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Abstract—Three-dimensional shape matching is a fundamental issue in computer vision with many applications such as shape

registration, 3D object recognition, and classification. However, shape matching with noise, occlusion, and clutter is a challenging

problem. In this paper, we analyze a family of quasi-conformal maps including harmonic maps, conformal maps, and least-squares

conformal maps with regards to 3D shape matching. As a result, we propose a novel and computationally efficient shape matching

framework by using least-squares conformal maps. According to conformal geometry theory, each 3D surface with disk topology can be

mapped to a 2D domain through a global optimization and the resulting map is a diffeomorphism, i.e., one-to-one and onto. This allows us

to simplify the 3D shape-matching problem to a 2D image-matching problem, by comparing the resulting 2D parametric maps, which are

stable, insensitive to resolution changes and robust to occlusion, and noise. Therefore, highly accurate and efficient 3D shape matching

algorithms can be achieved by using the above three parametric maps. Finally, the robustness of least-squares conformal maps is

evaluated and analyzed comprehensively in 3D shape matching with occlusion, noise, and resolution variation. In order to further

demonstrate the performance of our proposed method, we also conduct a series of experiments on two computer vision applications, i.e.,

3D face recognition and 3D nonrigid surface alignment and stitching.

Index Terms—Shape representations, shape matching, conformal geometry, 3D face recognition.

Ç

1 INTRODUCTION AND PREVIOUS WORK

THREE-DIMENSIONAL shape matching is a fundamental issue
in computer vision with many applications, such as

shape registration, partial scan alignment, and 3D object
recognition and classification [8], [50], [37], [23]. As
3D scanning technologies improve, large databases of
3D scans require automated methods for matching. How-
ever, matching 3D shapes in noisy and cluttered scenes is a
challenging task. Moreover, since most 3D shape scanners
can only capture 2.5D data of the target surfaces, aligning
and stitching partial 3D surfaces is a fundamental problem in
many research areas, such as computer vision, mechanical
engineering, and molecular biology.

Generally, the crux of 3D shape matching is finding good
shape representations, allowing us to match two given free-
form surfaces by comparing their shape representations.
Different approaches include curvature-based representa-
tions [45], regional point representations [26], [37], [43], [10],
spherical harmonic representations [27], [17], [18], shape
distributions [34], spline representations [7], and harmonic
shape images [51]. However, many shape representations
that use local shape signatures are not stable and cannot
perform well in the presence of noise. In this paper, we
propose to use a family of quasi-conformal maps, including
harmonic maps, conformal maps, and least-squares confor-
mal maps, that does not suffer from such problems.
According to conformal geometry theory, each 3D shape

with disk topology can be mapped to a 2D domain through a
global optimization and the resulting map is a diffeomorph-
ism, i.e., one-to-one and onto. Consequently, the 3D shape-
matching problem can be simplified to a 2D image-matching
problem of the quasi-conformal maps. These maps are stable,
insensitive to resolution changes, and robust to occlusion and
noise. The 2D maps integrate geometric and appearance
information and 2D matching is a better understood problem
[31], [4]. Therefore, highly accurate and efficient 3D shape
matching algorithms can be achieved using quasi-conformal
maps.

The robustness and easy use of the technique we proposed
allow us to cope with more challenging problems such as
surface alignment and stitching, when only two parts of
surfaces could be matched. There has been a lot of research on
3D surface alignment and stitching in recent decades, such as
identification and indexing of surface features [15], [42],
computing principal axes of scans [12], exhaustive search for
corresponding points [9], or iterative closest point (ICP)
methods [28], [36], [38], [6]. Compared to matching, there are
other additional issues in surface stitching, such as registra-
tion and integration [44]. Three-dimensional surface align-
ment and stitching is still a challenging task especially when
the transformation between the surfaces to be aligned is
nonrigid, e.g., when taking successive scans of humans that
might not be standing still. Based on conformal geometry
theory, an important property of Least-Squares Conformal
Maps (LSCMs) is that they can map a 3D surface to a
2D domain in a continuous manner with minimized local
angle distortion. This implies that LSCMs are not sensitive to
surface deformations, which leads to a natural solution to
3D nonrigid surface alignment and stitching.

Quasi-Conformal maps including harmonic maps, con-
formal maps, and least-squares conformal maps have been
used in several applications of computer vision and graphics.
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In [51], Zhang and Hebert proposed harmonic maps for
surface matching. In [49], Wang et al. use harmonic maps to
track dynamic 3D surfaces. In [20], [19], [48], [47], conformal
maps are used for face and brain surface matching. Moreover,
Sharon and Mumford [40] use conformal maps to analyze
similarities of 2D shapes. Least squares conformal maps are
introduced by Levy et al. [29] for texture atlas generation and
used by Wang et al. [46] to do 3D surface matching. In order to
calculate harmonic maps, the surface boundary needs to be
identified and a boundary mapping from 3D surfaces to the
2D domain needs to be created, which can be a difficult
problem especially when part of the surface is occluded.
However, the two other quasi-conformal maps we discuss in
this paper, conformal maps and least-squares conformal
maps, do not need boundary information and, so, lend
themselves as a natural choice to solve this problem. More-
over, in addition to the advantages of harmonic maps, such as
sound mathematical basis and preservation of continuity of
the underlying surfaces, conformal maps are also angle
preserving, which leads to less distortion and robustness to
noise. The differences between conformal maps and harmo-
nics maps are shown in Fig. 1.

In this paper, we make the following contributions:

1. We analyze a family of quasi-conformal maps,
including harmonic maps, conformal maps, and
least-squares conformal maps, when applied to
3D shape matching and compare their properties
comprehensively.

2. We propose a novel 3D shape matching framework,
using least-squares conformal maps.

3. We systematically evaluate the robustness of least-
squares conformal maps on 3D shape matching for
different challenges such as occlusion, noise, and
resolution variation. For completeness purposes, we
also provide a full comparison between different
quasi-conformal maps for 3D shape matching.

4. We demonstrate the performance of least-squares
conformal maps in practice through 3D face recogni-
tion and 3D nonrigid surface alignment and stitching.

The rest of the paper is organized as follows: The
mathematical background of the harmonic and conformal
maps is introduced and compared in Section 2. A frame-
work for 3D shape matching using least-squares conformal
maps is proposed in Section 3. Experimental results and
performance analysis are presented in Section 4 and we
conclude with discussion and future work in Section 5.

2 THEORETICAL BACKGROUND OF CONFORMAL

GEOMETRY

An important merit of quasi-conformal maps, including
harmonic maps, conformal maps, and least-squares confor-
mal maps, is to reduce the 3D shape-matching problem to a
2D image-matching problem, which has been extensively
studied. Quasi-conformal mappings, which are almost
conformal, do not distort angles arbitrarily and this distortion
is uniformly bounded throughout their domain of definition
[3]. We are dealing with 3D surfaces, but since they are
manifolds, they have an inherent 2D structure, which can be
exploited to make the problem more tractable using con-
formal geometry theory [20], [40]. Most work using conformal
geometry theory is done in surface parameterization, which
can be viewed as an embedding from a 3D surface S with disk
topology to a planar domain D. Following the introduction of
the notions of harmonic maps, conformal maps, and least-
squares conformal maps, these three parametric maps will be
compared in a comprehensive manner.

2.1 Harmonic Maps

As described in [51], a harmonic map H : S! D is a critical
point for the harmonic energy functional,
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Fig. 1. Distortion comparison between a conformal map and a harmonic map. (a) Original surface without texture. (b) Original surface with texture.
(c) The 2D conformal map of the surface with texture. (d) The harmonic map of the surface with texture. (e) Checkerbox textured surface by
conformal mapping. (f) Checkerbox textured surface by harmonic mapping. Because of angle-preservation, (c) and (e) have less distortions than
(d) and (f), which can be clearly seen in the close-up views (g) and (h) of the chin areas in the gray boxes, respectively.



EðHÞ ¼
Z
S

jrHj2d�S; ð1Þ

and can be calculated by minimizing EðHÞ. The norm of the
differential jrHj is given by the metric on S and D, and �S
is the area element on 3D surface S [39], [33], [13], [14]. Since
the source surface mesh S is in the form of a discrete
triangular mesh, we approximate the harmonic energy as
[13], [51], [20],

EðHÞ ¼
X
½v0;v1�

k½v0;v1�jHðv0Þ �Hðv1Þj2; ð2Þ

where ½v0; v1� is an edge connecting two neighboring
vertices v0 and v1, and k½v0;v1� is defined as

1

2

ðv0 � v2Þ � ðv1 � v2Þ
jðv0 � v2Þ � ðv1 � v2Þj

þ ðv0 � v3Þ � ðv1 � v3Þ
jðv0 � v3Þ � ðv1 � v3Þj

� �
; ð3Þ

where fv0; v1; v2g and fv0; v1; v3g are two adjacent triangular
faces.

By minimizing the harmonic energy, a harmonic map
can be computed using the Euler-Lagrange differential
equation for the energy functional, i.e.,

�H ¼ 0; ð4Þ

where � is the Laplace-Beltrami operator [39], [33], [13],
[14]. This will lead to solving a sparse linear least-squares
system for the mapping H of each vertex vi [13], [51], [49],
[20]. If the boundary condition

Hj@S : @S! @D ð5Þ

is given, the solution exists and is unique.
Althoughharmonicmapsareeasytocompute, theyrequire

satisfaction of the above boundary condition, which becomes
unreliable when there are occlusions in the 3D original data.
To overcome this problem, the missing boundaries can be
approximated [51], which might be enough for rough surface
matching. However, since interior feature points are often
more robust to occlusion, it is desirable to replace the
boundary condition with feature constraints. This can be
achieved by conformal maps, another mathematical tool in
conformal geometry theory, which only require several
feature constraints as an input and obviate the need to specify
the boundary condition.

2.2 Conformal Maps

It can be proven that there exists a mapping from any
surface with a disk topology to a 2D planar domain [21],
which is one-to-one, onto, and angle preserving. This
mapping is called conformal mapping and keeps the line
element unchanged, except for a local scaling factor [16].

Conformal maps have many appealing properties, one of
which is their connection to complex function theory [16],
[29]. Consider the case of mapping a planar region S to the
plane. Such a mapping can be viewed as a function of a
complex variable, d ¼ UðsÞ. Locally, a conformal map is
simply any function U which is analytic in the neighborhood
of a point s and such that U0ðsÞ 6¼ 0. A conformal mapping U
thus satisfies the Cauchy-Riemann equations, which are

@u

@x
¼ @v
@y
;
@u

@y
¼ � @v

@x
; ð6Þ

where d ¼ uþ iv and s ¼ xþ iy.

Differentiating one of these equations with respect to x
and the other with respect to y, we obtain the two Laplace
equations

�u ¼ 0;�v ¼ 0; ð7Þ

where � ¼ @2

@x2 þ @2

@y2 . Any mapping which satisfies these two
Laplace equations is called a harmonic mapping. Thus, a
conformal mapping is also harmonic. However, unlike the
harmonic maps described in the previous section, which
need the boundary mapping Hj@S fixed in advance,
conformal maps can be calculated without demanding the
mesh boundary to be mapped onto a fixed shape. For a
discrete mesh, the main approaches to achieve conformal
parameterizations are: harmonic energy minimization [11],
[20], [19], [48], [47], Cauchy-Riemann equation approxima-
tion [29], Laplacian operator linearization [21], circle
packing [24], most isometric parameterizations (MIPS)
[22], and angle-based flattening method [41]. In this paper,
we compute conformal maps using the harmonic energy
minimization method [20].

Riemann’s theorem states that for any surface S home-
omorphic to a disc, it is possible to find a parameterization
of the surface satisfying (6) [29], which can be uniquely
determined by two points on surface S. However, to better
handle the errors caused by noise in the data and the
inaccuracy of finding feature points, we introduce addi-
tional feature constraints, indicating that the corresponding
features on two 3D surfaces should be mapped onto the
same locations in the 2D domain. However, with these
additional constraints, it is not always possible to satisfy the
conformality condition. Hence, we seek to minimize the
violation of Riemann’s condition in the least-squares sense.

2.3 Least-Squares Conformal Maps

The Least-Squares Conformal Map (LSCM) parameterization
algorithm generates a discrete approximation of a conformal
map by adding more constraints. Here, we give a brief
description (see [29] for details using different constraints).

Given a discrete 3D surface mesh S and a smooth target
mapping U : S ! ðu; vÞ, then, as described in Section 2.2, U is
conformal on S if and only if the Cauchy-Riemann equation,

@U
@x
þ i @U

@y
¼ 0 ð8Þ

holds true on the whole of S. However, in general, this
conformal condition cannot be strictly satisfied on the
whole triangulated surface S, so the conformal map is
constructed in the least-squares sense:

MinCðSÞ ¼
X
d2S

Z
d

���� @U@x þ i
@U
@y

����
2

dA; ð9Þ

where d is a triangle on the mesh S. If we suppose the
mapping U is linear on d, then

CðSÞ ¼
X
d2S

���� @U@x þ i
@U
@y

����
2

AðdÞ; ð10Þ

whereAðdÞ is the area of the triangle d. Furthermore, let �j ¼
uj þ ivj and �j ¼ xj þ iyj, so �j ¼ Uð�jÞ for j ¼ 1; 2; . . . ; n.
Then, we rearrange the vector� such that� ¼ ð�f; �pÞ, where
�f consists of n� p free coordinates and �p consists of
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p constraint point coordinates. Therefore, (10) can be
rewritten as

CðSÞ ¼
���Mf�f þMp�p

���2

; ð11Þ

where M ¼ ðMf;MpÞ, a sparse m� n complex matrix (m is
the number of triangles and n is the number of vertices). The
least-squares minimization problem in (11) can be efficiently
solved using the Conjugate Gradient Method. Thus, we can
map a 3D surface to a 2D domain with multiple correspon-
dences as constraints by using the LSCM technique.

Since LSCMs have almost all the properties of conformal
maps and also provide more correspondences as additional
constraints, we expect them to be very useful in 3D shape
matching and recognition.

2.4 Comparison of Quasi-Conformal Maps

Based on conformal geometry theory, harmonic maps,
conformal maps, and least-squares conformal maps (LSCMs)
between two topological disks preserve continuity of the
underlying surfaces, with minimal stretching energy and
angle distortion. All of the above quasi-conformal maps are
invariant for the same source surface with different poses,
thus making it possible to account for global rigid transforma-
tions. A very important property, which governs our
matching algorithm, is that all of the maps can establish a
common 2D parametric domain for the two surfaces. There-
fore, we can simplify the 3D shape-matching problem to a
2D image-matching problem. However, they vary in perfor-
mance for 3D surface matching as can be seen in Table 1.

Compared to the exact solutions for harmonic maps and
conformal maps, LSCMs are generated by minimizing the
violation of Riemann’s condition in the least-squares sense.
This optimization-based parameterization method has the
following properties:

1. LSCMs have the same properties as conformal maps,
e.g., existence and uniqueness which have already
been proven in [29].

2. LSCMs can map a 3D shape to a 2D domain in a
continuous manner with minimized local angle
distortion.

3. LSCMs can handle missing boundaries and occlu-
sion and also allow multiple constraints.

4. LSCMs are independent of mesh resolution.
5. The least-squares minimization problem in calculat-

ing LSCMs has the advantage of being linear.

For actual 3D surfaces, it is very likely to have noise and
missing data. From the above comparison, we can see that
LSCMs are the best candidate among all three parametric
maps to perform 3D shape matching efficiently. LSCMs do
not require the boundary condition explicitly which means
they can handle missing boundaries and occlusions. Also,
they take multiple feature constraints as input, which allows
them to better handle noise introduced by the feature point
detection. We confirm this experimentally in the experiment
section by analyzing the robustness of the three parametric
maps for 3D shape matching with occlusion, noise, and
resolution variation. In the remainder of this paper, we
propose a framework of 3D shape matching using LSCMs.

3 SHAPE MATCHING FRAMEWORK USING

LEAST-SQUARES CONFORMAL MAPS

To match 3D shapes accurately and efficiently, a new
2D representation, least-squares conformal shape images, is
developed in our framework using LSCMs. Therefore, we
simplify the original 3D shape-matching problem to a
2D image-matching problem. In particular, our shape
matching framework includes two steps: First, interior
feature correspondences are detected by using spin-images
[26]; After that, we generate and match least-squares
conformal shape images.

3.1 Correspondence Detection Using Spin-Images

In order to use least-squares conformal mappings, we need to
establish interior feature constraints between the 3D shapes.
For this purpose, we first select candidate points with
curvature larger than a threshold Tc, and then compare their
spin-images to detect feature correspondences. The spin-
image is a well-known technique that has been proven useful
for 3D point matching [26]. It encodes the surface shape
surrounding an oriented point p by projecting nearby surface
points into a 2D histogram, which has cylindrical coordinates
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Performance Comparison of Quasi-Conformal Maps



of radius r and heighth centered at pwith its axis aligned with
the surface normal of p. The number of bins and support size
in the spin-image histograms are parameters fixed at
generation. It has been shown that the matching results using
spin-images are insensitive to the choice of the above
parameters [23]. In our experiments, the highest confidence
feature correspondences are used. The typical number of
selected feature points is 5-6 for 3D face surfaces and 10-12 for
brain surfaces.

3.2 Least-Squares Conformal Shape Images

In this section, we will introduce a method to describe
3D surfaces using least-squares conformal shape images
(LSCSIs). In Section 2.3, we have shown that there exists a
least-squares conformal mapping that can map each
3D surface with disk topology to the canonical 2D domain.
The LSCSIs are generated by associating a shape attribute
with each vertex. Mean curvature is a useful geometric
attribute that depends only on the surface’s intrinsic
geometry. In our method, the mean curvature is computed
in the same way as in [20]. Moreover, least-squares
conformal maps can also help generate additional shape
representations by associating other attributes, e.g., tex-
ture, which leads to a natural solution of combining
multiple important cues for 3D surface matching and
recognition, such as shape and texture. In our current
framework, these cues are weighted equally for surface
matching. More elaborate schemes to combine different
cues can be done in the future work.

As an example, Fig. 2d shows the LSCSI of the surface
Fig. 2b, with darker color representing larger mean curvature.
Fig. 2a is the original surface with texture information and
Fig. 2c is its LSCM. Fig. 2e is the LSCM of a lower resolution
(25 percent) version of the original surface. The similarity
between Fig. 2c and Fig. 2e shows that LSCMs are
independent to resolution variation.

3.3 Matching Surfaces by Matching LSCSIs

Given two general surfaces S1 and S2 with disk tropology,
we first detect high curvature correspondences using spin-
images. Then, by incorporating interior correspondences as
constraints, LSCSIs are generated for both surfaces as
described in Section 2.3. After that, the normalized
correlation coefficient MS1;S2

and the similarity criterion
SðS1; S2Þ introduced in [25] are computed on the two
resulting LSCSIs by

MS1;S2
¼ N

P
pS1
i p

S2
i �

P
pS1
i

P
pS2
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
P
ðpS1
i Þ

2 � ð
P
pS1
i Þ

2
� �

N
P
ðpS2
i Þ

2 � ð
P
pS2
i Þ

2
� �r ;

ð12Þ

SðS1; S2Þ ¼ ln
1þMS1;S2

1�MS1;S2

� �2

� 1

2N
; ð13Þ

where N is the number of overlapping points in the LSCSIs
of 3D surface S1 and S2, and pSki is the value (e.g., the mean
curvature or the texture) of point i in the LSCSI of surface
Sk(k ¼ 1; 2). In the case of matching surfaces with different
resolutions, N is the number of overlapping points in the
LSCSIs of the surface with the lower resolution.

According to Section 2, an important property of Least-
Squares Conformal Maps (LSCMs) is that they can map a
3D shape to a 2D domain in a continuous manner with
minimized local angle distortion. This implies that LSCSIs are
not sensitive to surface deformations, e.g., if there is not too much
stretching between two faces with different expressions, they
will induce similar LSCSIs. As an example, Fig. 3 shows a
comparison between the LSCSIs of faces with different
expressions and of different faces. More specifically, the first,
the second, and the third columns of Fig. 3 correspond to face
scans of one subject with different expressions while the forth
column corresponds to another subject. For each column in
Fig. 3, the bottom row represents the LSCSIs of the surfaces
(shown in the middle row), with darker color representing
larger mean curvature. The original surfaces with texture
information are also shown in the top row of Fig. 3. Based on
(12), the normalized correlation coefficient (Mi;j) between
Figs. 3i and 3j and the normalized correlation coefficient (Mi;k)
between Figs. 3i and 3k are 0.92 and 0.86, respectively, while
the normalized correlation coefficient (Mi;l) between Figs. 3i
and 3l only 0.65. As is evident, the normalized correlation
coefficients of LSCSIs between the face scans of the same
person with different expressions are much larger than the
coefficients between face scans of different persons, thus
making it possible to match surfaces with small deformations
using LSCSIs. This relative expression-invariance is also an
important property for shape representations used in face
recognition.

However, for 3D surfaces with holes, which violate the
disk topology assumption, we cannot calculate the LSCMs
directly. To overcome this problem, we can simply fill in the
holes through interpolation [30] and then use our method to
generate the LSCSIs of the new surfaces. The filled-in regions
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Fig. 2. Least-Squares Conformal Shape Image: (a) Original surface with texture. (b) Original surface without texture. (c) Least-squares conformal
maps with texture. (d) Least-squares conformal shape image. (e) Least-squares conformal maps of the same surface, subsampled by a factor of 4,
still very similar to (c).



are masked out when we compute the normalized correlation
coefficient using (12). As discussed in Section 2.4, LSCMs
depend on the geometry in a continuous manner, which leads
to robustness to local perturbation. Fig. 4 demonstrates the
robustness of our method to holes on surfaces. The normal-
ized correlation coefficient of the LSCSIs shown in Figs. 4b
and 4f is 0.99, which means a very good match between the
two surfaces of Figs. 4a and 4e after hole filling. If we desire to
preserve the nondisk topology of the object during matching,
then the object should be partitioned into simpler parts with
disk topology [29] which could then be matched. Optimal
partitioning will be studied in future work.

4 EXPERIMENTAL RESULTS AND PERFORMANCE

ANALYSIS

In this section, we analyze the robustness of our proposed
3D shape matching method using least-squares conformal
maps on real data with occlusion, noise, and resolution
variation. Furthermore, we demonstrate the performance of
our method through two applications: 3D face recognition
and 3D nonrigid surface alignment and stitching.

4.1 Robustness Analysis

In this section, we use two surface types: brains (four
instances) and faces (six instances) to analyze the perfor-
mance of our proposed 3D shape matching method. We
present three experiments in which 3D surface matching is
performed under occlusion, noise and resolution variation
using least-squares conformal maps, followed by a full
comparison between several related work of quasi-conformal
maps including harmonic maps, conformal maps, and least-
squares conformal maps.

4.1.1 Experiment on Data Occlusion

In this experiment, we test the robustness of Least Squares
Conformal Maps (LSCMs) under occlusion for both face and
brain surfaces. Such occlusions might be caused by rotation of
the object in front of the scanner. Figs. 5 and 7 show examples
of 3D face and brain surfaces, respectively, under different
occlusions with their least-squares conformal shape images
(LSCSIs). For each original surface, partially occluded
surfaces were generated with occlusion rates between 5 and
45 percent. Average matching results of these face and brain
surfaces using LSCMs are shown in Figs. 6 and 8, respectively.
In this experiement, we superimpose the matched surfaces
with significant occlusions (only 60 percent of area is common
to both). Matching error is very hard to detect visually, which
suggests that our framework could be useful for partial scan
alignment.

4.1.2 Experiment on Noisy Data

The second experiment tests the robustness of Least Squares
Conformal Maps (LSCMs) in the presence of noise. We add
Gaussian noise (Nð0; �Þ) on each vertex of the face and
brain surfaces. � increases from 0.0 mm to 2.0 mm, while the
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Fig. 3. Surface matching with deformation: The original 3D surfaces with
texture are in the top row. The detail of the deformed mouth areas are
shown in the second row and the LSCSIs of the original surfaces are in
the last row. In each row, the first, the second, and the third surfaces are
from the same person with different expressions and the fourth one is
another person. The normalized correlation coefficient (Mi;j) between
(i) and (j) and the normalized correlation coefficient (Mi;k) between
(i) and (k) are 0.92 and 0.86, respectively, while the normalized
correlation coefficient (Mi;l) between (i) and (l) is only 0.65.

Fig. 4. An example of surface matching with holes : (a) A frontal 3D scan.

(b) The LSCSI of (a). (c) A side 3D scan of the same subject as in (a),

which has a hole illustrated in (d). (e) The same surface of (c) and (d) after

hole filling. (f) The LSCSI of (e).

Fig. 5. Three-dimensional face surfaces and their LSCSIs under
occlusion. The original 3D face surfaces with different occlusions are
in the top row. Their LSCSIs are in the bottom row.



window size for computing the curvatures of 3D face and

brain surfaces is 10.0 mm. Example surfaces with noise

under different � are shown in Fig. 9. We match the various

noisy surfaces to the original noise-free surface and the

average matching results of the face and brain surfaces are

shown in Fig. 10 for various � values. From the results, we

can see that LSCMs appear robust to Gaussian noise.

4.1.3 Experiment on Resolution Variation

The third experiment tests the robustness of Least Squares
Conformal Maps (LSCMs) to resolution changes. Fig. 11
shows examples of 3D face and brain surfaces with
resolution variation, where all the meshes have the same
shape but different resolution. The surfaces with low
resolution are matched to the original surfaces and average
matching results using the LSCMs are shown in Fig. 12.
Results show that LSCMs achieve fairly stable matching
results and impervious to resolution changes. A small
deterioration of the matching results is due to the use of a
discrete curvature approximation, since approximation
error increases as the resolution drops.

4.1.4 Comparison between Quasi-Conformal Maps

For completeness purposes, we also performed comparison
experimentsbetweenseveral relatedworkofquasi-conformal
maps, including least-squares conformal maps, conformal
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Fig. 6. Average matching results of the face surfaces under occlusion

using LSCMs.

Fig. 7. Three-dimensional brain surfaces and their LSCSIs under

occlusion. The original 3D brain surfaces with different occlusions are

in the top row. Their LSCSIs are in the bottom row.

Fig. 8. Average matching results of the brain surfaces under occlusion

using LSCMs.

Fig. 9. Examples of face and brain surfaces under Gaussian noise with

different � set to 0.0, 0.4, 1.0, and 2.0 mm, respectively.

Fig. 10. Average matching results of LSCMs under Gaussian noise

increases. The window size for computing the curvatures of faces

surfaces and brain surfaces is 10.0 mm and the � increases from

0.0 mm to 2.0 mm.



maps [20], and harmonic maps [51], [49], to confirm the

conclusion in Section 2.4. Average matching results of the face

and brain surfaces using the above three parametric maps

under occlusion, noise and resolution variation are shown in

Figs. 13, 14, and 15, respectively. In Fig. 13, since the harmonic

mapsrequire satisfaction of the surfaceboundary conditionas

discussed in Section 2.1, the performance of harmonic maps is

more impacted than the performance of conformal maps and

least-squares conformal maps. Instead, changes of boundary

have very small effects on both conformal maps and least

square conformal maps. From the results in Fig. 14, we can see

that all three maps appear robust to Gaussian noise. However,

since conformal maps depend on two feature points only,

which might be detected with errors caused by the noise, they

have lower matching rates than the harmonic maps and the

least square conformal maps. Finally, Fig. 15 shows that the

above three parametric maps achieve fairly stable matching

results and all of them are impervious to resolution changes.
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Fig. 11. Three-dimensional face and brain surfaces with 1, 1/2, 1/4, and
1/8 of the original resolution, respectively.

Fig. 12. Average matching results of LSCMs under resolution variation.

Fig. 13. Average matching results of the face and brain surfaces under
occlusion using all three parametric maps.

Fig. 14. Average matching results of all three parametric maps under
Gaussian noise increases. The window size for computing the
curvatures of faces surfaces and brain surfaces is 10.0 mm and the �
increases from 0.0 mm to 2.0 mm.

Fig. 15. Average matching results of all three parametric maps under
resolution variation.



4.2 Recognition of 3D Faces

In this section, we apply Least Squares Conformal Maps

(LSCMs) to 3D face recognition on a 3D face database which

contains 100 3D face scans from 10 subjects. The data are

captured by a phase-shifting structured light ranging

system in different time [52]. Each face has approximately

80K 3D points with both shape and texture information

available (example face data from two subjects in the

database are shown in Fig. 16). In order to further evaluate

our recognition method, we also perform a comparison with

other existing methods, including the surface curvature

technique [45] and the spherical harmonic shape contexts

[17]. For the computation of curvatures from 3D surfaces,

we had to choose the size of the neighborhood for the

surface fit. Clearly, choosing the mask size is a trade-off

between reliability and accuracy. When choosing a small

mask curvature computation will be strongly affected by

noise, due to the small number of points considered for

regression. The reliability of the curvature estimation can be

improved by increasing the size of the mask. However, a

large mask size will produce an incorrect result in the area

curvature changes quickly. In our experiments, we used a

mask size of 10� 10. The spherical harmonic shape contexts

descriptor is computed using the method developed in [17],

based on 3D shape contexts. The 3D shape contexts

technique is the straightforward extension of 2D shape

contexts [32], to three dimensions. The support region for a

3D shape contexts is a sphere centered on the basis point p

and its north pole oriented with the surface normal estimate

N for p. The support region is divided into bins by equally
spaced boundaries in the azimuth and elevation dimensions
and logarithmically spaced boundaries along the radial
dimension. Based on the histogram from 3D shape contexts,
we use the bin values as samples to calculate a spherical
harmonic transformation for the shells and discard the
original histogram. The descriptor is a vector of the
amplitudes of the transformation, which are rotationally
invariant in the azimuth direction, thus removing the degree
of freedom. We compute the spherical harmonic shape
contexts representations in 64� 64 grids sampled evenly
along the directions of longitude and latitude with
bandwidth b ¼ 16.

In each experiment, we randomly select a single face from
each subject for the gallery and use all the remaining faces as
the probe set. The average recognition results from 15 experi-
ments (with different randomly selected galleries) are
reported in Table 2. From the recognition results, we can see
that the least-squares conformal maps perform 10.7 percent
better than the spherical harmonic shape contexts and
14.3 percent better than the surface curvature technique even
if only the shape information is used. Moreover, least-squares
conformal maps allow to combine both shape and texture
information, which improves the accuracy of 3D face
recognition.

4.3 Nonrigid Surface Alignment and Stitching

In this section, we apply the Least Squares Conformal
Maps(LSCMs) to another application: 3D nonrigid surface
alignment and stitching. A very important property, which
governs our alignment and stitching algorithm, is that the
LSCMs can establish a 2D common parametric domain for the
3D surfaces. Therefore, we can simplify the 3D surface
alignment and stitching problem to a 2D registration and
stitching problem. Furthermore, because the LSCMs is a
diffeomorphism, i.e., one-to-one and onto, we can detect and
remove the duplicated regions in the original 3D surfaces by
removing the overlapping areas in the resulting 2D common
parametric domain. After that, we can stitch the 3D surface
patches by connecting the exclusive regions in the resulting
LSCMs. There is a lot of research on 3D surface remeshing [2],
[5], [1], [35], but in our case the problem is simplified to a
2D triangulation problem by connecting the neighboring
patches in the 2D common parametric domain. As an
example, Fig. 17 demonstrates the alignment and stitching
of two 3D surfaces undergoing nonrigid deformations. Three-
dimensional faces are captured by a phase-shifting structured
light ranging system [52] and each face has approximately
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Fig. 16. Two subjects in the 3D face database. Shape information is in

the first row and texture information is in the second row.

TABLE 2
Recognition Results of Least-Squares Conformal Maps, Spherical Harmonic Shape Contexts, and Surface Curvature Technique



80K 3D points with both shape and texture information

available. The subjects were not asked to keep their head and

facial expression still during the 3D face scanning.
Furthermore, Fig. 18 shows another example of the

accurate face alignment and stitching result of our method

on two 3D scans of one face undergoing different transforma-

tions and deformations. The leftmost column shows the two

input 3D face scans with texture. The same 3D face scans

without texture information are shown in the second column.

The Least-Squares Conformal Shape Images (LSCSIs) of both

3D scans are in the third column. Their aligned LSCSIs and the

resulting stitched 3D faces are in the fourth column. Because

of the one-to-one mapping between the LSCSI and original

face, we can align and stitch 3D faces by registering and

stitching 2D LSCSIs.
In order to demonstrate the performance of our method,

we also compare our results to the results from the Iterative

Closest Point (ICP) method [38] in Fig. 19. Fig. 19a shows a

3D scan of a neutral face, while Fig. 19b shows a 3D scan of the

same face undergoing a large deformation in the mouth area.

From Figs. 19c and 19d which are the front view of Figs. 19a

and 19b, we can see the occlusion area clearly. The face
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Fig. 17. An example of surface alignment and stitching: (a) and (b) Two original 3D faces with texture in different poses and deformations. (c) and
(d) Original 3D faces without texture. (e) and (f) The Least-Squares conformal Shape Images (LSCSIs) of the faces. (g) The aligned LSCSI of the two
faces. (h) The resulting 3D face by stitching a part of (c) into (d). Because of the one-to-one mapping between the LSCSI and original face, we can
align and stitch 3D faces by registering and stitching 2D LSCSIs.

Fig. 18. Another example of surface alignment and stitching: (a) and (b) Two original 3D faces with texture in different poses and deformations.
(c) and (d) Original 3D faces without texture. (e) and (f) The Least-Squares conformal Shape Images (LSCSIs) of the faces. (g) The aligned LSCSI of
the two faces by connecting the nonoverlapping area in (f) into (e). (h) The aligned LSCSI of the two faces by connecting the nonoverlapping area in
(e) into (f). (i) The resulting 3D face by stitching a part of (d) into (c). (j) The resulting 3D face by stitching a part of (c) into (d). Because of the one-to-
one mapping between the LSCSI and original face, we can detect and remove the duplicated regions in the original 3D surfaces by removing the
overlapping areas in the resulting 2D common parametric domain. The user can decide which of the two expressions to keep on the final stitched
mesh. In this case, (i) has the expression of original (a) and (j) of original (b).



alignment and stitching result of our method is in Fig. 19f with

the close up view of mouth area in Fig. 19h. The result of the

ICP method is in Fig. 19e with the close up view in Fig. 19g. As

we can see, in the close up view Fig. 19g, there is a redundant

region in the result because the ICP method failed to detect

the overlapping areas between deformed surfaces and can

only register two surface with rigid transformations. How-

ever, as can be seen in Figs. 19g and 19h, our method correctly

aligns even at areas of significant local deformations.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a family of quasi-conformal

maps, including harmonic maps, conformal maps, and

least-squares conformal maps, and proposed a fully

automatic and novel 3D shape matching framework using

least-squares conformal shape images—a new shape repre-

sentation which simplified the 3D surface matching

problem to a 2D image matching problem. The performance

of least-squares conformal maps was evaluated vis-a-vis

other existing techniques in 3D face recognition and

3D nonrigid surface alignment and stitching. Furthermore,

our comparison results have shown that all above three

parametric maps are robust to occlusion, noise, and

different resolutions and that the least-squares conformal

mapping is the best choice for 3D surface matching.
In future work, we will continue to exploit the properties

of conformal maps and further analyze the properties of

conformal shape representations for surfaces with nondisk

topology. We plan to use our framework for applications

such as 3D object classification and registration under

nonrigid deformations.
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