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Abstract—This paper describes a study on continuous, non-
intrusive stress detection from physiological measurements,
involving data collection, feature extraction, and model con-
struction. We built a personalized stress detection model based
on Support Vector Machines, and evaluated it on the collected
data. Experimental results show that our model can detect
stress with high precision.

I. INTRODUCTION

Assessing stress in natural environment is beneficial for
understanding the emotional behavior of human beings.
Existing studies have shown that psychosocial stress can be
assessed via self-report measurement, and such measurement
is associated with biological and behavioral indices relevant
to health. Examples include ambulatory blood pressure [1],
carotid artery atherosclerosis [2], and cigarette smoking
lapses [3]. Self-report measurement, however, requires a
significant response cost on the participant, making frequent
collection of such measurement impractical. If the stress
assessment can be conducted on a continuous basis without
requiring self-reports, it will significantly expand the usage
of the assessment and benefit the research on stress and
health.

Previous work has demonstrated the feasibility of de-
tecting stress from physiological measurements. Such mea-
surements can be acquired with minimal discomfort for the
subject, and are useful in reflecting emotions [4]. One of the
most relevant studies in this field was conducted by Healey
and Picard [5], in which they presented methods for collect-
ing and analyzing physiological data during real world driv-
ing tasks. They continuously recorded electrocardiogram,
electromyogram, skin conductance, and respiration signals
of drivers on a fixed route through Downtown Boston.
Using Linear Discriminant Analysis [6], they showed that
physiological measurements can predict mental stress with
high accuracy. Healey and Picard’s study, however, did not
address physical stress [7] which is another important stress
category.

In this work, we aim at a more complete study of both
mental and physical stress. We collected the data through a
controlled lab study containing different stressors and rest

periods. For annotation, we collected Ecological Momentary
Assessment (EMA) [8] results from the participants before
and after each rest/stressor period. This way of acquiring
stress annotation is different from Healey and Picard’s
approach which was based on judgement of human coders on
video tapes of the driving. Their approach might be biased
toward visually discernible effects, and may not well reflect
the true stress state of the drivers.

For automatic stress detection, we trained personalized
models using Support Vector Machines (SVMs) [9]. Ex-
periments on the recorded data show that our model can
achieve good precision at high detection rate. By combining
advanced machine learning techniques and multi-sensory
platforms to detect person’s stress, we will proceed toward
systems that can provide advice that is trusted. This research
would enrich the quality of life technology capabilities.

II. DATA COLLECTION

The data was collected through a lab study which in-
volved 22 subjects. Each subject in the study was exposed to
a protocol containing four stressors and six rest periods. The
four stressors were: one public speaking stressor, two mental
arithmetic stressors, and one cold pressor stressor. These
stressors represent the social, mental, or physical challenges
that might lead to either mental or physical stress. Table I
lists the sessions in our lab study.

For the public speaking task, participants were asked to
prepare (four minutes) and deliver (four minutes) a speech
while being videotaped. Participants were informed that they
would be evaluated on poise, articulation, and style by two
staff members present during the speech.

During the mental arithmetic tasks the subjects were asked
to continuously add the digits of a three digit number and
then add this sum to the original number. When a mistake
was made, the participant was asked to go back to the
previous correct number.

For the cold pressor test, the participant placed their hand
in ice water while providing discomfort ratings to the test
giver. This test lasted two minutes.

During the lab study, each subject wore an AutoSense1

1http://sites.google.com/site/autosenseproject/



Table I
SESSIONS IN THE LAB STUDY

Session Approximate duration—minutes
Initial rest 30

Public speaking stressor 4 (preparation), 4 (talking)
Rest 5

Mental arithmetic I 4
Rest 5

Mental arithmetic II 4
Rest 5

Cold pressor 2
Final rest 20

platform on a chest band. The chest band contained the
following sensors:
• Electrocardiogram (ECG): a two-lead ECG with elec-

trodes was placed on the subjects’ chest. The ECG
signal was down-sampled to 60Hz.

• Galvanic Skin Resistance (GSR): the skin resistance
was measured on the chest band at 10Hz.

• Respiration (RIP): the band carrying the sensor plat-
form had a built-in resistor that was used to measure the
chest expansion. The chest expansion, i.e., the electric
impedance, was sampled at 60Hz.

• Temperature: the skin temperature was measured
at 10Hz.

For stress annotation, we collected EMA interviews from
the participants before and after each stressor/rest period.
The questions and possible answers for each EMA interview
are listed in Table II. To convert the EMA results to
stress labels, we mapped YES, yes, no, NO to 3, 2, 1, 0,
respectively, and the average of the answers to the third and
fourth questions was calculated. If this value was larger than
1, the session immediately before the EMA interview was
labeled as positive (stressed); otherwise, this session was
labeled as negative (non-stressed).

Table II
EMA QUESTIONS AND POSSIBLE ANSWERS

Question Possible answers
At the time of the prompt, how are you feeling:

Cheerful? YES yes no NO
Happy? YES yes no NO

Frustrated/Angry? YES yes no NO
Nervous/Stressed? YES yes no NO

Sad? YES yes no NO

III. FEATURE EXTRACTION

After the sensor data was collected, we extracted 26 types
of features which were suggested to be relevant in related
literature [5], [10], [11]. The features can be categorized in
the following groups:
• Heart Rate features: HR, DHR, and DHR2;
• ECG features: RSA, MF, LF, 01Hz, 12Hz, 23Hz, 34Hz,

LFMFHF, and HFLF;

• Respiration features: RP, DRP, and RA;
• Skin Conductance features: SCL, DSCL, SCL2, and

SCLMAD;
• Galvanic Skin Response features: SRR, SRA, GSRD,

and GSRA;
• Temperature features: T, DT, and DT2.
The full list of all features are given in Table III. All

features were calculated as the mean, standard deviation, or
integration of sensor responses over a 60-second window.
A feature vector was calculated every 20 seconds to form
a data sample, which was labeled either positive or nega-
tive depending on the corresponding EMA responses. The
number of positive and negative samples for 22 subjects are
summarized in Table IV.

Table III
FEATURES EXTRACTED FROM SENSOR DATA

Feature Description Sensor
HR mean heart rate ECG

DHR heart rate deviation ECG
DHR2 heart rate deviation squared ECG

RSA respiratory sinus arrhythmia, integration
over the HF Band (0.15-0.5 Hz) ECG

MF integration over the power
of the MF Band (0.09-0.15Hz) ECG

LF integration over the power
of the LF Band (0.00-0.09HZ) ECG

01Hz sum of energy in 0-0.1 Hz Band ECG
12Hz sum of energy in 0.1-0.2 Hz Band ECG
23Hz sum of energy in 0.2-0.3 Hz Band ECG
34Hz sum of energy in 0.3-0.4 Hz Band ECG

LFMFHF (LF + MF)/HF ECG
HFLF ratio of sum of LF / HF ECG

RP mean respiration period
(time between two respiration cycles) RIP

DRP deviation of the respiration period RIP
RA mean respiration amplitude RIP
SCL mean skin conductance level GSR

DSCL skin conductance level deviation GSR
DSCL2 skin conductance level deviation squared GSR

SCLMAD mean absolute deviation of the skin
conductance level GSR

SRR number of GSR responses GSR
SRA amplitude of GSR responses in a window GSR

GSRA sum of the area of GSR responses
in a window GSR

GRSD sum of the duration of GSR responses
in a window GSR

T mean temperature Temperature
DT temperature deviation Temperature

DT2 temperature deviation squared Temperature

IV. STRESS DETECTION MODEL

This section describes our stress detection model which
extends SVMs to incorporate person-specific and temporal
information.

A. Support Vector Machines

Given a set of training samples x1,x2, · · · ,xn ∈ Rd,
and their corresponding labels y1, y2, · · · , yn ∈ {−1,+1},



Table IV
NUMBERS OF POSITIVE AND NEGATIVE SAMPLES FROM 22 SUBJECTS

Subject #Positive / #Negative Subject #Positive / #Negative
1 8 / 131 12 25 / 148
2 5 / 188 13 0 / 201
3 0 / 205 14 14 / 76
4 23 / 183 15 23 / 191
5 45 / 133 16 26 / 173
6 19 / 171 17 1 / 156
7 36 / 154 18 28 / 159
8 143 / 60 19 29 / 143
9 21 / 165 20 39 / 168

10 0 / 89 21 36 / 96
11 47 / 163 22 0 / 137

SVMs first map the input data to a feature space via the
feature mapping ϕ(·), and seek a separating hyperplane with
the maximum margin [12], [9]:

minimize
w,b

1
2
‖w‖22 + C

n∑

i=1

ξi, (1)

s.t. yi(wT ϕ(xi) + b) ≥ 1− ξi ∀i,
ξi ≥ 0 ∀i.

where w and b are the parameters of SVMs, {ξi} are slack
variables for penalizing the constraint violation, and C is
a parameter balancing the trade-off between a large margin
and less constraint violation.

B. Incorporating Person-specific Information

Although SVMs are state-of-the-art machine learning
techniques and have been shown to yield excellent perfor-
mance in many applications, their generalization capability
might be limited if the inter-subject variation is large.
As shown by Healey in [13], physiological responses can
vary significantly between subjects. We therefore propose
to investigate an approach that incorporates person-specific
information, and builds personalized stress detection model
to overcome this challenge.

Let r be the number of subjects, {(xp
i , y

p
i )}np

i=1 the set of
samples from subject p. Our personalized SVM formulation
is:

minimize
w,b

1
2
‖w‖22 + C

r∑
p=1

np∑

i=1

ξp
i , (2)

s.t. yp
i (wT ϕ(xp

i ,θ
p) + b) ≥ 1− ξp

i ∀p∀i,
ξp
i ≥ 0 ∀p∀i.

Here θp is a personalized parameter for subject p.
Previous studies [14], [15], [5] have shown that the

changes in physiological measurements are more indica-
tive for the transition of mental states than the absolute
measurement values. Based on these studies, we propose
a person-specific feature mapping to capture the deviation

of physiological measurements:

ϕ(xp
i ,θ

p) = ϕ(xp
i − θp). (3)

Here θp is person-specific parameter, which is estimated as
the mean of all negative samples from subject p. To some
extent, this is a neutral state; its role is analogous to the use
of the neutral face in facial expression analysis [16].

C. Incorporating Temporal Information

The features described in Sec. III are calculated based
on a 60-second window, which might not be long enough
to capture the dynamics of stress events. Therefore, we
propose to explore an approach that performs stress detection
based on longer temporal extent by pooling information from
consecutive windows. Let us refer to the features extracted in
the 60-second window as frame-based. For longer temporal
modeling, we consider segment-based features which are
computed as the statistics (minimum, maximum, mean,
median, and standard deviation) of frame-based features in
the segment, as shown in Fig. 1.
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Figure 1. Frame-based and segment-based features. The segment-based
features are computed by pooling statistics of frame-based features in the
enclosing segment.

V. EVALUATION

To evaluate the detection performance, we used precision-
recall values, instead of the more common ROC metric be-
cause the latter is designed for balanced binary classification
rather than detection tasks [17]. Let tp, tn, fp, fn denote the
numbers of true positives (i.e., samples correctly predicted
as stress), true negatives, false positives, and false negatives,
respectively. The precision and recall are defined as:

precision =
tp

tp + fp
, recall =

tp

tp + fn
(4)

Due to the limited amount of data, we evaluated the stress
detector using leave-one-subject-out cross validation. Ta-
ble V shows the the results of the generic model (without
personalization) and the personalized one, both using frame-
based features. Here we show the average precisions and



standard errors at 80% recall. We experimented with two
types of kernels: Linear and Radial Basis Function (RBF)
kernels. As can be seen, incorporating person-specific in-
formation significantly improved the performance, 7% and
11% for Linear and RBF kernels, respectively.

Table V
AVERAGE AND STANDARD ERRORS OF PRECISION VALUES OF THE

GENERIC AND PERSONALIZED MODELS AT 80% RECALL. BEST
RESULTS ARE PRINTED IN BOLD.

kernel type generic personalized
Linear 0.56±0.054 0.60±0.065
RBF 0.56±0.053 0.62±0.064

Table VI demonstrates the effect of incorporating tempo-
ral information. We trained two personalized models, one
with frame-based features and the other with segment-based
features. We used RBF kernels for both models, and set the
segment length to three minutes. As can be observed, the
segment-based model significantly outperformed the frame-
based one.

Table VI
AVERAGE AND STANDARD ERRORS OF PRECISION VALUES OF

PERSONALIZED MODELS USING FRAME-BASED AND SEGMENT-BASED
FEATURES AT 80% RECALL.

frame-based segment-based
0.62±0.064 0.68±0.073

Figure 2 shows the precision–recall curve of the stress de-
tection model with personalization, segment-based features,
and RBF kernel. Even at 100% recall, the model can still
achieve high precision over 50%.
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Figure 2. Precision–recall curve of our stress detection model

The tunable parameters of our models are C and γ of the
kernels used in SVMs. In our experiments, these parameters
were tuned using cross-validation on the training data.

VI. CONCLUSIONS

In this paper, we have presented SVM-based models for
detecting stress from physiological measurements. Experi-
mental results show that our models can detect stress at high
precision and recall values, especially when personalized
information is used. To our knowledge, this is the first stress
detection model that incorporates person-specific informa-
tion. Future work includes: i) validating the model through
a field study; and ii) enabling online adaptation based on
self-report measurement and contextual information.
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