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Abstract. In this paper, we present a novel method for face recon-
struction from multi-posed face images taken under arbitrary unknown
illumination conditions. Previous work shows that any face image can
be represented by a set of low dimensional parameters: shape parame-
ters, spherical harmonic basis (SHB) parameters, pose parameters and
illumination coefficients. Thus, face reconstruction can be performed by
recovering the set of parameters from the input images. In this paper, we
demonstrate that the shape and SHB parameters can be estimated by
minimizing the silhouettes errors and image intensity errors in a fast and
robust manner. We propose a new algorithm to detect the corresponding
points between the 3D face model and the input images by using sil-
houettes. We also apply a model-based bundle adjustment technique to
perform this minimization. We provide a series of experiments on both
synthetic and real data and experimental results show that our method
can have an accurate face shape and texture reconstruction1.

1 Introduction

Face recognition from images has received significant attention in the past few
decades. Although rapid progress has been made in this area during the last few
years, the general task of recognition remains unsolved. In general, face appear-
ance does not depend solely on identity. It is also influenced by illumination and
viewpoint. Thus, recovery of 3D shape and texture from face images is an im-
portant task for an accurate face recognition system. In this paper, we propose
a novel method to extract accurate 3D shape and texture from multi-pose face
images taken under arbitrary unknown lighting.

Previous work[19][20] has shown that any face image taken under arbitrary
unknown lighting and pose can be represented by a set of low dimensional param-
eters: shape parameters, spherical harmonic basis parameters, pose parameters
and illumination parameters. Thus, given input images, 3D face reconstruction
can be performed by estimating the shape and spherical harmonic basis param-
eters of the face. In this paper, we demonstrate that, given a set of multi-posed
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face images, the shape and texture parameters can be recovered by minimizing
the silhouette errors and image intensity errors respectively.

We recover shape by using silhouette images because the silhouette images
depend only on the shape and pose of the objects and thus are illumination
independent. This reconstruction technique is also called visual hull[10][8] and
the accuracy of shape reconstruction depends on the number and location of
cameras used to capture images. In general, such methods cannot perform shape
recovery accurately for complex objects such as human faces when the visual hull
is constructed from a small number of cameras. However, prior knowledge of the
object to be reconstructed can help shape recovery by providing an important
constraint. In our method, the 3D face model we constructed with separate shape
and texture parts provides such prior knowledge and thus facilitates accurate
shape recovery.

Our method can be described by the following steps: 1) From a set of 3D
faces[2] obtained by laser-based cylindrical scanners, we construct a 3D face
Model with separate shape and texture parts; 2) Given a set of multi-pose input
images of a human face under unknown lighting, we estimate the pose parameters
and shape parameters by minimizing the difference between the silhouette of the
face model and the input images. 3) Using the correspondences provided by the
recovered 3D shape, we recover the illumination parameters and the spherical
harmonic basis parameters by minimizing the image intensity errors. Thus, the
texture of the face can be computed from the recovered spherical harmonic basis.

The main contributions of our paper are the following:

• We propose a new and efficient method to recover 3D shape and appearance
from multi-pose face images under arbitrary unknown lighting.

• We present a novel algorithm to detect the corresponding points between
the 3D face model and the input images by using silhouettes and use model-
based bundle adjustment[16] to minimize errors and recover shape and pose
parameters.

• We reconstruct appearance by recovering the spherical harmonics basis pa-
rameters from multiple input face images under unknown light while texture
and illumination information are recovered in tandem.

This paper is organized as follows. In the next section, we will discuss the
related work on face reconstruction. In Section 3, we will introduce shape re-
covery by using silhouette face images. In Section 4, we will explain appearance
recovery by using our 3D face model. Experimental results on both synthetic and
real data are presented in Section 5. The final Section presents the conclusions
and future work directions.

2 Related Work

In recent years, there is extensive research on face reconstruction both from a
single image and from image sequences. The main approaches are shape from
stereo[4], shape from shading[15], shape from structured light[12] and shape from
silhouettes[18].
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Blanz and Vetter’s face recognition system is the closest in spirit to our
work. They are the first to reconstruct the shape and texture by using a face
morphable model. They also apply the 3D morphable model successfully in both
face recognition and synthesis applications [3][2]. In their method, they acquire
the necessary point to point correspondences by using a gradient-based optical
flow algorithm[2][14]. This method might suffers in situations where the illumi-
nation information is general and unknown. Compared with their method, our
method determines the correspondences from silhouette which is less sensitive
to illumination and texture variations.

Lee et al.[9] proposed a method of silhouette-based 3D face shape recovery
by using a morphable model. They used a boundary weight XOR method to
optimize the procedure and used a downhill simplex method to solve the mini-
mization problem which is time consuming. Since they fitted a generic face model
to silhouette images by marking several feature points by hand, the accuracy of
their method depends on the accuracy of these feature points which can not
be updated after manually marked in the generic face model. Compared with
their work, we apply a model-based bundle adjustment technique to solve the
optimization problem and during the optimization, the pose information is also
updated thus providing better shape recovery.

Fua[6] used a generic face model to derive shape constrains and used a model-
driven bundle adjustment algorithm to compute camera motions. However, the
3D face model by recovered this model-driven bundle adjustment method needs
to be refined through an additional step of mesh-based deformable model opti-
mization. In [5], Dimitrijevic et al. also used a 3D morphable model to recovery
shape from face image sequences. A simple correlation-based algorithm is used
to find feature points whose performance might depend on the accuracy of the
correspondences detected by the cross correlation algorithm.

3 Shape Recovery

In this section we introduce our new approach to the recovery shape from multi-
pose face images by using silhouette images as input to extract correspondence
and recover shape parameters.

3.1 Shape Part of 3D Face Model

Let S(α) be the shape of an arbitrary face model parameterized by a vector
α = α1, α2, ..., αn. We want to use the silhouette images to recover this vector α.
In our method, we used a collection of 3D faces supplied by USF as the bootstrap
data set and we applied PCA[2] to register and align the database of 3D faces
to get the statistical shape model. This model can be used to reconstruct both a
new and existing faces through the linear combination of a bootstrap set of 3D
face shapes.

s(α) = s +
M∑

i

Siαi. (1)
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where Si is the ith eigen-vector of the variation shape matrix and s is the mean
shape of the bootstrap faces.

3.2 Silhouette Extraction

We extract face silhouettes from each input image. At the beginning we initialize
a 3D face model from the input images and project the face model onto the image
plane in order to extract the silhouettes of this model. Because the face model we
use is not the whole head model, we do not need the complete head silhouette but
only the silhouette of the facial area (in Fig. 1: example of silhouette extraction).

Fig. 1. Example of silhouette extraction. (1) is one of the input images, (2) is the face
silhouette of this input image, (3) shows the fitting of the generic face model (shaded
surface rendering) to input image, (4) is the silhouette of the fitted model (we just
use the silhouette of the facial area, the red curve in left. The right blue curve is the
silhouette of the omitted head boundary.

3.3 Correspondence Detection

Once we have extracted the silhouettes from the input face images and the 3D
face model after fitting, we need to find the correspondences between them to
update the shape and pose parameters. First, we detect the points with high cur-
vature in the silhouettes of the face model and the input images and match them
as initial correspondences by using a shortest Euclidean distance metric. Using
these initial correspondences, we detect the correspondences of the remaining
points in silhouettes by using a smooth matching function. Given a set of known
distance vectors of feature points ui = pi − p̂i at every matched high-curvature
point i, we construct a function that gives the distance vectors uj for every
unmatched vertex j. We attempt to find a smooth vector-valued function f(p)
fitted to the known data ui = f(pi), from which we can compute uj = f(pj).
There are several choices for constructing this function [7][11]. Similar to [11],
we use a method based on radial basis functions f(p) =

∑
i wiφ(‖p− pi‖) where

φ(r) is radial symmetric basis function. We also use an affine basis as part of
our algorithm, so the function has the form: f(p) =

∑
i wiφ(‖p− pi‖)+ Tp+ m.

To determine the coefficients wi and the affine components T and m, we solve
a linear equation ui = f(pi), with the constraints

∑
i wi = 0 and

∑
i wip

T
i =

0, which remove the effects of any affine transformation from the radial basis
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function. Here we have chosen to use φ(r) = e−r/c, where c is a pre-selected
constant (c = 64 in our experiment).

After we construct the function u = f(p), we can use p̂j = pj − f(pj) and
a shortest Euclidean distance metric to find the remaining correspondences in
silhouettes of both the face model and the input images.

3.4 Shape and Pose Parameters Update

Given a set of multi-pose input images, the shape and pose parameters can be
recovered as following:

1) Initialize the shape parameters α as 0 and initialize a number of feature
points in the input images. In our experiments, we manually mark 7 feature
points in both the first image and the 3D face model. By matching these features
across images using the point matching technique in [21], we can acquire the
corresponding feature points in the other input images and thus get the initial
fitting information.

2) Extract the face contour ci (image (2) in Fig. 1) in each input image and
using the current fitting information, project the face model to the image plane
and extract the face model contours si (red line in (4) of Fig. 1) as described in
section 3.2.

3) From the contours of the face model {si, i = 1...N}, find the corresponding
points in the silhouettes of the input images {ci, i = 1...N} by using the methods
presented in section 3.3.

4) The contour of the model si can be represented as si = Cm
i [P×Mp(s̄+Sα)]

where Cm
i (x) is the contour extraction operator. Mp is the transformation matrix

from the original face model coordinate system to the camera coordinate system.
P is the camera projection matrix to project the 3D model to the 2D image.

Thus, the minimization can he written as follows:

min

n∑

i=1

‖ci − si‖2 = min

n∑

i=1

‖ci − Cm
i [P × Mp(s̄ + Sα)]‖2 (2)

For such an expression, we update the shape and pose parameters by using
model-based bundle adjustment techniques[16] to solve this minimization prob-
lem.

5) After we get the new face model and new fitting parameter values, we
reproject the new 3D face model to the input images and perform 2)- 4) itera-
tively until the change of shape and pose parameters are smaller than ξs and ξp,
which are pre-selected thresholds.

4 Texture Recovery

In this section we describe a method that recovers texture from multi-pose face
images under arbitrary unknown lighting. We use a spherical harmonics illu-
mination representation to recover the spherical harmonic basis which contains
texture information.
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4.1 Texture Component of the 3D Face Model

As described in [1][13], any image under arbitrary illumination conditions can be
approximately represented by the linear combination of the spherical harmonic
basis as:

I ≈ b� (3)

where b is the spherical harmonic basis and � is the vector of the illumination
coefficients.

The set of images of a convex Lambertian object obtained under a wide
variety of lighting conditions can be approximated accurately by a 9 dimensional
linear subspace. Since human faces can be treated approximately as Lambertian,
we compute a set of 9 spherical harmonic basis images by using a collection of
3D faces similar to [1] as follows:

b00 = 1√
4π

λ, b10 =
√

3
4π λ. ∗ nz, b20 = 1

2

√
3
4π λ. ∗ (2nz2 − nx2 − ny2),

bo
11 =

√
3
4π λ. ∗ ny, be

11 =
√

3
4π λ. ∗ nx, bo

22 =3
√

5
12π λ. ∗ nxy,

bo
21 =3

√
5

12π λ. ∗ nyz, be
21 =3

√
5

12π λ. ∗ nxz, be
22 = 3

2

√
5

12π λ. ∗ (nx2 − ny2).
(4)

where the superscripts o and e denote the odd and the even components of the
harmonics respectively, λ denote the vector of the object’s albedos, nx, ny, nz

denote three vectors of the same length that contain the x, y and z components
of the surface normals. Further, nxy denote a vector such that the ith element
nxy,i = nx,iny,i.

In recent work [20], the set of spherical harmonic basis images of a new face
can be represented by a linear combination of a set of spherical harmonic basis
computed from a bootstrap data set of 3D faces.

b(β) = b +
M∑

i

Biβi. (5)

where b is the mean of the spherical harmonic basis and Bi is the ith eigen-vector
of the variance matrix.

4.2 Texture and Illumination Parameters Update

According to Eq. 3 and 5, using the recovered shape and pose information, a
realistic face image can be generated by:

I = (b̄ + Bβ)� (6)

where β is the spherical harmonic basis parameter to be recovered and � is the
vector of illumination coefficients. Thus, given a set of n input images Ii

input, i =
1...n of a face, the spherical harmonic basis parameters β of the face and the
illumination coefficients � = (�1, �2, ...�n) can be estimated by minimizing the
difference between the input images and the rendered images from Eq.6:
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minβ,�

n∑

i=1

‖Ii
input − (b̄ + Bβ)�i‖2 (7)

Eq. 7 is similar to Eq. 2, thus, we can solve Eq. 7 similarly. Given input images
I : I1, I2, ..., In, we initialize the set of spherical harmonic basis parameters β = 0
and thus, b = b̄ + Bβ = b̄. Hence, the set of illumination coefficients �i of each
input image Ii can be initially estimated by solving a linear equation: b�i = Ii.
With the initial illumination coefficients �i, we can solve Eq. 7 using the same
technique applied to Eq. 2.

The core of the recovery process is the minimization of the image errors as
shown in Eq. 7. Thus, the recovery results depend on the initial values of the
illumination coefficients. Our experiments on synthetic data showed that the
illumination coefficients � computed by using the mean spherical harmonic basis
(b̄) were close to the actual values, which made the whole recovery fast and
accurate.

After we estimate the spherical harmonic basis from input images, the texture
of a face can be computed as λ = b00

√
4π according to Eq. 4.

5 Experiments

In this section, we provide experimental results of our method on both synthetic
data and real data for face reconstruction.

5.1 Synthetic Data

We use synthetic data as ground truth to show the accuracy and robustness
of our method. In our experiments, we synthesize 30 face models by randomly
assigning different shape and spherical harmonic basis parameters to our 3D
face model. For each model we also generate 14 images with different poses and
different illuminations (image sequence of one face in Figure 2). We recover the
shape and texture from these images and compare them with shape and texture
of the original face models.

To quantify the accuracy of our method we compute the errors between
recovered models and original synthesized face models. At first, we compute the
errors of shape and texture in each vertex between the reconstructed face model

and the ground truth face model by: errs(i) =
√

(x̃i−xi)2+(ỹi−yi)2+(z̃i−zi)2√
x2

i
+y2

i
+z2

i

and

errt(i) = ‖Ĩi−Ii‖
Ii

where (xi, yi, zi) and Ii are the coordinate and texture of ith

vertex of the ground truth face model, and (x̃i, ỹi, z̃i) and Ĩi are the coordinate
and texture of ith vertex of the reconstructed face model. Then, we compute
the maximum, minimum, mean and standard deviation of the shape and texture
errors by comparing all 30 reconstructed 3D face models to the original faces as
shown in Table 1. From these experimental results we can see that our method
achieves accurate shape and texture recovery from synthetic data. Figure 3 shows
the relationship between the reconstructed shape and the number of input images
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Table 1. Statistical errors of shape and texture recovery all these 30 synthetic faces

Max Min Mean Std. dev.

Shape 12.35% 0.97% 3.53% 3.237%
Texture 23.83% 1.87% 4.78% 4.659%

Fig. 2. 14 input images synthesized for the same face in different pose and different
illumination

as a subset of the input image sequence in Figure 2 and Figure 4 shows the
errors between the recovered shape from different numbers input images and the
original face shape. With the increase of the number of input images, we get
more accurate results of shape recovery and if the input images are more than 6,
the improvement of shape reconstruction will be less influenced by the number
of input images. Figure 5 shows 2 examples of shape and texture reconstruction
results.

5.2 Real Data

We use the CMU PIE database [17] for our real data experiments. In the PIE
data set, there are 13 different poses and 22 illumination conditions per pose for
each subject. The silhouettes of face images can be detected by subtracting the
background image from the input images. Figure 6 shows two accurate shape
and texture recovery results of our method. The experimental results on the real
data demonstrate that our method can recover good shape and texture from
multi-pose face images under unknown illumination conditions.

6 Conclusions and Future Work

In this paper, we proposed a novel method for face modeling from multi-pose
face images taken under arbitrary unknown illumination conditions. We demon-
strated that the shape and spherical harmonic basis parameters can be estimated
by minimizing the silhouette errors and image intensity errors. We proposed a
new algorithm to detect the corresponding points between the model and the
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Fig. 3. Shape reconstruction using a varying number of input images in Fig 2. (1)
is the mean face model, (2) is the reconstructed shape from image 1 to 3, (3) is the
reconstructed shape from image 1 to 6, (4) is the reconstructed shape from image from
1 to 9, (5) is the reconstructed shape from image from 1 to 12, (6) is the reconstructed
shape from image from 1 to 14 and (7) is the original shape of the face in Fig 2

Fig. 4. The errors between the reconstructed face shape and the original face shape
in Fig. 3

Fig. 5. Some reconstruction results from synthetic faces. In each row, the first image is
original shape (shaded surface rendering) followed by original texture. The third image
is the mean face model which is initially fitted to the input images. The last 2 images
are the reconstructed face shape and texture
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Fig. 6. Reconstruction results for 2 subjects from real images. Original images are in
the first row, reconstructed face shapes are in the second row and recovered textures
are in the last row

input images by using silhouettes. We also applied a model-based bundle ad-
justment technique to solve the minimization problems. We provide a series of
experiments on both synthetic and real data and experimental results show that
our method can reconstruct accurate face shape and texture from multi-pose
face images under unknown lighting. In future, in order to extract more robust
correspondences for shape recovery, we plan to use both silhouette information
and image intensity information after delighting the input face images. At this
time, there exist few publicly available sets of face images under arbitrary illumi-
nation conditions, so we plan to continue validation of our method on databases
with greater variability of light sources as they become available.
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