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Abstract. Functional Magnetic Resonance Imaging(fMRI) has enabled
scientists to look into the active human brain, leading to a flood of new
data, thus encouraging the development of new data analysis methods. In
this paper, we contribute a comprehensive framework for spatial and tem-
poral exploration of fMRI data, and apply it to a challenging case study:
separating drug addicted subjects from healthy non-drug-using controls.
To our knowledge, this is the first time that learning on fMRI data is
performed explicitly on temporal information for classification in such
applications. Experimental results demonstrate that, by selecting dis-
criminative features, group classification can be successfully performed
on our case study although training data are exceptionally high dimen-
sional, sparse and noisy fMRI sequences. The classification performance
can be significantly improved by incorporating temporal information into
machine learning. Both statistical and neuroscientific validation of the
method’s generalization ability are provided. We demonstrate that in-
corporation of computer science principles into functional neuroimaging
clinical studies, facilitates deduction about the behavioral probes from
the brain activation data, thus providing a valid tool that incorporates
objective brain imaging data into clinical classification of psychopatholo-
gies and identification of genetic vulnerabilities.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) has enabled scientists to look
into the active human brain by providing sequences of 3D brain images. This
has revealed exciting insights into the spatial and temporal changes underlying a
broad range of brain functions, including basic functions such as how we see, feel,
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move, understand. Concomitantly, this new instrumentation has led to a flood
of new data: a twenty-minute fMRI session with a single human subject pro-
duces a series of 3D brain images each containing approximately 150,000 voxels,
collected once a second (or two), yielding tens of millions of data observations.
Thus, developing appropriate data analysis methods is needed for truly com-
prehensive exploration of this ample volume of data. We suggest that through
incorporation of computer data analysis principles into functional neuroimag-
ing studies we will be able to identify unique patterns of variability in brain
states and deduce about the behavioral probes from the brain activation data
(in contrast to the reverse: deducing about brain activation data from behavioral
probes). We further propose that this interscientific incorporation may provide
a valid tool where objective brain imaging data are used for clinical purpose of
classification of psychopathologies and identification of genetic vulnerabilities.

Functional Magnetic Resonance Imaging (fMRI) [1][2] is based on the increase
in blood flow to the local vasculature that accompanies neural activity in the
brain, so that human cortical functions can be observed without the use of
exogenous contrast agents. To date, the analyses and interpretation of fMRI data
that are most commonly employed by neuroscientists depend on the cognitive-
behavioral probes that are developed to tap regional brain function. Thus, brain
responses are a-priori labeled based on the putative underlying task condition
(e.g., regions involved in reward vs. regions involved in punishment) and are then
used to separate a priori defined groups of subjects. A variety of machine learning
methods have also been used for exploratory analysis of fMRI data[3][4][5]. In
recent research[6][7][8][9], machine learning methods have been applied for fMRI
data analysis but only statistical maps [8][9] or the mean of each fMRI time
interval[7] are used while temporal information has yet to be fully employed.
Discarding temporal information results in more manageable data sizes; however,
the cost of such information loss is still unclear.

In this paper, we consider a different classification problem: separating dif-
ferent groups of human subjects based on the observed fMRI time sequences.
We contribute a comprehensive framework of spatially and temporally exploring
fMRI data, and apply it to a challenging case study: separating drug addicted
subjects from healthy non-drug-using controls based on their observed fMRI
time sequences. This learning problem is challenging for a number of reasons: 1)
oversized dimensionality of the fMRI BOLD sequences; 2) undersized data space;
3) increased inter-subject variability and intra-subject variability: even for the
same person, activations are different from trial to trial due to brain-behavior
complexity; and 4) decreased between group experimental heterogeneity. Fig. 1
shows time sequences of one voxel in three human brains.

To our knowledge, this is the first time that machine learning is performed
on the temporal information of fMRI data for classification purposes. In this
work, we aim to answer the following questions: 1) given the difficulties in-
herent in this type of the data, what are the most discriminative features for
this classification problem? 2) Will temporal/function information help us with
classification? We explore fMRI data in two different representations: 3D brain
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Fig. 1. In each row, the left three images show three slides of the a 3D fMRI scan in
different views with a white point representing the location of one voxel, followed by a
time sequence of this voxel across the 87 task-sequence time points

“video” and a set of voxel-specific time series. Dimensionality reduction and
feature selection techniques are proposed and examined in each representation.
Experimental results demonstrate that group classification is improved by select-
ing discriminative features and incorporating fMRI temporal information into a
machine learning framework. The automatically selected features prove reliable,
i.e., stable in cross-task validation. Furthermore, these blindly selected features
prove valid, i.e., they include voxels in regions previously implicated in the suc-
cessful performance of the core cognitive-behavioral task. Thus, our approach
is generalizable, as tested statistically and integrated in a wider neuroscience
context. For example, the anterior cingulate gyrus has been assumed to be es-
sential for error detection, conflict resolution, and in emotional regulation. The
emergence of anterior cingulate voxels, blindly selected through our analyses,
confirms its their central role in underlying the core characteristics of addiction
and its relevance to performing this specific sustained attention task.

Drug addiction is a complex disorder characterized by compromised inhibitory
control. Individuals with compromised mechanisms of control are difficult to iden-
tify unless they are directly subjected to challenging conditions. Solving this prob-
lem is essential because patterns of variability in brain states may be unique to a
certain psychopathology and could be therefore used for improving diagnosis and
prevention efforts (e.g. diagnosis of drug addiction, prevention of relapse or crav-
ing). In addition, the development of this “clinical machine learning framework”
can be applied to further our understanding of other human disorders and states
such as those impacting insight and awareness, that similarly to drug addiction
are currently identified based mostly on subjective criteria and self-report.

2 Methodology

Acquisition of fMRI data: In our experiments, data were collected to study
the neuropsychological problem of loss of sensitivity to the relative value of
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money in cocaine users[10]. MRI studies were performed on a 4T Varian scanner
and all stimuli were presented using LCD-goggles connected to a PC. The hu-
man participants pressed a button or refrained from pressing based on a picture
shown to them. They received a monetary reward if they performed correctly.
Specifically, three runs were repeated twice (T1, T2, T3; and T1R, T2R, T3R)
and in each run, there were three monetary conditions (high money, low money,
no money) and a baseline condition where a fixation cross was shown on the
screen; the order of monetary conditions was pseudo-randomized and identical
for all participants. Participants were informed about the monetary condition
by a 3-sec instruction slide, which visually presented the stimuli: or $0.45, $0.01
or $0.00. The feedback for correct responses in each condition consisted of the
respective numeral designating the amount of money the subject has earned if
correct or the symbol (X) otherwise. To simulate real-life motivational salience,
subjects could gain up to $50 depending on their performance on this task. 16
cocaine dependent individuals, 18-55 years of age, in good health, were matched
with 12 non-drug-using controls on sex, race, education and general intellectual
functioning.

In this work, we use Statistical Parametric Mapping (SPM)[11] to preprocess
(realignment, normalization/registration and smoothing) the fMRI sequences.

Methodology: In this paper, we aim to separate the drug-addicted subjects from
controls by applying machine learning methods to observed fMRI sequences. Fol-
lowing [7], the classification problem can be represented: f : 〈fMRI − sequence
(t1, t2)〉 → [DrugAddicted|Control] where fMRI-sequence(t1,t2) is the sequence
of fMRI images collected during the contiguous time interval [t1, t2]. The input
data is an extremely high dimensional feature vector, consisting of hundreds of
thousands of features (87 scans per sequence and 53 × 63 × 46 voxels per scan).
In order to evaluate the discriminative power of the extracted features, we first
perform classification using a simple Euclidean method that uses the Euclidean
distance on the original fMRI sequences. This is computationally expensive due
to the high dimensionality and yields inferior results due to the large number of
non-discriminative features. Feature selection is essential to achieve accurate clas-
sification when only a small number of data are available [12], hence we explore
a variety of approaches for dimensionality reduction and feature selection. We
group our approaches into two categories based on the different views of the fMRI
sequences:

2.1 fMRI: 3D Brain “Video”

The 4D input fMRI data (53 × 63 × 46 × 87) can be treated as sequences of
3D images. Previous work[13] demonstrated that, by traversing the 3D space of
fMRI images using the Hilbert space-filling curve[14], a 3D image can be linearly
mapped into 1D space(153594 × 1). A space filling curve defines a continuous
path in a multidimensional grid, visiting each point exactly once and never cross-
ing itself. Hilbert space-filling curve has been proven optimal in preserving the
locality and clustering properties of data[15]. The Hilbert space-filling proceeds
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in a recursive manner, following the same rotation and reflection pattern at each
vertex of the basic curve (details in [16]). By using this technique, the original
input fMRI sequences can be mapped into 2D spaces(153594 × 87) where each
3D fMRI scan is linearly mapped into 1D space. Hence, two groups of dimen-
sionality reduction and feature selection techniques applied in the signal analysis
domain can be applied: those based on global information, such as Singular Value
Decomposition(SVD)[17]; and those based on local information, such as the Dis-
crete Fourier Transform (DFT)[18]. Due to the dimensionality of the input data,
we chose to use local dimensionality reduction techniques.

Dimensionality Reduction and Feature Selection: After mapping each of
the 3D scans into 1D space, the input fMRI sequences are transformed into 2D
matrices with one spatial dimension and one temporal dimension.

We applied two sets of signal analysis approaches for dimensionality
reduction:

1. 1D Transformation: by performing 1D DFT or DWT on the spatial dimen-
sion, the original input data can be represented by a small number of time series.
2. 2D Transformation: by performing 2D DFT or DWT on the 2D matrices di-
rectly, the original input data can be represented by a small 2D feature matrix.

After dimensionality reduction, we can perform classification either by: i)
employing the whole reduced feature space for classification or, ii) learning the
most discriminative features for classification. As expected, experimental results
in Sec. 3 demonstrate the need for learning discriminative features.

2.2 fMRI: A Set of Voxel-Specific Time Series

In Sec. 2.1, we treat each fMRI sequence as a time series of 3D images. Al-
ternatively, each fMRI sequence can also be thought of as a combination of
N time series where N is the number of the voxels. In this section, we examine
voxel-based feature selection methods for group classification. The most common
approach for feature selection[19] is to select those features that best discrimi-
nate the target classes: given the goal of learning a target classification function,
one common approach to feature selection is to rank the features by their mu-
tual information with respect to the class variable, then to select the n highest
scoring features. In our experiments, the information of each voxel is represented
by a time sequence of intensities representing BOLD brain activations. Distance
(dissimilarity) between voxel intensities is straightforward to define. However,
there are different ways to measure this distance when the features are voxel
time series. We examine varies time series analysis techniques. More specifically,
given training data Q and C, for the ith voxel, we propose to compute and ex-
amine the distance between two time series q1..T and c1..T by:

1. Raw Dist: Euclidean Distance Metric directly on the two time series of the
voxel: D(q, c) =

∑T
t=1(qt − ct)2;

2. Norm Dist: Euclidean Distance Metric on normalized time series, where
X ′ = (X − X̄)/σ(X) with X̄ and σ(X) the mean and standard deviation;
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3. Mean Dist: Distance of the mean values of the two series: D(q, c) = ‖q̄ − c̄‖;
4. V ar Dist: Distance of the variances of the two series: D(q, c) = ‖σ2(q) −
σ2(c)‖;

In this paper, we choose to use a simple kth-Nearest Neighbor(KNN)[19] retrieval
scheme to evaluate classification using different sets of selected features.

3 Experiments and Results

In our data collection, there are totally 6 runs: T1, T2, T3, T1R, T2R and
T3R with the three latter repeating the three former, grouped into 3 data sets
T 1, T 2, T 3. The first set of experiments is to evaluate classification performance
in a ”leave-one-out” cross validation procedure. Each of the K human subjects
was used as a test subject while training on the remaining K − 1 subjects, and
the mean classification rate of the K experiments is reported.

For comparison purposes, in Table 1, we report the classification performance
of the plain Euclidean method(Sec.2) which uses the computationally expensive
Euclidean distance on the original fMRI sequences and yields classification re-
sults that are close to random. Table 1 also presents the classification perfor-
mance with the first 30 Fourier coefficients by applying DFT to the mapped
matrices using Hilbert space-filling curve. The results of DWT(double the num-
ber of features) are similar to the results reported in Table 1. After dimension-
ality reduction, most of the features are still non-discriminative and a feature
selection step can significantly improve classification although standard global
dimensionality reduction techniques such as SVD, which also perform feature
selection, cannot be applied.

Table 2 reports classification rates for voxel-specific time series analysis in
each data set individually. It also reports cross validation using the features se-
lected from voxel-based methods. Contrast map based classification rates in [9]
are listed in the last row for comparison since the creation of contrast maps can
be thought of a dimensionality reduction process using statistical inferences along

Table 1. 3D Brain “Video” Analysis: classification rates of the simple Euclidean
method on the original fMRI sequences are close to random due to the large number of
non-discriminative features. Classification using features computed from signal-based
methods (DFT). The “ALL” column shows classification rates using all the first 30
Fourier coefficients and the “Discrim” column reports rates using 5 selected discrimi-
native coefficients only. Experimental results demonstrate that in the locally reduced
feature space, appropriate features can significantly improve classification.

Euclidean Distance 1D DFT 2D DFT
1NN 5NN ALL Discrim ALL Discrim

T1 51.92% 53.84% 65.38% 84.62% 63.46% 84.62%
T2 51.92% 51.92% 61.54% 80.77% 63.46% 82.69%
T3 50% 52.08% 60.42% 72.92% 62.50% 68.75%
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Table 2. Voxel-Specific Time Series Analysis: classification rates using features
selected from voxel-based methods. Experimental results in each individual data set
demonstrate that classification performance can be significantly improved by incor-
porating temporal information into learning. Classification rates of using Contrast
maps Contrasts are the best reported in [9] that use the kNN classifier. Experi-
mental results across data sets demonstrate that the features selected using temporal
information(Raw Dist) stably perform better across data sets.

Training T1 T2 T3
Testing T1 T2 T3 T1 T2 T3 T1 T2 T3

Raw Dist 94.2% 90.4% 87.5% 92.3% 96.2% 91.7% 86.5% 88.5% 93.8%
Norm Dist 84.6% 75.0% 70.8% 78.9% 90.4% 72.9% 71.2% 75.0% 85.4%
Mean Dist 88.5% 76.9% 70.8% 80.8% 90.4% 75.0% 75.0% 76.9% 85.4%
V ar Dist 86.5% 82.7% 72.9% 80.8% 86.5% 75.0% 78.9% 78.9% 83.3%
Contrasts 88.5% N/A N/A N/A 86.8% N/A N/A N/A 85.7%

the temporal axis. Experimental results on each individual data set demonstrate
that classification performance can be significantly improved by incorporating
temporal information into learning. Classification rates of Raw Dist outper-
formed other methods. In time series analysis, temporal distortion is a common
problem. Dynamic Time Warping(DTW) has been successfully applied in many
time series analysis problems[20] but is inapplicable here due to dimensionality.
Luckily the nature of the data prevents significant temporal distortion (since
each 87 point sequence can be divided into 6 short sub-sequences). For valida-
tion purposes, we performed a set of DTW experiments on 5 selected features.
Experimental results demonstrate that DTW gives similar classification results
as the Euclidean distance method.

In the three data sets, subjects are performing exactly the same task whereas
the sequence of the monetary conditions is different. We address the generaliza-
tion question by examining classification performance when selected features
from one data set are applied onto other data sets. Table 2 reports the cross
validation results. The features that are automatically selected using tempo-
ral information(Raw Dist), prove very stable in cross-task validation. Hence,
by selecting the most discriminative features using temporal information, group
classification can be successfully performed.

We also examined the selected features under a neuro-scientific context: the
selected most discriminative voxels cluster into two prefrontal brain regions:
the middle frontal gyrus (dorsolateral prefrontal cortex) and the anterior cingu-
late gyrus (ACG). Those regions are known to be involved in sustained atten-
tion/working memory and in the processing of salient stimuli/inhibitory control,
respectively. It is very intriguing that these blindly selected voxels represent the
two core functions of the delayed forced-choice task used in this study. Further,
their location in the prefrontal cortex lends support to our working hypothesis
that this region is crucially involved in the underlying core characteristics of
drug addiction. Specifically, the involvement of the ACG, a region which has
been previously implicated in drug intoxication and craving[21], lends support
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to the dysfunction in drug addiction of this corticolimbic region (see [22] where
a hypofunctionality of the ACG to a GO/NO-GO task was reported in cocaine
users compared to controls).

4 Conclusions and Future Work

We have demonstrated that, by selecting discriminative features, group classifica-
tion can be successfully performed on a challenging case study although training
data are fMRI sequences that are exceptionally high dimensional, sparse and
noisy. We have also shown that classification rates can be significantly improved
by incorporating temporal information into machine learning analysis of such
data. To our knowledge, this is the first time that the temporal/functional infor-
mation of the fMRI data is explicitly explored for machine learning classification
purposes. This comprehensive framework of exploring spatial and temporal in-
formation of fMRI data for classification problems can be extended to many
other fMRI analysis applications. Our analyses provide an additional method
for validation of a regional-functionality specificity, however external validation
using a lesioned sample would still be necessary to confirm a particular region’s
role in a specific function (i.e., loss of a certain function in individuals lacking a
specific region).

Since feature selection is the key for pattern recognition problems, especially
when only a small number of data are available, as in most human subject
research, one of our future research directions is to explore efficient global di-
mensionality reduction techniques[23] that can be applied on extremely high
dimensional training data and examine more sophisticated classifiers. Another
future research direction is to apply grouping/clustering as a preprocessing step
to reduce dimensionality of the raw data and smooth noise. Finally, connectivity
and interactivity information play important roles in brain activation patterns.
For example, in the voxel-based feature selection part, voxels are considered to
be independent, however, this is not accurate for the human brain. After fur-
ther validation with other data sets (additional subjects with addiction or other
psychopathology), we aim to explore the connectivity and interactivity between
voxels to reveal more discriminative brain activation patterns.
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