under cross-validation, we choose to rely on a simple
and stable technique: threshold-split region as the feature
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Fig. 3. Mean activation in the threshold-split region for the best condition
on each dataset, for each leave-one-subject-out fold: (a) 45¢ condition on
the first Cocaine Use dataset, (b) 50¢ condition on the second Cocaine
Use dataset, (c) working memory task on the Schizophrenia dataset and (d)
two-trial condition on the Alzheimer’s Disease dataset. Cocaine addicted,
Schizophrenia or Alzheimer’s disease subjects are shown in red crosses,
control subjects in blue dots and the optimal thresholds for classification in
green lines. Note that our method is very stable under cross-validation since
it selects the same brain region.

extraction method and majority vote as the classifier [34].
In order to visualize the stability of our method under cross-

validation, we report the mean activation in the threshold-
split region (our single feature) for each of the training sets
in the leave-one-subject-out procedure. In Fig. 3, we show
the best condition for each of the four datasets. Note that
due to its simplicity, our method selects the same brain
region consistently for different training sets, and therefore
the separation between cocaine addicted, Schizophrenia or
Alzheimer’s disease versus control subjects is similar across
different training sets.

D. A Meaningful Low Dimensional Representation
Our method produces a meaningful low dimensional repre-

sentation because each axis is an experimental condition and
represents the mean activation in the threshold-split region.
Moreover, such representation retains the discriminability of
the original high dimensional data, with tens of thousands
of voxels. For both Cocaine Use datasets, we have three
axes/conditions: the monetary rewards (45¢, 1¢, 0¢ for the
first dataset, 50¢, 25¢, 0¢ for the second dataset). For the
Schizophrenia dataset, we have three axes/tasks: sensorimotor,
auditory oddball and working memory. For the Alzheimer’s
Disease dataset, we have two axes/conditions: one-trial and
two-trial. Fig. 4 shows the low dimensional space for two
randomly selected leave-one-subject-out folds in both datasets.
Note that the low dimensional representation is stable, i.e.
similar for distinct leave-one-subject-out folds.

E. Generalization Accuracy
In order to approximate the generalization accuracy, we

perform leave-one-subject-out since it is the standard accepted
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Fig. 4. Feature space for two (randomly selected) leave-one-subject-
out folds for: (a,b) first Cocaine Use dataset, (c,d) second Cocaine Use
dataset, (e,f) Schizophrenia dataset and (g,h) Alzheimer’s Disease dataset.
Cocaine addicted, Schizophrenia and Alzheimer’s disease subjects in red
crosses, control subjects in blue dots. Each axis/condition represents the mean
activation in the threshold-split region. Note that (a,c,e,g) is similar to (b,d,f,h)
respectively. Therefore, our method produces a low dimensional space which
is stable and retains the discriminability of the original high dimensional space,
with tens of thousands of voxels.

practice [5], [6], [9], [11], [13], [16], [34], i.e. we held out each
of the subjects in turn while training on the other subjects.

For completeness, we first show our previous results in
classification of cocaine addicted versus control subjects
[34]. Then, we present our new results in classification of
Schizophrenia and Alzheimer’s disease versus control subjects.

Fig. 5 shows the generalization accuracy of our method
for the first Cocaine Use dataset. Note that better accuracy is
obtained by mixing different conditions. Fig. 5 also shows the
brain regions associated with each condition. Brodmann areas
3,4,6 (sensorimotor cortex) are selected for the 45¢ condition.
Those areas were also discriminative for 1¢ and 0¢ but other
were found to be more discriminative for those conditions.
We hypothesize that Brodmann areas 3,4,6 are affected due
to the fact that cocaine is a stimulant. Significant sensorimo-
tor impairments in cocaine users accompanied by abnormal
functional brain activity in cortical and subcortical areas that
subserve motor control was reported in [41]. Brodmann areas
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Cocaine vs. Control on First Dataset (chance=57.1%)
Condition(s) 45¢ 1¢ 0¢ 45¢,1¢ 1¢,0¢ All
Accuracy 82.1 82.1 82.1 85.7 85.7 89.3

(a) (b)

(c)

Fig. 5. Top: Leave-one-subject-out generalization accuracy of our method for
the first Cocaine Use dataset. Better accuracy is obtained by mixing different
conditions. Bottom: Most frequently selected regions by our method under
leave-one-subject-out for different conditions: (a) 45¢: center (42,-15,44), 100
voxels, Brodmann areas 3,4,6, frequency 92.9%, (b) 1¢: center (22,-76,-13),
147 voxels, Brodmann areas 18,19, frequency 100% and (c) 0¢: center (22,-
72,-11), 114 voxels, Brodmann areas 18,19, frequency 100%.

Cocaine vs. Control on Second Dataset (chance=51.5%)
Condition(s) 50¢ 25¢ 0¢ 50¢,25¢ All
Accuracy 78.8 66.7 72.7 81.8 90.9

(a) (b)

(c)

Fig. 6. Top: Leave-one-subject-out generalization accuracy of our method
for the second Cocaine Use dataset. Better accuracy is obtained by mixing
different conditions. Bottom: Most frequently selected regions by our method
under leave-one-subject-out for different conditions: (a) 50¢: center (0,35,5),
116 voxels, Brodmann areas 24,32, frequency 100%, (b) 25¢: center (13,-42,-
34), 93 voxels, cerebellar tonsil, frequency 75.8% and (c) 0¢: center (-23,-
43,-30), 148 voxels, cerebellar tonsil, culmen, frequency 100%.

18,19 (visual association cortex) are selected for the 1¢ and
0¢ conditions. Abnormalities in these regions were previously
reported in cocaine abusers during photic stimulation when
compared to control subjects [42].

Fig. 6 shows the generalization accuracy of our method for
the second Cocaine Use dataset. Note that better accuracy is
obtained by mixing different conditions. Fig. 6 also shows
the brain regions associated with each condition. Brodmann
areas 24,32 (anterior cingulate cortex) are selected for the 50¢
condition. The cerebellar tonsil is selected for the 25¢ and 0¢
conditions. Note that in both Cocaine Use datasets, prefrontal
cortical regions (Brodmann areas 6,24,32) are associated with
the high monetary conditions, while the posterior regions
(Brodmann areas 18,19 and cerebellum) are implicated in the
lower monetary conditions. We hypothesize that only high
monetary reward elicits such a prefrontal cortex response (and
regions of the pre/post central gyrus: Brodmann areas 3,4),
possibly due to more effort or anticipation. These results
are consistent with prior reports where abnormal monetary
processing in prefrontal brain regions were identified when
comparing cocaine addicted individuals to controls by using
hypothesis testing [36].

Fig. 7 shows the generalization accuracy of our method for
the Schizophrenia dataset. Note that better accuracy is obtained
by mixing different conditions. Fig. 7 also shows the brain

Schizophrenia vs. Control (chance=53.6%)
Task(s) Sensorimotor Auditory oddball Working memory All
Accuracy 67.9 75.0 89.3 96.4

(a) (b)

(c)

Fig. 7. Top: Leave-one-subject-out generalization accuracy of our method for
the Schizophrenia dataset. Better accuracy is obtained by mixing different con-
ditions. Bottom: Most frequently selected regions by our method under leave-
one-subject-out for different conditions: (a) sensorimotor: center (30,35,29),
162 voxels, Brodmann area 9, frequency 100%, (b) auditory oddball: center
(8,53,35), 128 voxels, Brodmann areas 8,9, frequency 96.4% and (c) working
memory: center (-3,-31,39), 549 voxels, Brodmann areas 7,31, frequency
100%.

Alzheimer’s disease vs. Control (chance=51.9%)
Condition(s) One-trial Two-trial All
Accuracy 70.4 77.8 81.5

(a) (b)

Fig. 8. Top: Leave-one-subject-out generalization accuracy of our method
for the Alzheimer’s Disease dataset. Better accuracy is obtained by mixing
different conditions. Bottom: Most frequently selected regions by our method
under leave-one-subject-out for different conditions: (a) one-trial: center (-3,-
85,6), 224 voxels, Brodmann areas 17,18, frequency 100% and (b) two-trial:
center (4,-62,-18), 128 voxels, declive, culmen, frequency 96.3%.

regions associated with each condition. Brodmann area 9 is
selected for the sensorimotor task, while Brodmann areas 8,9
are selected for the auditory oddball task. We hypothesize that
this is related to the increase in neuronal and glial density in
Brodmann area 9, observed in Schizophrenia [43]. Brodmann
areas 7,31 are selected for the working memory task. This
result is consistent with observed task induced deactivations
of the midline cortical regions [44].

Fig. 8 shows the generalization accuracy of our method for
the Alzheimer’s Disease dataset. Note that better accuracy is
obtained by mixing different conditions. Fig. 8 also shows the
brain regions associated with each condition. Broadmann areas
17,18 are selected for the one-trial condition. We hypothesize
that this is related to the decrease in neuronal density in
both Brodmann areas, and the increase in glial density in
Brodmann area 17, observed in Alzheimer’s disease [45].
Declive and culmen are selected for the two-trial condition,
which is consistent with [37].

F. Comparison to Other Techniques

We compare our method to several feature extraction
and classification techniques, commonly used in the litera-
ture. The feature extraction methods in our evaluation in-
clude: threshold-split region [34]; principal component analy-
sis (PCA) [5], [6]; independent component analysis (ICA) [9];
the cubes of voxels method of [11]; most discriminative voxels
[13]; most active voxels [16]; searchlight accuracy [1]; and
recursive feature elimination (RFE) [18], [19]. We used 100
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TABLE II
LEAVE-ONE-SUBJECT-OUT GENERALIZATION ACCURACY FOR COCAINE

USE, SCHIZOPHRENIA AND ALZHEIMER’S DISEASE. WE HIGHLIGHT THE
TOP 10% PERFORMING METHODS.

Cocaine vs. Control on First Dataset
Feature Classifier (chance=57.1%)

MV MV2 GNB kNN FLD LR LS GS AB
Threshold-split 89.3 89.3 82.1 82.1 85.7 82.1 78.6 82.1 85.7
PCA 57.1 57.1 64.3 50.0 57.1 50.0 60.7 60.7 64.3
ICA 57.1 57.1 64.3 57.1 57.1 53.6 53.6 57.1 64.3
16×16×16mm3 cubes 57.1 57.1 71.4 67.9 60.7 64.3 64.3 57.1 85.7
Most discriminative 71.4 71.4 78.6 71.4 82.1 82.1 85.7 78.6 71.4
Most active 75.0 75.0 75.0 82.1 78.6 75.0 85.7 75.0 78.6
Searchlight 71.4 75.0 75.0 71.4 75.0 67.9 75.0 78.6 67.9
RFE 71.4 67.9 78.6 85.7 85.7 71.4 89.3 85.7 71.4
All voxels 57.1 57.1 75.0 67.9 64.3 57.1 57.1 57.1 78.6

Cocaine vs. Control on Second Dataset
Feature Classifier (chance=51.5%)

MV MV2 GNB kNN FLD LR LS GS AB
Threshold-split 90.9 90.9 81.8 81.8 78.8 72.7 72.7 78.8 78.8
PCA 45.5 45.5 60.6 60.6 60.6 54.5 60.6 36.4 60.6
ICA 48.5 48.5 66.7 57.6 57.6 60.6 60.6 39.4 54.5
16×16×16mm3 cubes 36.4 36.4 66.7 63.6 63.6 72.7 63.6 51.5 48.5
Most discriminative 75.8 75.8 69.7 69.7 66.7 60.6 63.6 66.7 72.7
Most active 72.7 72.7 72.7 69.7 75.8 63.6 69.7 66.7 69.7
Searchlight 72.7 72.7 66.7 78.8 75.8 66.7 75.8 75.8 72.7
RFE 39.4 36.4 54.5 57.6 45.5 63.6 54.5 60.6 75.8
All voxels 42.4 42.4 63.6 63.6 63.6 51.5 60.6 51.5 60.6

Schizophrenia vs. Control
Feature Classifier (chance=53.6%)

MV MV2 GNB kNN FLD LR LS GS AB
Threshold-split 96.4 96.4 71.4 92.9 82.1 82.1 89.3 89.3 89.3
PCA 53.6 57.1 64.3 53.6 71.4 64.3 78.6 57.1 75.0
ICA 82.1 82.1 57.1 71.4 75.0 78.6 82.1 71.4 71.4
16×16×16mm3 cubes 71.4 71.4 60.7 82.1 75.0 75.0 75.0 71.4 89.3
Most discriminative 75.0 75.0 78.6 78.6 75.0 75.0 75.0 71.4 75.0
Most active 78.6 78.6 82.1 78.6 85.7 75.0 78.6 75.0 78.6
Searchlight 71.4 71.4 75.0 67.9 71.4 78.6 67.9 71.4 67.9
RFE 67.9 71.4 75.0 75.0 71.4 75.0 78.6 85.7 78.6
All voxels 71.4 71.4 64.3 75.0 71.4 53.6 82.1 53.6 75.0

Alzheimer’s disease vs. Control
Feature Classifier (chance=51.9%)

MV MV2 GNB kNN FLD LR LS GS AB
Threshold-split 81.5 77.8 55.6 74.1 59.3 63.0 63.0 70.4 77.8
PCA 55.6 55.6 51.9 51.9 59.3 59.3 51.9 40.7 59.3
ICA 59.3 59.3 48.1 66.7 48.1 44.4 48.1 37.0 48.1
16×16×16mm3 cubes 55.6 55.6 51.9 63.0 48.1 22.2 48.1 22.2 55.6
Most discriminative 74.1 74.1 66.7 77.8 66.7 55.6 63.0 74.1 70.4
Most active 63.0 59.3 70.4 55.6 40.7 63.0 55.6 70.4 66.7
Searchlight 74.1 74.1 66.7 66.7 59.3 48.1 51.9 74.1 74.1
RFE 55.6 51.9 40.7 51.9 51.9 59.3 48.1 55.6 63.0
All voxels 48.1 48.1 48.1 66.7 55.6 51.9 48.1 29.6 59.3

voxels for the latter four methods and all the components for
PCA and ICA. The cubes of voxels method of [11] resulted in
approximately 450 features. Additionally, we evaluate using all
voxels [15], [20], [24], [25] which are approximately 43,000.

The classification methods in our evaluation include: ma-
jority vote on decision stump classifiers that classifies ties
as “Disorder group” (MV) or as “Control group” (MV2);
Gaussian naı̈ve Bayes (GNB); k-nearest neighbors (kNN)
with number of neighbors k ∈ {1, 2, 5, 10, 20} selected
by nested leave-one-subject-out in the training set; Fisher
linear discriminant (FLD); sparse logistic regression (LR)
with regularization level ρ ∈ {1, 10, 100, 1000, 10000}
selected by nested leave-one-subject-out in the training

TABLE III
AREA UNDER THE ROC CURVE FOR COCAINE USE, SCHIZOPHRENIA AND

ALZHEIMER’S DISEASE. WE HIGHLIGHT THE TOP 10% PERFORMING
METHODS.

Cocaine vs. Control on First Dataset
Feature Classifier

MV MV2 GNB kNN FLD LR LS GS AB
Threshold-split 94.8 90.4 84.1 83.3 85.4 81.8 80.2 83.1 85.4
PCA 50.0 50.0 62.5 50.0 56.3 54.2 59.4 55.5 63.5
ICA 53.1 53.1 68.2 56.3 56.3 55.2 55.2 51.0 63.5
16×16×16mm3 cubes 50.0 50.0 67.7 67.7 60.4 66.7 63.5 50.0 87.0
Most discriminative 70.8 70.8 75.0 73.2 81.3 83.3 85.9 76.0 69.8
Most active 72.7 72.7 75.0 83.1 77.1 77.1 85.9 75.0 77.1
Searchlight 72.9 76.0 72.7 74.0 75.0 67.7 77.3 77.3 70.3
RFE 68.8 64.6 77.1 85.4 85.4 72.9 88.5 84.4 71.9
All voxels 50.0 50.0 71.9 65.9 63.5 50.0 56.3 50.0 77.1

Cocaine vs. Control on Second Dataset
Feature Classifier

MV MV2 GNB kNN FLD LR LS GS AB
Threshold-split 94.3 91.2 82.2 84.0 79.8 73.5 74.6 82.2 80.1
PCA 50.0 50.0 61.2 60.7 60.3 56.3 60.5 50.0 61.4
ICA 50.0 50.0 66.4 57.2 57.4 60.3 60.3 50.0 54.2
16×16×16mm3 cubes 50.0 50.0 66.5 64.7 63.4 72.8 63.4 50.0 50.0
Most discriminative 75.9 77.6 71.9 71.3 66.9 60.7 63.8 66.9 72.4
Most active 77.0 74.4 72.6 69.5 75.9 64.0 69.7 67.5 69.7
Searchlight 76.1 76.1 66.5 79.2 75.9 66.7 75.9 75.9 73.9
RFE 50.0 50.0 54.2 59.4 50.0 63.1 54.4 60.5 75.9
All voxels 50.0 50.0 63.4 66.9 63.6 50.0 60.3 50.0 60.8

Schizophrenia vs. Control
Feature Classifier

MV MV2 GNB kNN FLD LR LS GS AB
Threshold-split 96.2 96.2 70.3 92.8 82.3 81.3 89.0 89.0 89.5
PCA 50.0 54.9 63.1 52.6 70.8 63.8 77.4 53.8 75.6
ICA 81.8 81.8 54.9 70.8 74.1 81.8 82.3 70.8 74.4
16×16×16mm3 cubes 69.7 69.7 60.3 82.8 74.9 75.6 74.1 71.8 89.5
Most discriminative 75.6 75.6 78.5 77.9 76.2 78.2 78.2 71.8 74.6
Most active 77.9 77.9 82.3 77.9 85.6 76.7 79.2 75.6 78.5
Searchlight 73.3 73.3 75.6 68.5 72.8 78.5 69.7 71.3 69.5
RFE 66.4 70.3 73.6 74.1 72.1 74.6 77.9 85.6 78.5
All voxels 69.7 69.7 64.6 75.6 69.7 50.0 81.8 50.0 76.7

Alzheimer’s disease vs. Control
Feature Classifier

MV MV2 GNB kNN FLD LR LS GS AB
Threshold-split 81.3 77.5 56.9 73.6 59.9 63.5 63.5 70.3 77.5
PCA 54.9 54.9 52.5 52.7 59.6 59.3 51.6 50.0 58.8
ICA 59.6 58.0 50.0 65.9 50.0 50.0 50.0 50.0 50.0
16×16×16mm3 cubes 55.2 55.2 52.5 62.4 50.0 50.0 50.0 50.0 55.2
Most discriminative 73.4 73.4 67.0 77.2 66.5 55.2 62.9 74.2 70.1
Most active 62.6 58.8 70.6 54.9 50.0 62.9 54.9 70.3 66.2
Searchlight 73.9 73.9 67.0 65.9 59.1 50.0 51.9 74.2 74.2
RFE 56.0 52.2 50.0 51.6 52.2 59.1 50.0 55.2 62.4
All voxels 50.0 50.0 50.0 65.9 56.0 50.0 50.0 50.0 58.8

set; linear support vector machines (LS) with soft-margin
parameter C ∈ {0.0001, 0.001, 0.01, 0.1, 1} selected by
nested leave-one-subject-out in the training set; Gaussian
support vector machines (GS) with soft-margin parameter
C ∈ {0.0001, 0.001, 0.01, 0.1, 1} and kernel size γ ∈
{1, 10, 100, 1000, 10000}, both of them selected by nested
leave-one-subject-out in the training set; and Adaboost (AB)
on decision stump classifiers with number of iterations T ∈
{5, 10, 20, 50, 100} selected by nested leave-one-subject-out in
the training set.

For completeness, we show our previous results in classi-
fication of cocaine addicted versus control subjects [34]. We
also present our new results in classification of Schizophrenia
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TABLE IV
LEAVE-ONE-SUBJECT-OUT GENERALIZATION ACCURACY FOR THE
CONSERVATIVE EVALUATION OF OUR METHOD (THRESHOLD-SPLIT

REGION AND MAJORITY VOTE) VERSUS THE BEST-CASE EVALUATION OF
THE OTHER FEATURES. a PCA, ICA, 16×16×16MM3 CUBES, MOST
DISCRIMINATIVE, MOST ACTIVE, SEARCHLIGHT, RFE, ALL VOXELS

Dataset Threshold-split Other featuresa
MV MV2 (Table II)

Cocaine, First Dataset 89.3 89.3 89.3
Cocaine, Second Dataset 87.9 87.9 78.8
Schizophrenia 96.4 96.4 89.3
Alzheimer’s disease 81.5 77.8 77.8

and Alzheimer’s disease versus control subjects.
We report the generalization accuracy in Table II for all

features and classifiers. In order to perform a fair comparison,
each entry in the table (feature and classifier) shows the best
result from all the possible sets of experimental conditions.
For instance, for the first Cocaine Use dataset, we report the
best result from using either {45¢}, {1¢}, {0¢}, {45¢,1¢},
{45¢,0¢}, {1¢,0¢} or {45¢,1¢,0¢}. All feature extraction
methods are applied independently per experimental condition,
e.g. when using {45¢,0¢} we perform feature extraction for
45¢ and 0¢ independently, and then join the features corre-
sponding to the same subject. Note that as shown in Fig. 5,
6, 7 and 8, our method prefers to use all conditions together
({45¢,1¢,0¢} in our example), but the other methods in our
comparison do not exhibit the same property. We additionally
report the area under the receiver operating characteristic
(ROC) curve in Table III for all features and classifiers. ROC
curves allow showing the trade-off between sensitivity (i.e. the
fraction of people with a disorder out of the subjects classified
with a disorder) and specificity (the fraction of control subjects
out of the subjects classified as control) of a classifier.

We observe that the only combination of feature and clas-
sifier that obtains the best generalization accuracy and area
under the ROC curve in Cocaine Use, Schizophrenia and
Alzheimer’s disease, is threshold-split region and majority
vote. Notice that some combinations of features and classifiers
obtain good results in one dataset but not as good results
on other datasets. For instance, 16×16×16mm3 cubes with
Adaboost obtains good results in the first Cocaine Use and
Schizophrenia datasets but not as good results in the sec-
ond Cocaine Use and Alzheimer’s Disease datasets. As an
additional example, recursive feature elimination with linear
support vector machines obtains good results in the first
Cocaine Use dataset but not as good results in the second
Cocaine Use, Schizophrenia and Alzheimer’s Disease datasets.

One could argue that the best leave-one-subject-out accu-
racy from all the possible sets of experimental conditions
(Table II) is a best-case measure of generalization ability. A
more conservative evaluation would be to select the set of
experimental conditions for each leave-one-subject-out fold.
To this end, for each leave-one-subject-out fold, we performed
30 bootstrap repetitions in the training set and chose the set
of experimental conditions that produced the highest accuracy.
This set of conditions, for instance for the first Cocaine
Use dataset, would be either {45¢}, {1¢}, {0¢}, {45¢,1¢},
{45¢,0¢}, {1¢,0¢} or {45¢,1¢,0¢} selected individually for

each training set. Note that under this setting, methods that
are unstable under cross-validation will degrade considerably.
In Table IV we contrast the results of this more conservative
evaluation for our proposed method (threshold-split region and
majority vote) with the best result for the other features in
Table II, produced under the best-case evaluation. Note that the
conservative evaluation results for our method are still better
than the best-case evaluation results for the other features
under comparison.

IV. CONCLUSIONS

We showed that for group classification, voxels-as-features
methods produce voxels that are scattered and less stable than
for multi-subject prediction of simple cognitive states. There-
fore, we used threshold-split region as the feature extraction
method and majority vote as the classification technique. We
argued that our method produces a meaningful low dimen-
sional representation that retains discriminability.

We reported the best leave-one-subject-out generalization
accuracy in three different disorders: 96.4% for Schizophrenia
and 81.5% for Alzheimer’s disease, while we previously
reported 89.3% and 90.9% for Cocaine Use in two different
datasets [34]. In both Cocaine Use datasets as well as the
Schizophrenia dataset, we obtain better accuracy by mixing
very diverse experimental conditions (i.e. different monetary
rewards for Cocaine Use; sensorimotor, auditory oddball and
working memory for Schizophrenia). In the Alzheimer’s Dis-
ease dataset, the number of experimental conditions is smaller
and their nature is not as diverse (i.e. one-trial and two-trial on
a flicker task). We believe that this explains the comparatively
better generalization accuracy on both Cocaine Use datasets
and the Schizophrenia dataset.

We showed evidence that our method succeeds under dif-
ferent settings: in both block design and event related tasks,
captured in different facilities, magnetic fields (4Tesla for
both Cocaine Use datasets [34], 3Tesla for the Schizophrenia
dataset, 1.5Tesla for the Alzheimer’s Disease dataset), and
speed of acquisition (interscan interval TR=3500ms for the
first Cocaine Use dataset, TR=1600ms for the second Cocaine
Use dataset, TR=2000ms for the Schizophrenia dataset and
TR=2680ms for the Alzheimer’s Disease dataset).

There are several ways of extending this research. It would
be very interesting to apply our method to the prediction
of complex cognitive states, in which we hypothesize that
voxels-as-features methods would produce scattered voxels,
unstable under cross-validation. Another very interesting line
of research is to measure the generalization accuracy of our
method for larger number of subjects.
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