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Abstract

We present multi-task structure learning for
Gaussian graphical models. We discuss
uniqueness and boundedness of the optimal
solution of the maximization problem. A
block coordinate descent method leads to
a provably convergent algorithm that gen-
erates a sequence of positive definite solu-
tions. Thus, we reduce the original prob-
lem into a sequence of strictly convex `∞
regularized quadratic minimization subprob-
lems. We further show that this subprob-
lem leads to the continuous quadratic knap-
sack problem, for which very efficient meth-
ods exist. Finally, we show promising results
in a dataset that captures brain function of
cocaine addicted and control subjects under
conditions of monetary reward.

1. Introduction

Structure learning aims to discover the topology of a
probabilistic network of variables such that this net-
work represents accurately a given dataset while main-
taining low complexity. Accuracy of representation is
measured by the likelihood that the model explains the
observed data, while complexity of a graphical model
is measured by its number of parameters. Structure
learning faces several challenges: the number of pos-
sible structures is super-exponential in the number of
variables while the required sample size might be even
exponential. Therefore, finding good regularization
techniques is very important in order to avoid over-
fitting and to achieve a better generalization perfor-
mance.

For Gaussian graphical models, the number of parame-
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ters, the number of edges in the structure and the num-
ber of non-zero elements in the inverse covariance or
precision matrix are equivalent measures of complex-
ity. Therefore, several techniques focus on enforcing
sparseness of the precision matrix. An approximation
method proposed in (Meinshausen & Bühlmann, 2006)
relied on a sequence of sparse regressions. Maximum
likelihood estimation with an `1-norm penalty for en-
couraging sparseness is proposed in (Banerjee et al.,
2006; Friedman et al., 2007; Yuan & Lin, 2007).

Suppose that we want to learn the structure of brain
region interactions for one person. We can expect that
the interaction patterns of two persons are not same.
On the other hand, when learning the structure for
one person, we would like to use evidence from other
persons as a side information in our learning process.
This becomes more important in settings with lim-
ited amount of data, such as in functional magnetic
resonance image (fMRI) studies. Multi-task learning
allows for a more efficient use of training data which
is available for multiple related tasks.

In this paper, we consider the computational aspect
of multi-task structure learning, which generalizes the
learning of sparse Gaussian graphical models to the
multi-task setting by replacing the `1-norm regular-
ization with an `1,∞-norm.

Our contribution in this paper is three-fold. First,
we present a block coordinate descent method which
is provably convergent and yields sparse and positive
definite estimates. Second, we show the connection be-
tween our multi-task structure learning problem and
the continuous quadratic knapsack problem, which al-
lows us to use existing efficient methods (Helgason
et al., 1980; Brucker, 1984; Kiwiel, 2007). Finally,
we experimentally show that the cross-validated log-
likelihood of our method is more stable and statisti-
cally significantly higher than the competing methods
in a fMRI dataset that captures brain function of co-
caine addicted and control subjects under conditions
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Table 1. Notation used in this paper.
Notation Description

‖c‖1 `1-norm of c ∈ RN , i.e.
∑

n |cn|
‖c‖∞ `∞-norm of c ∈ RN , i.e. maxn |cn|
diag(c) ∈
RN×N

matrix with elements of c ∈ RN on its diag-
onal

A º 0 A ∈ RN×N is symmetric and positive
semidefinite

A Â 0 A ∈ RN×N is symmetric and positive defi-
nite

‖A‖1 `1-norm of A ∈ RM×N , i.e.
∑

mn |amn|
‖A‖∞ `∞-norm of A ∈ RM×N , i.e. maxmn |amn|
‖A‖2 spectral norm of A ∈ RN×N , i.e. the maxi-

mum eigenvalue of A Â 0
‖A‖F Frobenius norm of A ∈ RM×N , i.e.√∑

mn a2
mn

〈A,B〉 scalar product of A,B ∈ RM×N , i.e.∑
mn amnbmn

of monetary reward.

Section 2 introduces Gaussian graphical models as well
as techniques for learning such structures from data.
Section 3 sets up the problem and discuss some of its
properties. Section 4 describes our block coordinate
descent method. Section 5 shows the connection to
the continuous quadratic knapsack problem. Experi-
mental results are shown and explained in Section 6.
Main contributions and results are summarized in Sec-
tion 7.

2. Background

In this paper, we use the notation in Table 1.

A Gaussian graphical model is a graph in which all
random variables are continuous and jointly Gaussian.
This model corresponds to the multivariate normal
distribution for N variables with covariance matrix
Σ ∈ RN×N . Conditional independence in a Gaussian
graphical model is simply reflected in the zero entries
of the precision matrix Ω = Σ−1 (Lauritzen, 1996).
Let Ω = {ωn1n2}, two variables n1 and n2 are condi-
tionally independent if and only if ωn1n2 = 0.

The concept of robust estimation by performing co-
variance selection was first introduced in (Dempster,
1972) where the number of parameters to be estimated
is reduced by setting some elements of the precision
matrix Ω to zero. Since finding the most sparse preci-
sion matrix which fits a dataset is a NP-hard problem
(Banerjee et al., 2006), in order to overcome it, sev-
eral `1-regularization methods have been proposed for
learning Gaussian graphical models from data.

Given a dense sample covariance matrix Σ̂ º 0, the
problem of finding a sparse precision matrix Ω by reg-

ularized maximum likelihood estimation is given by:

max
ΩÂ0

(
`Σ̂(Ω)− ρ‖Ω‖1

)
(1)

for ρ > 0. The term ‖Ω‖1 encourages sparseness of the
precision matrix or conditional independence among
variables, while the term `Σ̂(Ω) is the Gaussian log-
likelihood, and it is defined as:

`Σ̂(Ω) = log detΩ− 〈Σ̂,Ω〉 (2)

Several optimization techniques have been proposed
for eq.(1): a sequence of box-constrained quadratic
programs in the covariance selection (Banerjee et al.,
2006), solution of the dual problem by sparse regres-
sion in the graphical lasso (Friedman et al., 2007) or
an approximation via standard determinant maximiza-
tion with linear inequality constraints in (Yuan & Lin,
2007). Instead of solving eq.(1), the Meinshausen-
Bühlmann approximation (Meinshausen & Bühlmann,
2006) obtains the conditional dependencies by per-
forming a sparse linear regression for each variable,
by using lasso regression (Tibshirani, 1996).

Besides sparseness, several regularizers have been
proposed for Gaussian graphical models for single-
task learning, for enforcing diagonal structure (Levina
et al., 2008), block structure for known block-variable
assignments (Duchi et al., 2008a) and unknown block-
variable assignments (Marlin & K.Murphy, 2009; Mar-
lin et al., 2009), or spatial coherence (Honorio et al.,
2009).

Multi-task learning has been applied to very diverse
problems, such as linear regression (Liu et al., 2009),
classification (Jebara, 2004), compressive sensing (Qi
et al., 2008), reinforcement learning (Wilson et al.,
2007) and structure learning of Bayesian networks
(Niculescu-Mizil & Caruana, 2007).

Structure learning through `1-regularization has been
also proposed for different types of graphical models:
Markov random fields (MRFs) by a clique selection
heuristic and approximate inference (Lee et al., 2006);
Bayesian networks on binary variables by logistic re-
gression (Schmidt et al., 2007); Conditional random
fields by pseudo-likelihood and block regularization in
order to penalize all parameters of an edge simulta-
neously (Schmidt et al., 2008); and Ising models, i.e.
MRFs on binary variables with pairwise interactions,
by logistic regression (Wainwright et al., 2006) which is
similar in spirit to (Meinshausen & Bühlmann, 2006).

3. Preliminaries

In this section, we set up the problem and discuss some
of its properties.
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3.1. Problem Setup

We propose a prior that is motivated from the multi-
task learning literature. Given K arbitrary tasks, our
goal is to learn one structure for each task, and to
promote a consistent sparseness pattern across tasks.

For a given task k, we learn a precision matrix
Ω(k) ∈ RN×N for N variables. Our multi-task regu-
larizer penalizes corresponding edges across tasks (i.e.
ω

(1)
n1n2 , . . . , ω

(K)
n1n2) with the same strength whether it

appears in 1, 2, . . . or K tasks. As a result, only edges
that help to explain the observed data for almost every
task, will appear in the learnt structures.

Let Σ̂(k) º 0 be the dense sample covariance matrix
for task k, and T (k) > 0 be the number of samples in
task k. The multi-task structure learning problem is
defined as:

max
(∀k)Ω(k)Â0

(∑

k

T (k)`Σ̂(k)(Ω(k))− ρ‖Ω‖1,∞

)
(3)

for ρ > 0. The term `Σ̂(k)(Ω(k)) is the Gaussian log-
likelihood defined in eq.(2), while the term ‖Ω‖1,∞ is
our multi-task regularizer, and it is defined as:

‖Ω‖1,∞ =
∑
n1n2

max
k
|ω(k)

n1n2
| (4)

The number of samples is a term that is usually
dropped for covariance selection and graphical lasso as
in eq.(1). For the multi-task structure learning prob-
lem, it is important to keep this term when adding the
log-likelihood of several tasks into a single objective
function.

3.2. Bounds

In what follows, we discuss uniqueness and bounded-
ness of the optimal solution of the multi-task structure
learning problem.

Lemma 1. For ρ > 0, the multi-task structure learn-
ing problem in eq.(3) is a maximization problem with
concave (but not strictly concave) objective function
and convex constraints.

Proof. The Gaussian log-likelihood defined in eq.(2) is
convex, since log det is concave on the space of sym-
metric positive definite matrices and 〈·, ·〉 is a linear
operator. The multi-task regularizer defined in eq.(4)
is a non-smooth convex function. Finally, Ω(k) Â 0 is
a convex constraint.

Theorem 2. For ρ > 0, the optimal solution to
the multi-task structure learning problem in eq.(3) is

unique and bounded as follows:
(

1

‖Σ̂(k)‖2 + Nρ
T (k)

)
I ¹ Ω(k)∗ ¹

(
NK

ρ

)
I (5)

Proof. By using the identity ρ‖c‖∞ = max‖a‖1≤ρ aTc
in eq.(3), we get:

max
(∀k)Ω(k)Â0

min
(∀n1n2)

‖an1n2‖1≤ρ

∑

k

T (k)

(
log detΩ(k)

−〈Σ̂(k) + A(k)

T (k) ,Ω(k)〉

)

(6)
where an1n2 = (a(1)

n1n2 , . . . , a
(K)
n1n2)T and A(k) ∈ RN×N .

By virtue of Sion’s minimax theorem, we can swap the
order of max and min. Furthermore, note that the
optimal solution of the inner equation is independent
for each k and is given by Ω(k) = (Σ̂(k) + A(k)

T (k) )−1.
By replacing this solution in eq.(6), we get the dual
problem of eq.(3):

min
(∀n1n2)

‖an1n2‖1≤ρ

−
∑

k

T (k) log det
(
Σ̂(k) +

A(k)

T (k)

)
−NK

(7)

In order to find a lowerbound for the mini-
mum eigenvalue of Ω(k)∗, note that ‖Ω(k)∗−1‖2 =
‖Σ̂(k) + A(k)

T (k) ‖2 ≤ ‖Σ̂(k)‖2 + ‖A(k)

T (k) ‖2 = ‖Σ̂(k)‖2 +
1

T (k) ‖A(k)‖2 ≤ ‖Σ̂(k)‖2 + N
T (k) ‖A(k)‖∞. Since

‖an1n2‖1 ≤ ρ, it follows that |a(k)
n1n2 | = ρ in the ex-

treme case in which (∀k1 6= k)a(k1)
n1n2 = 0, and therefore

‖A(k)‖∞ ≤ ρ.

In order to find an upperbound for the maximum
eigenvalue of Ω(k)∗, note that, at optimum, the primal-
dual gap is zero:

−NK +
∑

k

T (k)〈Σ̂(k),Ω(k)∗〉+ ρ‖Ω∗‖1,∞ = 0 (8)

The upperbound is found as follows: ‖Ω(k)∗‖2 ≤
‖Ω(k)∗‖F ≤ ‖Ω(k)∗‖1 ≤ ‖Ω∗‖1,∞ = (NK −∑

k T (k)〈Σ̂(k),Ω(k)∗〉)/ρ and since Σ(k) º 0 and
Ω(k)∗ Â 0, it follows that 〈Σ̂(k),Ω(k)∗〉 ≥ 0.

4. Block Coordinate Descent Method

In this section, we develop a block coordinate descent
method for our multi-task structure learning problem,
and discuss some of its properties.

Since the objective function in eq.(3) contains a non-
smooth regularizer, methods such as gradient descent
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cannot be applied. On the other hand, subgradient de-
scent methods are slow to converge mainly because the
subgradient of the commonly used non-smooth regu-
larizers do not inform about the closeness of the sta-
tionary point.

We apply block coordinate descent method on the
primal problem, unlike covariance selection (Banerjee
et al., 2006) and graphical lasso (Friedman et al., 2007)
which optimize the dual. Our choice of optimizing the
primal follows from the fact that the dual formulation
in eq.(7) leads to a sum of K terms (log det functions)
which cannot be simplified to a quadratic problem un-
less K = 1.

For clarity of exposition, we assume that the diago-
nals of Ω(1), . . . ,Ω(K) are not penalized by our multi-
task regularizer defined in eq.(4). In case they are
penalized, an additional continuous logarithmic knap-
sack problem needs to be solved. We point out that
all the following theorems and lemmas still hold in this
case.

Lemma 3. The solution sequence generated by the
block coordinate descent method is bounded and every
cluster point is a solution of the multi-task structure
learning problem in eq.(3).

Proof. The non-smooth regularizer ‖Ω‖1,∞ is separa-
ble into a sum of O(N2) individual functions of the
form maxk |ω(k)

n1n2 |. These functions are defined over
blocks of K variables, i.e. ω

(1)
n1n2 , . . . , ω

(K)
n1n2 . The ob-

jective function in eq.(3) is continuous on a compact
level set. By virtue of Theorem 4.1 in (Tseng, 2001),
we prove our claim.

Theorem 4. The block coordinate descent method for
the multi-task structure learning problem in eq.(3) gen-
erates a sequence of positive definite solutions.

Proof. Maximization can be performed with respect
to one row and column of all precision matrices Ω(k)

at a time. Without loss of generality, we use the last
row and column in our derivation, since permutation
of rows and columns is always possible. Let:

Ω(k) =

[
W(k) y(k)

y(k)T z(k)

]
, Σ̂(k) =

[
S(k) u(k)

u(k)T v(k)

]
(9)

where W(k),S(k) ∈ RN−1×N−1, y(k),u(k) ∈ RN−1.

In terms of the variables y(k), z(k) and the constant
matrix W(k), the multi-task structure learning prob-

lem in eq.(3) can be reformulated as:

max
(∀k)Ω(k)Â0




∑
k T (k)

(
log(z(k) − y(k)TW(k)−1

y(k))
−2u(k)Ty(k) − v(k)z(k)

)

−2ρ
∑

n maxk |y(k)
n |




(10)

If Ω(k) is a symmetric matrix, according to the
Haynsworth inertia formula, Ω(k) Â 0 if and only if
its Schur complement z(k)−y(k)TW(k)−1

y(k) > 0 and
W(k) Â 0. By maximizing eq.(10) with respect to z(k),
we get:

z(k) − y(k)TW(k)−1
y(k) =

1
v(k)

(11)

and since v(k) > 0, this implies that the Schur comple-
ment in eq.(11) is positive.

Finally, in an iterative optimization algorithm, it suf-
fices to initialize Ω(k) to a matrix that is known to be
positive definite, e.g. a diagonal matrix with positive
elements.

Theorem 5. The block coordinate descent method for
the multi-task structure learning problem in eq.(3) is
equivalent to solving a sequence of strictly convex `1,∞
regularized quadratic subproblems:

min
(∀k)y(k)∈RN−1




∑
k T (k)

(
1
2y

(k)Tv(k)W(k)−1
y(k)

+u(k)Ty(k)

)

+ρ
∑

n maxk |y(k)
n |




(12)

Proof. By replacing the optimal z(k) given by eq.(11)
into the objective function in eq.(10), we get eq.(12).
Since W(k) Â 0 ⇒ W(k)−1 Â 0, hence eq.(12) is
strictly convex.

Lemma 6. If maxn

∑
k T (k)|u(k)

n | ≤ ρ, the `1,∞ regu-
larized quadratic problem in eq.(12) has the minimizer
(∀k)y(k)∗ = 0.

Proof. The problem in eq.(12) has the min-
imizer (∀k)y(k)∗ = 0 if and only if 0 be-
longs to the subdifferential set of the non-
smooth objective function at (∀k)y(k) = 0, i.e.
(∃A ∈ RN−1×K)(T (1)u(1), . . . , T (K)u(K)) + A =
0∧ maxn

∑
k ank ≤ ρ. This condition is true for

maxn

∑
k |T (k)u

(k)
n | ≤ ρ and since (∀k)T (k) > 0, we

prove our claim.

Remark 7. By using Lemma 6, we can reduce the size
of the original problem by removing variables in which
this condition holds, since it only depends on the dense
sample covariance matrix.
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Theorem 8. The coordinate descent method for the
`1,∞ regularized quadratic problem in eq.(12) is equiv-
alent to solving a sequence of strictly convex `∞ regu-
larized separable quadratic subproblems:

min
x∈RK

(
1
2
xTdiag(q)x− cTx + ρ ‖x‖∞

)
(13)

Proof. Without loss of generality, we use the last row
and column in our derivation, since permutation of
rows and columns is always possible. Let:

W(k)−1
=

[
H(k)

11 h(k)
12

h(k)
12

T
h

(k)
22

]
, y(k)=

[
y(k)

1

xk

]
, u(k)=

[
u(k)

1

u
(k)
2

]

(14)
where H(k)

11 ∈ RN−2×N−2, h(k)
12 ,y(k)

1 ,u(k)
1 ∈ RN−2.

In terms of the variable x and the constants qk =

T (k)v(k)h
(k)
22 , ck = −T (k)(v(k)h(k)

12

T
y(k)

1 + u
(k)
2 ), the

`1,∞ regularized quadratic problem in eq.(12) can be
reformulated as in eq.(13). Moreover, since (∀k)T (k) >

0∧v(k) > 0∧h
(k)
22 > 0 ⇒ q > 0, and therefore eq.(13)

is strictly convex.

5. Continuous Quadratic Knapsack
Problem

In this section, we show the connection between the
multi-task structure learning problem and the contin-
uous quadratic knapsack problem, for which very effi-
cient methods exist.

The continuous quadratic knapsack problem has been
solved in several areas. (Helgason et al., 1980) pro-
vides an O(K log K) algorithm which initially sort the
breakpoints. (Brucker, 1984) and later (Kiwiel, 2007)
provide deterministic linear-time algorithms by using
medians of breakpoint subsets. In the context of ma-
chine learning, (Duchi et al., 2008b) provides a ran-
domized linear-time algorithm, while (Liu et al., 2009)
provides an O(K log K) algorithm. We point out that
(Duchi et al., 2008b; Liu et al., 2009) assume that
the weights of the quadratic term are all equal, i.e.
(∀k)qk = 1. In this paper, we assume arbitrary posi-
tive weights, i.e. (∀k)qk > 0.

We point out to the reader, that the variables y, z used
in this section have a different meaning with respect
to the previous sections. We prefer to use them, since
those are variables regularly used as unknowns.

Theorem 9. For q > 0, ρ > 0, the `∞ regularized
separable quadratic problem in eq.(13) is equivalent to

the separable quadratic problem with one `1 constraint:

min
‖y‖1≤ρ

(
1
2
(y − c)Tdiag(q)−1(y − c)

)
(15)

Furthermore, their optimal solutions are related by
x∗ = diag(q)−1(c− y∗).

Proof. By Lagrangian duality, the problem in eq.(15)
is the dual of the problem in eq.(13). Furthermore,
strong duality holds in this case.

Remark 10. In eq.(15), we can assume that (∀k)ck 6=
0. If (∃k)ck = 0, the partial optimal solution is y∗k = 0,
and since this assignment does not affect the con-
straint, we can safely remove yk from the optimization
problem.

Remark 11. In what follows, we assume that ‖c‖1 >
ρ. If ‖c‖1 ≤ ρ, the unconstrained optimal solution of
eq.(15) is also its optimal solution, since y∗ = c is
inside the feasible region given that ‖y∗‖1 ≤ ρ.

Lemma 12. For q > 0, (∀k)ck 6= 0, ‖c‖1 > ρ, the
optimal solution y∗ of the separable quadratic problem
with one `1 constraint in eq.(15) belongs to the same
orthant as the unconstrained optimal solution c, i.e.
(∀k)y∗kck ≥ 0.

Proof. We prove this by contradiction. Assume
(∃k1)y∗k1

ck1 < 0. Let y be a vector such that
yk1 = 0 and (∀k2 6= k1)yk2 = y∗k2

. The solution
y is feasible, since ‖y∗‖1 ≤ ρ and ‖y‖1 = ‖y∗‖1 −
|yk1 | ≤ ρ. The difference in the objective function
between y∗ and y is 1

2 (y∗ − c)Tdiag(q)−1(y∗ − c) −
1
2 (y − c)Tdiag(q)−1(y − c) = 1

2qk1
(y∗k1

2 − ck1y
∗
k1

) >

y∗k1
2

2qk1
> 0. Thus, the objective function for y is smaller

than for y∗ (the assumed optimal solution), which is
a contradiction.

Theorem 13. For q > 0, (∀k)ck 6= 0, ‖c‖1 > ρ, the
separable quadratic problem with one `1 constraint in
eq.(15) is equivalent to the continuous quadratic knap-
sack problem:

min
z≥0

1Tz=ρ

∑

k

1
2qk

(zk − |ck|)2 (16)

Furthermore, their optimal solutions are related by
(∀k)y∗k = sgn(ck)z∗k.

Proof. By invoking Lemma 12, we can replace
(∀k)yk = sgn(ck)zk, zk ≥ 0 in eq.(15). Finally, we
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change the inequality constraint 1Tz ≤ ρ to an equal-
ity constraint since ‖c‖1 > ρ and therefore, the opti-
mal solution must be on the boundary of the constraint
set.

Lemma 14. For q > 0, (∀k)ck 6= 0, ‖c‖1 > ρ, the
continuous quadratic knapsack problem in eq.(16) has
the solution zk(ν) = max(0, |ck|−νqk) for some ν, and
furthermore:

z∗ = z(ν) ⇔ 1Tz(ν) = ρ (17)

Proof. The Lagrangian of eq.(16) is:

min
z≥0

∑

k

1
2qk

(zk − |ck|)2 + ν(1Tz− ρ) (18)

Both results can be obtained by invoking the Karush-
Kuhn-Tucker optimality conditions on eq.(18).

Remark 15. Note that zk(ν) = max(0, |ck| − νqk) is
a decreasing piecewise linear function with breakpoint
ν = |ck|

qk
> 0. By Lemma 14, finding the optimal z∗ is

equivalent to finding ν in a piecewise linear function
1Tz(ν) that produces ρ.

Lemma 16. For q > 0, (∀k)ck 6= 0, ‖c‖1 > ρ, the
continuous quadratic knapsack problem in eq.(16) has
the optimal solution z∗k = max(0, |ck| − ν∗qk) for:

|cπk∗ |
qπk∗

≥ ν∗ =
∑k∗

k=1 |cπk
| − ρ∑k∗

k=1 qπk

≥ |cπk∗+1 |
qπk∗+1

(19)

where the breakpoints are sorted in decreasing order by
a permutation π of the indices 1, 2, . . . , K, i.e. |cπ1 |

qπ1
≥

|cπ2 |
qπ2

≥ · · · ≥ |cπK
|

qπK
≥ |cπK+1 |

qπK+1
≡ 0.

Proof. Given k∗, ν∗ can be found straightforwardly by
using the equation of the line. In order to find k∗, note
that we want to find the range in which 1Tz

( |cπk∗ |
qπk∗

)
≤

ρ ≤ 1Tz
( |cπk∗+1

|
qπk∗+1

)
.

Theorem 17. For q > 0, ρ > 0, the `∞ regularized
separable quadratic problem in eq.(13) has the optimal
solution:

‖c‖1 ≤ ρ ⇒ x∗ = 0
‖c‖1 > ρ∧k > k∗ ⇒ x∗πk

= cπk

qπk

‖c‖1 > ρ∧k ≤ k∗ ⇒ x∗πk
= sgn(cπk

)
∑k∗

k=1 |cπk
|−ρ∑k∗

k=1 qπk

(20)

Proof. For ‖c‖1 ≤ ρ, from Remark 11 we know that
y∗ = c. By Theorem 9, the optimal solution of eq.(13)

Algorithm 1 Block Coordinate Descent
Input: ρ > 0, for each k, Σ̂(k) º 0, T (k) > 0

Initialize for each k, Ω(k) = diag(Σ̂(k))−1

for each iteration 1, . . . , L and each variable 1, . . . , N
do

Split for each k, Ω(k) into W(k),y(k), z(k) and Σ̂(k)

into S(k),u(k), v(k) as described in eq.(9)

Update for each k, W(k)−1
by using the Sherman-

Woodbury-Morrison formula (Note that when iterat-
ing from one variable to the next one, only one row
and column change on matrix W(k))
for each variable 1, . . . , N − 1 do

Split for each k, W(k)−1
,y(k),u(k) as in eq.(14)

Solve the `∞ regularized separable quadratic prob-
lem by eq.(20), either by sorting the breakpoints or
using medians of breakpoint subsets

end for
Update for each k, z(k) ← 1

v(k) + y(k)TW(k)−1
y(k)

end for
Output: for each k, Ω(k) Â 0

is x∗ = diag(q)−1(c− y∗) = 0, and we prove the first
claim.

For ‖c‖1 > ρ, by Theorem 9, the optimal solution of
eq.(13) x∗πk

= 1
qπk

(cπk
− y∗πk

). By Theorem 13, x∗πk
=

1
qπk

(cπk
− sgn(cπk

)z∗πk
). By Lemma 16, x∗πk

= cπk

qπk
−

sgn(cπk
)max(0,

|cπk
|

qπk
− ν∗).

If k > k∗ ⇒ |cπk
|

qπk
< ν∗ ⇒ x∗πk

= cπk

qπk
, and we prove

the second claim.

If k ≤ k∗ ⇒ |cπk
|

qπk
≥ ν∗ ⇒ x∗πk

= sgn(cπk
)ν∗, and we

prove the third claim.

Algorithm 1 shows the block coordinate descent
method in detail. A careful implementation of
the algorithm allows obtaining a time complexity of
O(LN3K) for L iterations, N variables and K tasks.
In our experiments, the algorithm converges quickly in
usually L = 10 iterations. The polynomial dependence
O(N3) on the number of variables is expected since
we cannot produce an algorithm faster than comput-
ing the inverse of the sample covariance in the case of
an infinite sample. The linear-time dependence O(K)
on the number of tasks can be accomplished by us-
ing a deterministic linear-time method for solving the
continuous quadratic knapsack problem, based on me-
dians of breakpoint subsets (Kiwiel, 2007). A very
easy-to-implement O(K log K) algorithm is obtained
by initially sorting the breakpoints and searching the
range for which Lemma 16 holds.
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Figure 1. Cross-validated log-likelihood of structures learnt
for each of the six sessions on cocaine addicted subjects
(left) and control subjects (right). Our multi-task method
(MT) outperforms Meinshausen-Bühlmann with AND-rule
(MA), OR-rule (MO), graphical lasso (GL), covariance se-
lection (CS) and Tikhonov regularization (TR).

6. Experimental Results

For experimental validation, we used a fMRI dataset
that captures brain function of cocaine addicted and
control subjects under conditions of monetary reward.
The dataset collected by (Goldstein et al., 2007) con-
tains 28 subjects: 16 cocaine addicted and 12 control.
Six sessions were acquired for each subject. Each ses-
sion contains 87 scans taken every 3.5 seconds.

Registration of the dataset to the same spatial refer-
ence template (Talairach space) and spatial smoothing
was performed in SPM21. We extracted voxels from
the gray matter only, and grouped them into 157 re-
gions by using standard labels, given by the Talairach
Daemon2. These regions span the entire brain (cere-
bellum, cerebrum and brainstem). In order to capture
laterality effects, we have regions for the left and right
side of the brain.

First, we test the idea of learning one Gaussian graph-
ical model for each of the six sessions, i.e. each session
is a task. We performed five-fold cross-validation on
the subjects, and report the log-likelihood on the test-
ing set (scaled for visualization purposes). In Figure 1,
we can observe that the log-likelihood of our method
is higher than the competing methods.

Second, we test the idea of learning one Gaussian
graphical model for each subject, i.e. each subject is a
task. It is well known that fMRI datasets have more
variability across subjects than across sessions of the
same subject. Therefore, our cross-validation setting
works as follows: we use one session as training set,
and the remaining five sessions as testing set. We re-

1http://www.fil.ion.ucl.ac.uk/spm/
2http://www.talairach.org/
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Figure 2. Cross-validated log-likelihood of structures learnt
for each subject on cocaine addicted subjects (left) and
control subjects (right). Our multi-task method (MT)
is more stable for low regularization levels and outper-
forms Meinshausen-Bühlmann with AND-rule (MA), OR-
rule (MO), graphical lasso (GL), covariance selection (CS)
and Tikhonov regularization (TR).

Table 2. Z-statistic for the difference of log-likelihoods be-
tween our technique and each competing method, for 16
cocaine addicted subjects. Expect for few cases (marked
with an asterisk), our method is statistically significantly
better (95%, Z > 1.65) than Meinshausen-Bühlmann with
AND-rule (MA), OR-rule (MO), graphical lasso (GL), co-
variance selection (CS) and Tikhonov regularization (TR).

Method S1 S2 S3 S4 S5 S6 S7 S8
MA 27.4 14.7 9.1 12.0 18.9 10.4 9.0 19.6
MO 25.6 17.0 10.4 13.7 19.4 10.4 10.7 20.4
GL 2.0 2.7 1.9 1.5* 0.7* 1.8 2.7 2.2
CS 2.0 2.6 1.9 1.5* 0.7* 1.8 2.7 2.1
TR 15.4 5.1 3.6 6.3 10.3 6.7 3.5 12.0

Method S9 S10 S11 S12 S13 S14 S15 S16
MA 9.6 8.1 8.5 17.2 23.2 19.2 19.5 10.3
MO 13.5 11.2 10.1 18.5 22.5 17.6 21.1 13.9
GL 4.3 2.9 1.8 1.8 1.8 2.2 4.7 2.9
CS 4.3 2.9 1.8 1.8 1.8 2.2 4.7 2.9
TR 3.2 2.2 3.7 8.8 8.8 11.4 8.0 5.0

peat this procedure for all the six sessions and report
the log-likelihood (scaled for visualization purposes).
In Figure 2, similar to the previous results, we can ob-
serve that the log-likelihood of our method is higher
than the competing methods. Moreover, our method
is more stable for low regularization levels than the
other methods in our evaluation, which perform very
poorly.

In order to measure the statistical significance of our
previously reported log-likelihoods, we further com-
pared the best parameter setting for each of the tech-
niques. In Table 2, we report the two sample Z-
statistic for the difference of our technique minus each
competing method. Except for few subjects, the cross-
validated log-likelihood of our method is statistically
significantly higher (95%, Z > 1.65).
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Figure 3. Subgraph of ten brain regions from learnt struc-
tures for three randomly selected cocaine addicted sub-
jects, for our multi-task method (top) and graphical lasso
(bottom). Regularization parameter ρ = 0.027. Positive
interactions are shown in blue, negative interactions are
shown in red. Notice that sparseness of our structures is
consistent across subjects.

We show a subgraph of learnt structures for three
randomly selected cocaine addicted subjects in Fig-
ure 3. We can observe that the sparseness pattern of
the structures produced by our multi-task method is
consistent across subjects.

7. Conclusions and Future Work

In this paper, we generalized the learning of sparse
Gaussian graphical models to the multi-task setting
by replacing the `1-norm regularization with an `1,∞-
norm. We presented a block coordinate descent
method which is provably convergent and yields sparse
and positive definite estimates. We showed the connec-
tion between our multi-task structure learning prob-
lem and the continuous quadratic knapsack problem.
Finally, we experimentally showed that the cross-
validated log-likelihood of our method is more stable
and statistically significantly higher than the compet-
ing methods in a brain fMRI dataset.

There are several ways of extending this research.
Methods for selecting the regularization parameter
need to be further investigated. In practice, our tech-
nique converges in a small number of iterations, but a
more precise analysis of the rate of convergence needs
to be performed. Finally, model selection consistency
when the number of samples grows to infinity needs to
be proved.
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