
Topology Cuts: A Novel Min-Cut/Max-Flow Algorithm for Topology Preserving
Segmentation in N-D Images

Yun Zeng
Stony Brook University

Stony Brook, USA, NY 11790
yzeng@cs.sunysb.edu

Dimitris Samaras
Stony Brook University

Stony Brook, USA, NY 11970
samaras@cs.sunysb.edu

Wei Chen
Zhejiang University

Hangzhou, P.R. China, 310027
chenwei@cad.zju.edu.cn

Qunsheng Peng
Zhejiang University

Hangzhou, P.R. China, 310027
peng@cad.zju.edu.cn

Abstract

Topology is an important prior in many image segmen-
tation tasks. In this paper, we design and implement a novel
graph-based min-cut/max-flow algorithm that incorporates
topology priors as global constraints. We show that op-
timization of the energy function we consider here is NP-
hard. However, our algorithm is guaranteed to find an ap-
proximate solution that conforms to the initialization, which
is a desirable property in many applications since the global
optimum solution does not consider any initialization in-
formation. The key innovation of our algorithm is the or-
ganization of the search for maximum flow in a way that
allows consideration of topology constraints. In order to
achieve this, we introduce a label attribute for each node
to explicitly handle the topology constraints, and we use a
distance map to keep track of those nodes that are closest
to the boundary. We employ the bucket priority queue data
structure that records nodes of equal distance and we effi-
ciently extract the node with minimal distance value. Our
methodology of embedding distance functions in a graph-
based algorithm is general and can also account for other
geometric priors. Experimental results show that our al-
gorithm can efficiently handle segmentation cases that are
challenging for graph cuts algorithms. Furthermore, our
algorithm is a natural choice for problems with rich topol-
ogy priors such as object tracking.

1. Introduction
Many computer vision problems such as segmentation,

stereo and image restoration, can be formulated as a min-
imization of an energy function [22]. These energy func-

tions are naturally divided into two groups: continuous and
discrete. For the problem of image segmentation, the level
sets method [21] is a representative model in the contin-
uous community, while the graph-based Markov Random
Fields (MRFs) [13] is a very popular model in the discrete
group. One very efficient algorithm for solving a subclass
of the MRF energy function is the graph cuts algorithm [8].
In recent years, there has been a number of works show-
ing the close relationship between level sets and graph cuts
([4, 6, 16], etc.), and how shape priors can be incorporated
into the graph cuts framework ([12, 18]). In this work,
we show how the idea of topology preserving segmenta-
tion from the level sets literature [14] can be transposed
to the graph-based algorithms. We propose the first min-
cut/max-flow algorithm that is designed to explicitly incor-
porate topology as a global constraint in the segmentation.
We call our new algorithm Topology Cuts, in analogy to the
popular Graph Cuts algorithm [8].

Topology as a prior is available in many applications.
For example, the anatomy of human tissues provides im-
portant topological constraints that ensure the correctness
in biomedical image segmentation.Existing techniques that
enforce topology constraints into the graph cuts algorithm,
do so by simply tuning the parameters of the energy func-
tion [3, 7]. This scheme usually requires intense user inter-
actions and is not applicable in cases where user manipula-
tion is difficult. In contrast, we propose to embed the topo-
logical constraint into the discrete min-cut/max-flow algo-
rithm, which leads to a new and efficient way of consider-
ing global topology information for the general problem of
topology preservation.

Our work is inspired by the topology preserving level set
method of [14]. This algorithm makes use of digital topol-

1

ogy theory for N-D images [2] to detect topology changes
during the evolution of level sets. Taking advantage of the
fact that the level set functions are solved in a gradient de-
scent manner, and assuming that the change of sign for the
pixels only occurs one pixel at a time on the boundary of
the evolving objects, the topology of the object can be eas-
ily controlled.

However, transferring the idea of topology preserving
evolution from the continuous level sets algorithm to the
discrete graph-based algorithm is not straightforward. The
main difficulty lies in the fact that previous graph-cut imple-
mentations [1, 5, 15] are inherently topology-free and thus
not conductive to topology considerations during the search
of max-flow. To make the consideration possible for the
discrete graph-based algorithm, we introduce the following
elements.

1. An F /B label attribute is introduced to explicitly han-
dle the topology property in the image. This resolves
an ambiguity in the existing graph cuts algorithms, i.e.,
it is possible that the labels for a subset of the graph’s
nodes can be changed without changing the optimal
solution (multiple solutions for the energy minimiza-
tion problem). Existing algorithms set these nodes’
labels to a default label, which unavoidably leads to
topological errors.

2. An initialization step is used to provide the graph with
initial topology information.

3. The computation of max-flow is divided into inter-
label and intra-label stages, to facilitate the propaga-
tion of topology information during the search for the
minimum of the energy function.

4. A distance map (function) which keeps track of the
nodes that are closest to the current boundary between
the different label sets is set in the beginning and is
updated during the computation.

5. To efficiently insert and extract nodes on the current
evolving boundary (the level set of the distance map),
we use the bucket priority queue data structure [9, 11],
which only requires time of O(1) complexity for each
insertion and extraction operation. Hence, there is no
loss of efficiency compared to the previous graph cuts
algorithms. Our algorithm shares the same complex-
ity with the widely used graph-cut implementation [5],
and in practice it runs in comparable speed.

The contributions of this paper can be summarized as
follows:

• To the best of our knowledge, this is the first work
that incorporates the global topology prior into the de-
sign of the discrete graph-based min-cut/max-flow al-
gorithms.

• We prove that considering topology constraints in the
MRF framework is NP-hard.

• In the design of our algorithm, we combine concepts
from the level sets literature (such as distance maps
and level set evolution [20, 21]) into the efficient dis-
crete graph-based algorithm. The techniques we use
here are general and define a new way of incorporating
geometric prior knowledge into the existing graph-cut
models/algorithms such as curvature or shape priors.

Additionally, our new algorithm is suitable for the con-
cept of multilevel banded graph cuts [19] to speedup the
computation. In experiments, we show that our algorithm
achieves more meaningful and visually better results com-
pared with graph cuts for problems where topology infor-
mation is available, e.g., image segmentation and object
tracking.

Organization of this Paper: In Section 2, we review
the essential background for describing our new algorithm.
Section 4 gives the formulation of topology cuts problem.
Section 5 explains the design of our new algorithm. Sec-
tion 7 analyzes our algorithm in different aspects. The ex-
perimental results are presented in Section 8 . Finally, we
conclude our work and outline the future work in Section 9.

2. Preliminaries
2.1. Digital topology

Here we discuss two key concepts in the topology of dig-
ital images[2]: connectivity and simple point.

To account for the topology of the objects in the digi-
tal image, the connectivity of the foreground and the back-
ground can not be defined arbitrarily, or the topologi-
cal paradox problem may arise. For 2D images, valid
(foreground, background) connectivity pairs are (4, 8) and
(8, 4); for 3D images, the valid pairs are (6, 18), (6, 26),
(18, 6) and (26, 6).

With the clarification of connectivity in the digital image
discussed above, a simple point is defined as a point whose
change from foreground to background or vice versa, does
not change the number of connected components of both
the foreground and background. A simple point can be ef-
ficiently computed using the concept of topological number
[2]. In this paper, we adopt the basic definition of simple
points discussed above for detecting topology change.

2.2. Energy minimization and min-cut/max-flow

The MRF energy function [13] solved by graph cuts can
be formulated as:

inf
xp,p∈V

{
∑

p∈V
D(xp) +

∑

(p,q)∈E
Vpq(xp, xq)}, (1)

with xp ∈ {0, 1}, p ∈ V.

S T

A

A

A

A

P

P

P

P

P

P

P

A

A

A

A

A P

P

P

P

P

P

P

P

Figure 1. The dynamic tree implementation of the s/t cut

Here V and E usually denote the image pixels and their pair-
wise relationships respectively. If the terms of the MRF en-
ergy function have the form D(xp) = Dt

p(1− xp) + Ds
pxp

and Vpq(xp, xq) = wpq((1 − xp)xq + (1 − xq)xp) with
wpq ≥ 0 (submodular condition), we can define a graph
G with a source terminal s, a sink terminal t, and nodes
{p|p ∈ V}. The capacity from s to each node p is defined
as Ds

p, the capacity from each p to t is defined as Dt
p, the

capacity between neighboring nodes p, q is defined as wpq.
Adopting the notation in [5], a s/t cut of a graph G is a

partition of the nodes and terminals into two disjoint subsets
S and T with s ∈ S and t ∈ T . Also, the cost of a cut C =
{S, T} is the sum of the costs of all the edges (p, q) where
p ∈ S and q ∈ T . It has been proven [1] that the optimal
solution of the binary energy function 1 corresponds to a
min-cut of the graph G, which is the minimal cut of all the
cuts in the graph.

Finding the min-cut of a graph is equivalent to com-
puting a maximum flow from s to t [1]. In general, algo-
rithms for solving this min-cut/max-flow problem fall into
two groups: augmenting paths and push-relabel [1] tech-
niques. Here we review a popular algorithm based on the
augmenting paths that is closely related to our method [5].

2.3. A dynamic tree implementation of the s/t cut

Generally speaking, the idea of augmenting paths algo-
rithm [1] is to iteratively search a non-saturated path from
s to t and push the maximal possible flow along this path.
When no more such paths can be found, the maximum flow
has been reached.

There are a number of ways to search non-saturated
paths between two terminals. The efficient algorithm in
[5] searches non-saturated paths by growing two trees from
both the source and the sink. This idea can be efficiently
implemented using the dynamic tree data structure.

A dynamic tree grows by adding non-saturated edges dy-
namically. As Figure 1 shows, two non-overlapping dy-
namic trees S and T are maintained. Each node either be-
longs to one of the two trees or is “free”. A node that be-
longs to a tree can have either “active” or “passive” state.
An active node is at the border of the tree while a passive
node is inside the tree.

To find a non-saturated path in the graph, three stages are
iteratively repeated:

• “growth”: grow trees S and T until they meet in the
middle, giving a non-saturated s → t path.

• “augmentation”: push the maximum possible flow
along this path, breaking the trees into a forest.

• “adoption”: restore the single tree structure of the two
trees by finding a new parent for the isolated parts. If
no such parent can be found, they become free nodes.

The algorithm stops when there are not active nodes in the
two trees.

3. Tree Membership and the Primal-dual Solu-
tion to the s/t Cut

If we relax the variables of the discrete optimization
problem 1 to be continuous, its duality can be formulated
as [26]

max fts (2)
s.t. fpq ≤ wpq, (p, q) ∈ E

∑

p:(p,q)∈E
fpq −

∑

p:(q,p)∈E
fqp ≤ 0, q ∈ V

fpq ≥ 0 (p, q) ∈ E .

It can be shown that for any feasible solution of Equation 2,
fts ≤ copt where copt is the optimal solution of the primal
problem 1. Thus finding max-flow of the graph corresponds
to finding a lower bound of the primal problem. In the ideal
situation this lower bound can reach its primal solution and
obtains a global optimal of the primal problem. However,
for many cases, e.g., optimizing energy 1 with additional
constraints, this lower bound can not reach its primal solu-
tion. Thus it can only be used as a guidance to the approxi-
mation of the primal problem.

In the standard implementations of graph cuts, the label
of each node (foreground or background) is normally de-
termined by whether there is a non-saturated path from it
to s or t when the max-flow is reached, namely, these al-
gorithms determine the label of each node by its tree mem-
bership. Using tree membership to determine the label of
each node makes it impossible to consider topology prop-
erties during the max-flow computation. This is because
the tree membership of each node is updated in an irregular
order and thus can not contain any topological information
(graph cuts are inherently topology-free).

With the above discussion of the primal-dual relation,
our new algorithm can be regarded as solving the the
0/1 optimization in its dual space (namely, finding max-
flow), while making sure that its intermediate primal solu-
tion, which is represented by tree-membership, conforms to
topology constraint.

4. The Topology Cuts Problem
The energy function that combines the MRF formulation

and digital topology on the image grid is

inf
xp,p∈V

{
∑

p∈V
D(xp) +

∑

(p,q)∈E
Vpq(xp, xq)}, (3)

s.t. T = Tinit

with xp ∈ {0, 1}, p ∈ V.

Here T denotes the topology of the 0/1 labeled image as
defined in [2]. Tinit is the initial topology information that
is assigned to the image either interactively, or automati-
cally as shown in our tracking example. The meanings of
the other notations are the same as in Equation 1. Note that
here we only consider the hard-constraints on the topology
of the image. However, soft-constraints can be conveniently
introduced by considering alternative definitions of simple
point [25].

Theorem. The topology cuts (TP-Cut) problem 3 is NP-
hard.

Proof. To prove the NP-hardness of the TP-CUT problem,
we reduce from the connected vertex-covering (CVC) prob-
lem [24]. We provide a brief sketch here and the complete
proof in the supplemental matterials.

Definition. (Connected Vertex-Covering problem) Given
a planar graph H = (Vh, Eh) with maximum degree 4 for
each node and an integer K (≥ 1), is there a connected
subset V ′ ⊂ Vh such that |V ′| ≤ K and for each edge
e ∈ Eh, at least one of its two end nodes is in V ′ (a vertex
cover)?

The CVC problem have been proven to be NP-hard in
[24]. To reduce from the CVC problem to our TP-CUT
problem, we use the following techniques.

1. A planar graph with maximum degree 4 can be em-
bedded into the image grid domain G [24].

2. The weight of the edges for neighboring pixels is set
to be zero, so we only have to consider the first term in 3.

3. The 0/1 label of a node on the image G can be “fixed”
by setting a sufficiently large weight to the edge which links
it to the source (source edge) or the sink nodes (sink edge).
This means if we are to change the the label of the node,
a very large penalty would be added to the energy function
(3) (Figure 3). We call such a large weight infinite weight.

4. We may give some nodes on the image the “freedom”
to change their label by setting the weight of the source/sink
edge to be a specifically designed value. The weight of
the sink edges for the nodes corresponding to vertices in
H (vertex node) is set to be |Eh| + 1, where |Eh| is the
number of edges of H ((Figure 3(b)). The weights of the
sink edge of all the other nodes (grid) who does not lie on
the embedded graph are set to be infinite (Figure 3(c)).

(a)H (b) G
Figure 2. A planar graphH with its connected vertex covering (a),
and its embedding into the grid image domain G (b).

5. To respect topology constraints, we pick one node for
each embedded edge in G and set the weight of its source
edge to be a small value (Figure 3(a)). Intuitively, this con-
structs a “door” on each edge to allow different closed re-
gions in the original planar graph connected to each other
(we call such nodes door nodes). Such door nodes can be
labeled 1 only when the connectivity of the 0-labeled fore-
ground would not be broken. In other words, using these
nodes, it is always possible to connect an enclosed 1-labeled
region (by a 0-labeled “wall”) to the outside of the wall by
opening one door on the wall without separating the wall
into two parts. When such a door is opened, a small penalty
is added to the total energy function (Figure 3(a)).

6. With the above construction, a CVC problem has a
vertex cover of size no greater than K if and only if its cor-
responding TP-CUT problem with the constraint that the all
the foreground/background nodes are connected, has an op-
timal solution whose energy is less than (K +1)(|Eh|+1).
In this way a one-to-one correspondence between the CVC
problem and the TP-CUT problem is established.

An example of the reduction is shown in Fig 4.
The reduction is constructed as follows. a) A planar

graph H is embedded into an image G with two terminals
(source/sink). b) The weight of the edges for neighboring
pixels is set to be zero. The other edges in G are those edges
linking the nodes to the two terminals (source/sink edges).
c) The label of nodes on the image that do not lie on the
embedded graph H is “fixed” to be background by setting
a sufficiently large (“infinite”) weight to each node’s sink
edge. d) To respect topology constraints, we pick one node
for each embedded edge and set the weight of its source
edge to be one. We also fix the label of the other nodes on
these edges to be foreground by setting an infinite weight
for their source edges. e) The weight of the sink edges
for the nodes corresponding to vertices in H is set to be
|Eh| + 1, where |Eh| is the number of edges of H; With
the above construction, a CVC problem has a vertex cover
of size no greater than K if and only if its corresponding
TP-CUT problem with the constraint that the all the fore-
ground/background nodes are connected, has an optimal so-
lution whose energy is less than (K + 1)(|Eh|+ 1).

S

T

∞

∞ ∞

∞

1

0

0 0 0

0

0 0 0 0

S

T

0

|Eh|+1

S

T

0

∞

(a) Edge nodes and door nodes (middle) (b) Vertex node (c) Grid node

Figure 3. Weight configuration for (a) edge nodes, (b) vertex node
and (c) grid node (c).

(a) Default labeling. (b) A cover with topology error. (c) One solution of TP-CUT .

Figure 4. (Best viewed in color) A default labeling of the embed-
ding graph (a) corresponds to an optimal solution (a minimum cut
of 0) of the energy function (3) without considering topology con-
straints. By considering the topology constraints, i.e., the fore-
ground (red) and the background (blue) should be one connected
component, the label of some door nodes and edge nodes should
be changed (b)(c). These changes add additional penalties to the
energy function (3).

Since the TP-CUT problem is NP-hard, our goal in this
paper is to design an efficient algorithm that finds a local
optimum. We update the binary partition of the image by
solving the above energy function using the standard min-
cut/max-flow algorithm while making sure that each update
does not violate the topology constraint. Our algorithm is
able to handle all the energy functions that can be solved by
graph cuts [17] with an additional topology constraint. In
the rest of this paper we discuss our algorithm in detail.

5. Design of the Topology Cuts Algorithm
In this section, we discuss the novel aspects of our algo-

rithm. The whole algorithm can be found in Table 1.

5.1. Explicit F /B labeling

The s/t partition does not guarantee segmentation with
topology constraints, hence we need to partition based on
a different attribute; we propose to explicitly add an F /B
label attribute to each node, which is set in the beginning
of segmentation. We specify that 0 is associated to F and
1 is associated to B in the energy function 1. If there is no
topology constraint, partition according to the F /B label is
identical to the s/t partition described in Section 2.3, i.e.,
all the nodes in tree S are labeled F , and all the nodes in
tree T are labeled B, thus the optimal solution of the en-
ergy function 1 is reached at the end of the computation of

max-flow (by definition F is associated to tree S and B is
associated to tree T). Since we are motivated by topology
constraints, our algorithm must ensure that during max-flow
computation, each update of the F /B label not only goes to
its associated tree, i.e., to achieve lower energy of Equa-
tion 1, but also conforms to the topology constraints. The
label initialization is discussed in Section 5.2.

Such an explicit label attribute also resolves an inherent
ambiguity in the graph cuts algorithm. When the max-flow
is reached, it is possible that some nodes are isolated from
both the source and sink terminals. As an example, in the
image segmentation context, a node can belong either to
the foreground or the background without changing the op-
timal solution (multi-optimal solutions). In this situation,
the default assumption in [5] is: if a node does not belong
to tree S, then it is assigned to tree T 1, i.e., T = V − S.
However, a region of such isolated nodes may be inside the
foreground object. By default, these nodes would be labeled
background, leading to undesirable holes in the object. With
our F /B label attribute, the foreground/background assign-
ment is decoupled from the source/sink tree assignment.

Each node of the tree S and T may have one of two dif-
ferent labels, F or B. Thus the trees S and T are divided
into four subtrees: SF , SB , TF and TB (Figure 5).

5.2. Initialization

Next we need to initialize the F /B label for each node
to provide the topological prior information of the target
segmentation. There are several ways to assign an initial
label for each node, e.g., we may interactively draw some
seeds to specify different connected regions and propagate
them to give an initial labeling of the whole image. Alterna-
tively, we can integrate the sampling with the segmentation,
as Grabcut [23] or graph cuts for level set segmentation [6]
did.

As noted in [15], the concept of initialization is generally
not used in the standard min-cut/max-flow algorithms, be-
cause the label of each node is not known until the min-cut
is found. However, because the min-cut can not be found
in a single step, any s/t cut algorithm must start from one
initial state to carry on its computation. In the case of the
implementation in [5], each node is initialized by saturating
one of its edges to the source or sink, e.g., if its edge to the
source is not saturated, then its state is set to be active and it
belongs to the S tree; if both edges are saturated or there’s
no such edge at all, its state is set to be free. In our algo-
rithm, we use the same technique as in [5] to initialize the
active sets for each of the four subtrees SF , SB , TF and TB .

1This is based on the publicly available source code implementing [5].

S

T

SB

B F F F F F FB B B B B

SF
SF

SF
SF

SB

TF TFTB

TB TB

TB

Figure 5. Organizing the nodes by four subtrees.

5.3. Inter/intra-label maximum flows

The computation of augmenting paths results in the
change of tree membership of each node. When changes
happen, we also need to update the F /B label of nodes.
However, the change of tree membership does not neces-
sarily occur along an evolving boundary between the label
sets (similar to a level set evolving boundary). This makes it
difficult to update the F /B label without violating the topol-
ogy constraint.

If we were able to ensure that the change of tree mem-
berships during the computation of max-flow, occurs along
the boundary between the F /B labels, we would ensure that
the label update is in accordance to the topology constraints.
To achieve this, we give high priorities to the growing of
tree nodes with different labels. That means the augmenting
paths between SF and TB , SB and TF should be searched
first. We call this stage inter-label maximum flow. After all
paths between the above two pairs are saturated, there may
still be non-saturated paths between nodes with the same la-
bel, namely, SF and TF , SB and TB . Thus, a second stage–
intra-label maximum flow is employed to saturate all paths
between the two subtrees pairs SF and TF , SB and TB . The
details on the label updates are described in Section 6.

5.4. Organizing the search of augmenting paths us-
ing distance maps

In the computation of max-flow, in order to localize the
occurrence of the changes of tree memberships along the
boundary between two label sets, those active nodes close
to the boundary should be handled first in the tree growing
stage. Hence, an additional attribute for each node, DIST,
that records its distance to the boundary, is employed.

Typically, the lk distance between two 2D points p =
(xp, yp) and q = (xq, yq) is defined as ‖p − q‖k = (|xp −
xq|k + |yp − yq|k)

1
k . Note that in the image grid, only

the l1 distance leads to integer value. The computation of
the distance map with L2 distance requires a complexity of
O(n log n), whereas the computation of L1 distance needs
only O(n) complexity[20]. In our algorithm, we are mostly
concerned with those nodes that are closest to the boundary,
which often correspond to the boundary. Here we adopt an

l1 distance map, which requires only O(n) computational
complexity where n is the number of nodes in the image.

In the level sets approach, the maintenance of a (signed)
distance map can be costly [20]. It often requires re-
initialization to make sure that the distance map is valid.
Because we are only interested in those nodes that have the
smallest distance values (thus they are the closest ones to the
boundary), the real distance from each pixel to the boundary
is not important. Thus, re-initialization is not required. The
new distance value for a newly updated node can be com-
puted as the smallest distance value among its neighboring
nodes with the new label minus one.

DIST (ni) = min
nj ,(ni,nj)∈E,Label(ni)=Label(nj)

DIST (nj)− 1

Hence we only need to initialize the distance map one time
in the beginning. The subsequent updates happen only
when a node’s label is changed, which requires an O(1)
computation for each label update.

5.5. Controlling the label propagation using the
bucket priority queue data structure

At first glance, the priority queue data structure is suit-
able for keeping track of nodes that are closest to the bound-
ary. However, two problems arise if we use a priority queue.
First, it requires a complexity of O(log n) (n is the num-
ber of nodes in the priority queue) to extract a node, which
increases the computation cost at the tree growing stage.
Second and more importantly, in our topology cuts prob-
lem, those nodes that have the smallest distance value usu-
ally represent the boundary between the foreground and the
background. A node on the boundary grows the tree by
recruiting a new child node from its neighbors. Since the
newly recruited node now has the smallest distance value, it
is the first to be considered in the next stage of growing the
trees by using a priority queue. This will lead to an inho-
mogeneous propagation of the boundary (evolution of the
boundary from one point on the boundary as in Figure 6
(b)), in contrast to the active contour’s homogeneous prop-
agation (evolution of every point on the boundary).

To reduce the cost of computation, we adopt the idea
of bucket sort [9]. The range of the distance value must
be within [−m − n,m + n] for an m × n image with an
l1 distance map. Thus, we may allocate an array of size
2(m + n) + 1 with each entry recording the nodes with the
same distance. We also use a variable to record the current
smallest distance. Because the deletion of a node can be
efficiently implemented by using the node pointer, the com-
plexity for extracting the next smallest distance node is only
O(1).

As for the problem of inhomogeneous propagation, we
use an additional pointer to record the currently evolving
boundary’s distance value, which is actually a level set of

the distance map. Furthermore, we restrict this pointer to
not point to the entry with the smallest distance until all the
nodes in the entry it currently points to have been extracted.
This ensures that the boundary will evolve homogeneously
(Figure 6 (c)). This makes sure that we obtain a balanced re-
sult when multiple regions (foregrounds) belong to the same
tree (source or sink).

The above consideration can be efficiently implemented
using the bucket priority queue (BPQ) data structure as first
introduced in [9, 11]. (Figure 7). shows the structure of the
layered priority queue. Note that our new data structure can
also handle other distance metric, we only need to change
each entry to represent an interval instead one distance.

(a) Initialization (b) Without BPQ (c) With BPQ

Figure 6. A synthetic example illustrates the importance of using
our BPQ data structure in organizing the search of the maximum
flow.

6. Implementation Details
The overall guideline in implementing the topology cuts

algorithm is to reduce the energy function while maintain-
ing the topology constraint. Observe that if after computing
the maximum flow, all nodes with label F only belong to
the source tree or be free and all nodes with label B only
belong to the sink tree or be free, then the energy function
is minimized. Thus, during the maximum flow computa-
tion, we need to update the label of each node according to
which tree it belongs to (favors).

6.1. Inter-label maximum flow

The goal of inter-label maximum flow is to quickly
evolve the boundary between the F -labeled and B-labeled
regions under topology constraints. In this stage, all the
augmenting paths between the two subtree pairs, (SF , TB)

current_min = d - 1

current_entry = d

DIST = - m - n

DIST = m + n

DIST = d - 1

DIST = d

node i

node j node k

0

m+n+d-1

m+n+d

2(m+n)

Figure 7. The bucket priority queue data structure.

1. Assign an initial label for each node.
2. Set the parameters of the MRF energy function 1.
3. Compute the distance map based on the initial label map.
4. Construct two trees S and T , and eight bucket

priority queues:
Act{SF }, Act{SB}, Act{TF }, Act{TB}
Pas{SF }, Pas{SB}, Pas{TF }, Pas{TB}.

5. Initialize four active sets:
Act{SF }, Act{SB}, Act{TF }, Act{TB},
by saturating direct edges between each node to s and t.

6. Topology-preserving min-cut/max-flow.
while Act{SF }∪Act{SB}∪Act{TF }∪Act{TB}

is not empty
6.1 Inter-label maximum flow:

Find all non-saturated paths between the subtrees:
SF ⇔ TB , SB⇔ TF , until all paths are saturated.

6.2 Intra-label maximum flow:
Act{SF }←Pas{SF }, Act{SB}←Pas{SB},
Act{TF }←Pas{TF }, Act{TB}←Pas{TB}.
Find all non-saturated paths between the subtrees:
SF ⇔ TF , SB ⇔ TB , until all paths are saturated.

Table 1. The topology cuts algorithm

and (SB , TF), are searched. In each search step, we either
find an augmenting path or grow these subtrees by setting
each active node’s neighbors with non-saturated edges as
its new children, if the conditions stated below are met. The
distance value and the label of a new child q are updated if
q’s original label is different from that of its parent.

The conditions for recruiting a new neighbor q by active
node p are:

1. If the label of q is the same as that of p, then q is re-
cruited if and only if q is free.

2. If q has a different label and q is a simple point, then q
is recruited if either of the following conditions is met:

(a) q is free, or
(b) p is associated to the tree that q belongs to (Sec-

tion 5.1).

The above conditions ensure that the F /B labels are updated
with respect to the topological constraints while minimizing
the MRF energy function.

6.2. Intra-label maximum flow

The goal of the intra-label maximum flow is to saturate
all the single-label paths between tree S and tree T , and
change the label of any node for which the following con-
ditions are met.

The label of a node p is changed only when (1) p’s op-
posite label is associated to the tree that p belongs to (Sec-
tion 5.1), and (2) p is a simple point. Note that because

we do not know if p’s tree membership will change in the
subsequent computations, we should not change the label
of p until the end of this stage. Thus, we simply record all
the nodes that meet the above two conditions as candidate
nodes and finalize label changes after the computation of
max-flow in this stage. The labels of these candidate nodes
that still satisfy the above conditions will be changed and in-
serted into their corresponding active sets for the inter-label
maximum flow stage in the next iteration.

7. Analysis of the Topology Cuts Algorithm
Convergence: Convergence of our algorithm is ensured

by 1) all augmenting paths between s and t are guaranteed
to be saturated, and 2) the algorithm will stop within two
iterations. This guarantees that our algorithm obtains a local
optimal solution of the energy function 3.

To verify the first claim, observe that in the first iteration,
all augmenting paths between the underlying four subtrees
with two different label sets are saturated after finding the
inter-label maximum flow. Likewise, between the stages of
searching the intra-label maximum flow and changing la-
bels, all augmenting paths with the same labels are also sat-
urated. The only non-saturated paths left are those between
the current S and T trees with different label sets. Then at
least one of these nodes along such a path should reside on
the boundary. According to our intra-label flow algorithm,
this node must be recorded and the path will be found and
saturated in the next iteration.

For the second claim, note that the remaining non-
saturated paths are those crossing two different label sets
at the end of the first iteration. According to our inter-label
maximum flow implementation, all such paths must be sat-
urated in the next iteration. There does not exist any other
non-saturated path after the second iteration and hence the
whole algorithm must stop within two iterations.

Note that without considering the topology constraint
(updating the labels without considering the simplicity of
the nodes), our algorithm is actually another implementa-
tion of the min-cut/max-flow algorithm.

Topology preservation. This can be easily verified by
looking into our algorithm to see that, before each update
of the label, the simple point condition is always checked,
i.e., the label of a node is changed only if its change does
not affect the global topology of the image.

Time complexity. The time complexity can be shown
by comparing the differences between our algorithm and the
implementation of graph cuts in [5]. Both algorithms search
the augmenting paths by growing two trees from s and t re-
spectively. The main difference here is that we divide the
search into two stages. Since our algorithm stops within
two iterations, each node is traversed at most four times
(one time for each stage). The bucket priority queue data
structure ensures that the selection of active nodes needs an

O(1) operation. The update of the distance value for a node
also needs an O(1) operation. In addition, an initialization
of the distance map is computed in the beginning, which re-
quires an O(n) operation where n is the number of nodes
(pixels) in the image. In total, our algorithm only adds a
constant factor to the complexity of the original algorithm
in the worst case. In practice, our algorithm works suffi-
ciently fast since the number of active nodes is significantly
reduced in the second iteration.

8. Experimental Results
We apply our topology cuts algorithm to two problems:

image segmentation and object tracking2. All results were
run on a PC equipped with an Intel Pentium M 2.0G Hz
processor and 1.5G memory.

8.1. Results for image segmentation

To verify our algorithm, we use the discrete piece-
wise Mumford-Shah style energy function [3, 10]. The
Mumford-Shah model allows us to use a level set style ini-
tialization that integrates topology initialization and seed as-
signment. The parameters of the MRF energy function 1 are
defined as follows:

D(xp) = λ((up − cB)2xp + (up − cF)2(1− xp))
Vpq(xp, xq) = xp(1− xq) + (1− xp)xq (4)

Here up denotes the gray value of the image at p, cF and
cB denote the mean gray value of the pixels with the la-
bel F and B respectively (the initial labeling is assigned by
users). We use λ = 10 in our experiments, and solve the
energy function in one step instead of iteratively estimating
the mean gray value of the foreground and background.

Traditionally, graph cuts algorithms only take account of
color and coherence between neighboring pixels. Whereas,
solely exploiting the color similarity can not fully guarantee
meaningful segmentation results for medical applications.
An immediate example is demonstrated in Figure 8. Our al-
gorithm gives a result (Figure 8 (c)) that faithfully conforms
to the initialization, which is more meaningful than that of
the standard graph cuts algorithm (Figure 8 (b)).

Table 2 shows the comparison between the graph cuts
implementation [5] and our topology cuts algorithm3.

8.2. Results for interactive object cutout

Natural images often contain richly textured parts. Mod-
eling them using the pairwise MRF model is insufficient
since it only considers local interactions of the pixels.

2The source code, the executable, more results and comparisons are
submitted as supplementary materials.

3The examples of Brain and Ventricle are shown in the submitted video.

(a) Initialization (b) Result by graph cuts (c) Result by topology cuts

Figure 8. (Best viewed in color) An example of medical image
segmentation illustrates the advantage of our algorithm over graph
cuts. Topology-free segmentation is usually not desirable for med-
ical applications. The second row shows the corresponding label
maps of the results in the first row.

(a) Initialization (b) Result by graph cuts (c) Result by topology cuts

Figure 9. (Best viewed in color) An example of medical image
segmentation illustrates the advantage of our algorithm over graph
cuts. Topology-free segmentation is usually not desirable for med-
ical applications. The second row shows the corresponding label
maps of the results in the first row.

Table 2. Performance comparison between graph cuts and topol-
ogy cuts with the same initialization and parameter values.

Image Size Graph Cuts Topology Cuts
Synthetic 250× 180 16 ms 16 ms
Brain 200× 200 20 ms 31 ms
Ventricle 256× 256 16 ms 47 ms
Knee 400× 400 63 ms 109 ms

Moreover, its result tends to be sensitive to the choice of pa-
rameters, i.e., the weights balancing the data term (the first
term of 1) and the smoothness term (the second term of
1) are often difficult to determine. With a large weight for
the smoothness term, a large part of the background may be
segmented. And with a large weight for the data term, holes

and outliers may easily be generated in the segmented ob-
ject. To account for this, some global properties should be
introduced to appropriately model the natural image, such
as global topology information which is often available in
many applications.

Fig 10 illustrates the result of applying our topology cuts
algorithm for interactive object cutout. We use small values
for the weight that balances the two terms, e.g., γ = 10.
From Figure 10 (b)(c) we can see that holes and small out-
liers are generated inside the object by using the standard
graph cuts algorithm. Instead, by applying our topology
cuts algorithm, we obtain a complete result as shown in Fig-
ure 10 (d)(e). Our method might still suffer if outliers are
large and conform with the topology prior. However, our
algorithm significantly reduces sensitivity to weight selec-
tion.

8.3. Results for object tracking

Our topology cuts algorithm can be applied to topology-
preserving object tracking. The user assigns the initial con-
tours (or they can be automatically located) containing the
topology prior information for the first frame. For all the
subsequent frames, the segmentation result from the previ-
ous frame is used as the initialization before the topology
cuts algorithm is applied, thus the topology information is
propagated from the first frame to the other frames. Fig-
ure 11 illustrates the results of a simple implementation for
a hand tracking case. Topology is correctly preserved as
shown in Fig 11 (b)(e)(f), even when the two hands meet 4.

9. Conclusion and Future Work
We proposed a new algorithm for solving a subset of

MRF functions that can be addressed by graph cuts while
respecting topological constraints. It combines certain ad-
vantages of level sets and graph cuts. The idea of boundary
evolution is introduced into the graph cuts framework by
using the explicit F /B label attribute. Rather than evolv-
ing the boundary in a gradient descent manner to update the
distance function as level sets do, the boundary evolution
of the F /B label set is driven by the computation of max-
flow, which is fast and stable. The bucket priority queue
data structure ensures that there is no increase in compu-
tational complexity compared with the existing graph cuts
algorithms.

In the near future, we plan to extend the topology cuts
algorithm to allow soft constraints. We would also like
to apply our new algorithm to other vision problems such
as stereo, 3D reconstruction. One promising direction is
the incorporation of other prior knowledge into the min-
cut/max-flow algorithm, e.g., the curvature of the boundary
can be approximately encoded into the distance function.

4The tracked video sequence is in the supplemental materials.

(a) Initialization (b) Grabcut result (c) Labels of (b) (d) Topology cuts result (e) Labels of (d)

Figure 10. Example of using topology cuts algorithm for interactive object cutout (without border matting).

(a) Frame 1 (b) Frame 93 (c) Frame 151 (d) Frame 211 (e) Frame 265 (f) Frame 344

Figure 11. (Best viewed in color) Results for topology-preserving hand tracking (also see our video).

With our framework we would be able to design a new cut
algorithm that considers the smoothness of the boundary as
well.

References
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,

Algorithms, and Applications. Prentice Hall, 1993. 2, 3
[2] G. Bertrand. Simple points, topological numbers and geodesic neigh-

borhoods in cubic grids. Pattern Recognition Letters, 15(10):1003–
1011, 1994. 2, 4

[3] Y. Boykov and G. Funka-Lea. Graph cuts and efficient n-d image
segmentation. IJCV, 70(2):109–131, 2006. 1, 8

[4] Y. Boykov and V. Kolmogorov. Computing geodesics and minimal
surfaces via graph cuts. In ICCV ’03, pages 26–33, 2003. 1

[5] Y. Boykov and V. Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. PAMI,
26(9):1124–1137, 2004. 2, 3, 5, 8

[6] Y. Boykov, V. Kolmogorov, D. Cremers, and A. Delong. An integral
solution to surface evolution PDEs via geo-cuts. In ECCV ’06, pages
409–422, 2006. 1, 5

[7] Y. Boykov and O. Veksler. Graph cuts in vision and graphics: Theo-
ries and applications. In: N. Paragios, Y. Chen, and O. Faugeras, The
Handbook of Mathematical Models in Computer Vision, Springer-
Verlag. pages 79–96, 2006. 1

[8] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy mini-
mization via graph cuts. PAMI, 23(11):1222–1239, 2001. 1

[9] R. Brown. Calendar queues: a fast 0(1) priority queue imple-
mentation for the simulation event set problem. Commun. ACM,
31(10):1220–1227, 1988. 2, 6, 7

[10] T. Chan and L. Vese. Active contour model without edges. IEEE
Transactions on Image Processing, 10(2):266–277, 2001. 8

[11] B. V. Cherkassky and A. V. Goldberg. On implementing the push-
relabel method for the maximum flow problem. Algorithmica,
19(4):390–410, 1997. 2, 7

[12] D. Freedman and T. Zhang. Interactive graph cut based segmentation
with shape priors. In CVPR ’05, pages 755–762, 2005. 1

[13] S. German and D. German. Stochastic relaxation, Gibbs distribu-
tions, and the Bayesian restoration of images. MIT Press, Cam-
bridge, MA, USA, 1988. 1, 2

[14] X. Han, C. Xu, and J. L. Prince. A topology preserving level set
method for geometric deformable models. PAMI, 25(6):755–768,
2003. 1

[15] O. Juan and Y. Boykov. Active graph cuts. In CVPR ’06, pages
1023–1029, 2006. 2, 5

[16] V. Kolmogorov and Y. Boykov. What metrics can be approximated
by geo-cuts, or global optimization of length/area and flux. In ICCV
’05, pages 564–571, 2005. 1

[17] V. Kolmogorov and R. Zabih. What energy functions can be mini-
mized via graph cuts? PAMI, 26(2):147–159, 2004. 5

[18] M. P. Kumar, P. H. S. Torr, and A. Zisserman. OBJ CUT. In CVPR
’05, pages 18–25, 2005. 1

[19] H. Lombaert, Y. Sun, L. Grady, and C. Xu. A multilevel banded
graph cuts method for fast image segmentation. In ICCV ’05, vol-
ume 1, pages 259–265, 2005. 2

[20] S. Osher and R. Fedkiw, editors. Level Set Methods and Dynamic
Implicit Surfaces. Springer-Verlag, 1998. 2, 6

[21] S. Osher and J. Sethian. Fronts propagating with curvature-
dependent speed : Algorithms based on the Hamilton-Jacobi formu-
lation. Journal of Computational Physics, 79(2):12–49, 1988. 1,
2

[22] N. Paragios, Y. Chen, and O. Faugeras, editors. The Handbook of
Mathematical Models in Computer Vision. Springer-Verlag, 2005. 1

[23] C. Rother, V. Kolmogorov, and A. Blake. “Grabcut”: interactive
foreground extraction using iterated graph cuts. ACM Transactions
on Graphics, 23(3):309–314, 2004. 5

[24] W. Shi and C. Su. The rectilinear steiner arborescence problem is
np-complete. In SODA ’00, pages 780–787, 2000. 4

[25] Y. Shi and W. C. Karl. Real-time tracking using level sets. In CVPR
’05, pages 34–41, 2005. 4

[26] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001. 3

