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Abstract

Functional Magnetic Resonance Imaging (fMRI) has enabled scientists
to look into the active brain. However, interactivity between functional
brain regions, is still little studied. In this paper, we contribute a novel
framework for modeling the interactions between multiple active brain
regions, using Dynamic Bayesian Networks (DBNs) as generative mod-
els for brain activation patterns. This framework is applied to modeling of
neuronal circuits associated with reward. The novelty of our framework
from a Machine Learning perspective lies in the use of DBNs to reveal
the brain connectivity and interactivity. Such interactivity models which
are derived from fMRI data are then validated through a group classifica-
tion task. We employ and compare four different types of DBNs: Parallel
Hidden Markov Models, Coupled Hidden Markov Models, Fully-linked
Hidden Markov Models and Dynamically Multi-Linked HMMs (DML-
HMM). Moreover, we propose and compare two schemes of learning
DML-HMMs. Experimental results show that by using DBNs, group
classification can be performed even if the DBNs are constructed from
as few as 5 brain regions. We also demonstrate that, by using the pro-
posed learning algorithms, different DBN structures characterize drug
addicted subjects vs. control subjects. This finding provides an indepen-
dent test for the effect of psychopathology on brain function. In general,
we demonstrate that incorporation of computer science principles into
functional neuroimaging clinical studies provides a novel approach for
probing human brain function.

1. Introduction

Functional Magnetic Resonance Imaging (fMRI) has enabled scientists to look into the ac-
tive human brain [1] by providing sequences of 3D brain images with intensities represent-
ing blood oxygenation level dependent (BOLD) regional activations. This has revealed ex-
citing insights into the spatial and temporal changes underlying a broad range of brain func-
tions, such as how we see, feel, move, understand each other and lay down memories. This
fMRI technology offers further promise by imaging the dynamic aspects of the functioning
human brain. Indeed, fMRI has encouraged a growing interest in revealing brain connectiv-
ity and interactivity within the neuroscience community. It is for example understood that
a dynamically managed goal directed behavior requires neural control mechanisms orches-
trated to select the appropriate and task-relevant responses while inhibiting irrelevant or
inappropriate processes [12]. To date, the analyses and interpretation of fMRI data that are



most commonly employed by neuroscientists depend on the cognitive-behavioral probes
that are developed to tap regional brain function. Thus, brain responses are a-priori la-
beled based on the putative underlying task condition and are then used to separate a priori
defined groups of subjects. In recent computer science research [18][13][3][19], machine
learning methods have been applied for fMRI data analysis. However, in these approaches
information on the connectivity and interactivity between brain voxels is discarded and
brain voxels are assumed to be independent, which is an inaccurate assumption (see use of
statistical maps [3][19] or the mean of each fMRI time interval[13]). In this paper, we ex-
ploit Dynamic Bayesian Networks for modeling dynamic (i.e., connecting and interacting)
neuronal circuits from fMRI sequences. We suggest that through incorporation of graphical
models into functional neuroimaging studies we will be able to identify neuronal patterns
of connectivity and interactivity that will provide invaluable insights into basic emotional
and cognitive neuroscience constructs. We further propose that this interscientific incorpo-
ration may provide a valid tool where objective brain imaging data are used for the clinical
purpose of diagnosis of psychopathology. Specifically, in our case study we will model
neuronal circuits associated with reward processing in drug addiction. We have previously
shown loss of sensitivity to the relative value of money in cocaine users [9]. It has also
been previously highlighted that the complex mechanism of drug addiction requires the
connectivity and interactivity between regions comprising the mesocorticolimbic circuit
[12][8]. However, although advancements have been made in studying this circuit’s role in
inhibitory control and reward processing, inference about the connectivity and interactivity
of these regions is at best indirect. Dynamical causal models have been compared in [16].
Compared with dynamic causal models, DBNs admit a class of nonlinear continuous-time
interactions among the hidden states and model both causal relationships between brain
regions and temporal correlations among multiple processes, useful for both classification
and prediction purposes.

Probabilistic graphical models [14][11] are graphs in which nodes represent random vari-
ables, and the (lack of) arcs represent conditional independence assumptions. In our case,
interconnected brain regions can be considered as nodes of a probabilistic graphical model
and interactivity relationships between regions are modeled by probability values on the
arcs (or the lack of) between these nodes. However, the major challenge in such a ma-
chine learning approach is the choice of a particular structure that models connectivity and
interactivity between brain regions in anaccurateandefficientmanner. In this work, we
contribute a framework of exploiting Dynamic Bayesian Networks to model such a struc-
ture for the fMRI data. More specifically, instead of modeling each brain region in isola-
tion, we aim to model the interactive pattern of multiple brain regions. Furthermore, the
revealed functional information is validated through a group classification case study: sep-
arating drug addicted subjects from healthy non-drug-using controls based on trained Dy-
namic Bayesian Networks. Both conventional BBNs and HMMs are unsuitable for model-
ing activities underpinned not only by causal but also by clear temporal correlations among
multiple processes [10], and Dynamic Bayesian Networks [5][7] are required. Since the
state of each brain region is not known (only observations of activation exist), it can be
thought of as a hidden variable[15]. An intuitive way to construct a DBN is to extend a
standard HMM to a set of interconnected multiple HMMs. For example, Vogler et al. [17]
proposed Parallel Hidden Markov Models (PaHMMs) that factorize state space into mul-
tiple independent temporal processes without causal connections in-between. Brand et al.
[2] exploited Coupled Hidden Markov Models (CHMMs) for complex action recognitions.
Gong et al. [10] developed a Dynamically Multi-Linked Hidden Markov Model (DML-
HMM) for the recognition of group activities involving multiple different object events in
a noisy outdoor scene. This model is the only one of those models that learns both the
structure and parameters of the graphical model, instead of presuming a structure (possibly
inaccurate) given the lack of knowledge of human brain connectivity. In order to model
the dynamic neuronal circuits underlying reward processing in the human brains, we ex-



plore and compare the above DBNs. We propose and compare two learning schemes of
DML-HMMs, one is greedy structure search (Hill-Climbing) and the other is Structural
Expectation-Maximization (SEM).

To our knowledge, this is the first time that Dynamic Bayesian Networks are exploited in
modeling the connectivity and interactivity among brain regions activated during a fMRI
study. Our current experimental classification results show that by using DBNs, group clas-
sification can be performed even if the DBNs are constructed from as few as 5 brain re-
gions. We also demonstrate that, by using the proposed learning algorithms, different DBN
structures characterize drug addicted subjects vs. control subjects which provides an in-
dependent test for the effects of psychopathology on brain function. From the machine
learning point of view, this paper provides an innovative application of Dynamic Bayesian
Networks in modeling dynamic neuronal circuits. Furthermore, since the structures to be
explored are exclusively represented by hidden (cannot be observed directly) states and
their interconnecting arcs, the structure learning of DML-HMMs poses a greater challenge
than other DBNs [5]. From the neuroscientific point of view, drug addiction is a complex
disorder characterized by compromised inhibitory control and reward processing. However,
individuals with compromised mechanisms of control and reward are difficult to identify
unless they are directly subjected to challenging conditions. Modeling the interactive brain
patterns is therefore essential since such patterns may be unique to a certain psychopathol-
ogy and could hence be used for improving diagnosis and prevention efforts (e.g., diagnosis
of drug addiction, prevention of relapse or craving). In addition, the development of this
framework can be applied to further our understanding of other human disorders and states
such as those impacting insight and awareness, that similarly to drug addiction are currently
identified based mostly on subjective criteria and self-report.

Fig. 1. Four types of Dynamic Bayesian Networks: PaHMM, CHMM, FHMM and DML-HMM.

2. Dynamic Bayesian Networks

In this section, we will briefly describe the general framework of Dynamic Bayesian Net-
works. DBNs are Bayesian Belief Networks that have been extended to model the stochas-
tic evolution of a set of random variables over time [5][7]. As described in [10], a DBN
B can be represented by two sets of parameters(m,Θ) where the first setm represents
the structure of the DBN including the number of hidden state variablesS and observation
variablesO per time instance, the number of states for each hidden state variable and the
topology of the network (set of directed arcs connecting the nodes). More specifically, the
ith hidden state variable and thejth observation variable at time instancet are denoted as
S

(i)
t andO

(j)
t with i ∈ {1, ..., Nh} andj ∈ {1, ..., No}, Nh andNo are the number of hid-

den state variables and observation variables respectively. The second set of parametersΘ
includes the state transition matrixA, the observation matrixB and a matrixπ modeling the
initial state distributionP (Si

1). More specifically,A andB quantify the transition models
P (S(i)

t |Pa(S(i)
t )) and observation modelsP (O(i)

t |Pa(O(i)
t )) respectively wherePa(S(i)

t )
are the parents ofS(i)

t (similarly Pa(O(i)
t ) for observations). In this paper, we will exam-

ine four types of DBNs: Parallel Hidden Markov Models (PaHMM) [17], Coupled Hid-



den Markov Models (CHMM)[2], Fully Connected Hidden Markov Models (FHMM) and
Dynamically Multi-Linked Hidden Markov Models (DML-HMM)[10] as shown in Fig 1
where observation nodes are shown as shaded circles, hidden nodes as clear circles and
the causal relationships among hidden state variables are represented by the arcs between
hidden nodes. Notice that the first three DBNs are essentially three special cases of the
DML-HMM.

2.1. Learning of DBNs

Given the form of DBNs in the previous sections, there are two learning problems that must
be solved for real-world applications: 1)Parameter Learning: assuming fixed structure,
given the training sequences of observationsO, how we adjust the model parametersB =
(m,Θ) to maximizeP (O|B); 2) Structure Learning: for DBNs with unknown structure
(i.e. DML-HMMs), how we learn the structure from the observationO. Parameter learning
has been well studied in [17][2]. Given fixed structure, parameters can be learned iteratively
using Expectation-Maximization (EM). The E step, which involves the inference of hidden
states given parameters, can be implemented using an exact inference algorithm such as
the junction tree algorithm. Then the parameters and maximal likelihoodL(Θ) can be
computed iteratively from the M step.

In [10], the DML-HMM was selected from a set of candidate structures, however the se-
lection of candidate structure is non-trivial for most applications including brain region
connectivity. For a DML-HMM withN hidden nodes, the total number of different struc-
tures is2N2−N , thus it is impossible to conduct an exhaustive search in most cases. The
learning of DBNs involving both parameter learning and structure learning has been dis-
cussed in [5], where the scoring rules for standard probabilistic networks were extended
to the dynamic case and the Structural EM (SEM) algorithm was developed for structure
learning when some of the variables are hidden. The structure learning of DML-HMMs
is more challenging since the structures to be explored are exclusively represented by the
hidden states and none of them can be directly observed. In the following, we will explain
two learning schemes for the DML-HMMs. One standard way is to perform parametric
EM within an outer-loop structural search. Thus, our first scheme is to use an outer-loop
of the Hill-Climbing algorithm (DML-HMM-HC). For each step of the algorithm, from
the current DBN, we first compute a neighbor list by adding, deleting, or reversing one
arc. Then we perform parameter learning for each of the neighbors and go to the neighbor
with the minimum score until there is no neighbor whose score is higher than the current
DBN. Our second learning scheme is similar to the Structural EM algorithm [5] in the
sense that the structural and parametric modification are performed within a single EM
process. As described in [5][4], a structural search can be performed efficiently given com-
plete observation data. However, as we described above, the structure of DML-HMMs are
represented by the hidden states which can not be observed directly. Hence, we develop
the DML-HMM-SEM algorithm as follows: given the current structure, we first perform
a parameter learning and then, for each training data, we compute the Most Probable Ex-
planation (MPE), which computes the most likely value for each hidden node (similar to
Viterbi in standard HMM). The MPE thus provides a complete estimation of the hidden
states and a complete-data structural search [4] is then performed to find the best structure.
We perform learning iteratively until the structure converges. In this scheme, the structural
search is performed in the inner loop thus making the learning more efficient. Pseudo-codes
of both learning schemes are described in Table 1. In this paper, we use Schwarz’s Bayesian
Information Criterion (BIC): BIC = −2 log L(ΘB) + KB log N as our score function
where for a DBNB, L(ΘB) is the maximal likelihood underB, KB is the dimension of
the parameters ofB andN is the size of the training data. Theoretically, the DML-HMM-
SEM algorithm is not guaranteed to converge since for the same training data, the most
probably explanations (Si, Sj) of two DML-HMMs Bi, Bj might be different. In the worst
case, oscillation between two structures is possible. To guarantee halting of the algorithm, a



loop detector can be added so that, once any structure is selected in a second time, we stop
the learning and select the structure with the minimum score visited during the searching.
However, in our experiments, the learning algorithm always converged in a few steps.

ProcedureDML-HMM-HC ProcedureDML-HMM-SEM
Initial Model(B0); Initial Model(B0);
Loop i = 0, 1, ... until convergence: Loop i = 0, 1, ... until convergence:

[B
′
i , score

0
i ] = Learn Parameter(Bi); [B

′
i , score

0
i ] = Learn Parameter(Bi);

B1..J
i = Generate Neighbors(Bi); S = Most Prob Expl(B

′
i , O);

for j=1..J Bmax
i = Find Best Struct(S);

[Bj′
i , scorej

i ] = Learn Parameter(Bj
i ); if Bmax

i == B
′
i

j = Find Minscore(score1..J
i ); returnB

′
i ;

if (scorej
i > score0

i ) else
returnB

′
i ; Bi+1 = Bmax

i ;
else

Bi+1 = Bj
i ;

Table 1. Two schemes of learning DML-HMMs: the left column lists the DML-HMM-HC scheme
and the right column lists the DML-HMM-SEM scheme.

3. Modeling Reward Neuronal Circuits: A Case Study

In this section, we will describe our case study of modelingReward Neuronal Circuits:
by using DBNs, we aim to model the interactive pattern of multiple brain regions for the
neuropsychological problem of sensitivity to the relative value of money. Furthermore, we
will examine the revealed functional information encapsulated in the trained DBNs through
a group classification study: separating drug addicted subjects from healthy non-drug-using
controls based on trained DBNs.

3.1. Data Collection and Preprocess

In our experiments, data were collected to study the neuropsychological problem of loss of
sensitivity to the relative value of money in cocaine users[9]. MRI studies were performed
on a 4T Varian scanner and all stimuli were presented using LCD-goggles connected to
a PC. Human participants pressed a button or refrained from pressing based on a picture
shown to them. They received a monetary reward if they performed correctly. Specifically,
three runs were repeated twice (T1, T2, T3; and T1R, T2R, T3R) and in each run, there
were three monetary conditions (high money, low money, no money) and a baseline con-
dition; the order of monetary conditions was pseudo-randomized and identical for all par-
ticipants. Participants were informed about the monetary condition by a 3-sec instruction
slide, presenting the stimuli: $0.45, $0.01 or $0.00. Feedback for correct responses in each
condition consisted of the respective numeral designating the amount of money the sub-
ject has earned if correct or the symbol (X) otherwise. To simulate real-life motivational
salience, subjects could gain up to $50 depending on their performance on this task. 16
cocaine dependent individuals, 18-55 years of age, in good health, were matched with 12
non-drug-using controls on sex, race, education and general intellectual functioning. Sta-
tistical Parametric Mapping (SPM)[6] was used for fMRI data preprocessing (realignment,
normalization/registration and smoothing) and statistical analyses.

3.2. Feature Selection and Neuronal Circuit Modeling

The fMRI data are extremely high dimensional (i.e.53 × 63 × 46 voxels per scan). Prior
to training the DBN, we selected 5 brain regions: Left Inferior Frontal Gyrus (Left IFG),
Prefrontal Cortex (PFC, including lateral and medial dorsolateral PFC and the anterior cin-
gulate), Midbrain (including substantia nigra), Thalamus and Cerebellum. These regions
were selected based on prior SPM analyses random-effects analyses (ANOVA) where the
goal was to differentiate effect of money (high, low, no) from the effect of group (cocaine,



Fig. 2. Learning processes and learned structures from two algorithms. The leftmost column demon-
strates two (superimposed) learned structures where light gray dashed arcs (long dash) are learned
from DML-HMM-HC, dark gray dashed arcs (short dash) from DML-HMM-SEM and black solid
arcs from both. The right columns shows the transient structures of the learning processes of two
algorithms where black represents existence of arc and white represents no arc.

control) on all regions that were activated to monetary reward in all subjects. In all these
five regions, the monetary main effect was significant as evidenced by region of interest
follow-up analyses. Of note is the fact that these five regions are part of the mesocorticol-
imbic reward circuit, previously implicated in addiction. Each of the above brain regions
is presented by ak-D feature vector wherek is the number of brain voxels selected in this
brain region (i.e.k = 3 for Left IFG andk = 8 for PFC). After feature selection, a DML-
HMM with 5 hidden nodes can be learned as described in Sec. 2 from the training data.
The leftmost image in Fig. 2 shows two superimposed possible structures of such DML-
HMMs. The causal relationships discovered among different brain regions are embodied in
the topology of the DML-HMM. Each of the five hidden variables has two states (activated
or not) and each continuous observation variable (given by ak-D feature vector) repre-
sents the observed activation of each brain region. The Probabilistic Distribution Function
(PDF) of each observation variable is a mixture of Gaussians conditioned by the state of its
discrete parent node.

Fig. 3. Left three images shows the structures learned from the 3 subsets of Group C and the right
three images shows those learned from subsets of Group S. Figure shows that some arcs consistently
appeared in Group C but not consistently in Group S (marked in dark gray) and vice versa (marked
in light gray), which implies such group differences in the interactive brain patterns may correspond
to the loss of sensitivity to the relative value of money in cocaine users.

4. Experiments and Results

We collected fMRI data of 16 drug addicted subjects and 12 control subjects, 6 runs per
participant. Due to head motion, some data could not be used. In our experiments, we used
a total of 152 fMRI sequences (87 scans per sequence) with 86 sequences for the drug
addicted subjects (Group S) and 66 for control subjects (Group C).

First we compare the two learning schemes for DML-HMMs proposed in Sec. 2. Fig. 2
demonstrates the learning process (initialized with the FHMM) for drug addicted subjects.
The leftmost column shows two learned structures where red arcs are learned from DML-
HMM-HC, green arcs from DML-HMM-SEM and black arcs from both. The right columns
show the learning processes of DML-HMM-SEM (top) and DML-HMM-HC (bottom) with
black representing existence of arc and white representing no arc. Since in DML-HMM-



SEM, structure learning is in the inner loop, the learning process is much faster than that of
DML-HMM-HC. We also compared the BIC scores of the learned structures and we found
DML-HMM-SEM selected better structures than DML-HMM-HC.

It is also very interesting to examine the structure learning processes by using different
training data. For each participant group, we randomly separated the data set into three sub-
sets and trained DBNs are reported in Fig. 3 where the left three images show the structures
learned from the 3 subsets of Group C and the right three images show those learned from
subsets of Group S. In Fig. 3, we found the learned structures of each group are similar. We
also found that some arcs consistently appeared in Group C but not consistently in Group S
(marked in red) and vice versa (marked in green), which implies such group differences in
the interactive brain patterns may correspond to the loss of sensitivity to the relative value
of money in cocaine users. More specifically, in Fig. 3, the average intra-group similarity
scores were 80% and 78.3%, while cross-group similarity was 56.7%.

Fig. 4. Classification results: All DBN methods significantly improved classification rates compared
to K-Nearest Neighbor with DML-HMM performing best.

The second set of experiments was to apply the trained DBNs for group classification. In
our data collection, there were 6 runs of fMRI collection: T1, T2, T3, T1R, T2R and T3R
with the latter latter repeating the former three, grouped into 4 data sets{T1, T2, T3, ALL}
with ALL containing all the data. We performed classification experiments on each of the
4 data sets where the data were randomly divided into a training set and a testing set of
equal size. During training, the described four DBN type were employed using the train-
ing set while during the learning of DML-HMMs, different initial structures (PaHMM,
CHMM, FHMM) were used and the structure with the minimum BIC score was se-
lected from the three learned DML-HMMs. For each model, two DBNs{Bc, Bs} were
trained on the training data of Group C and Group S respectively. During testing, for each
testing fMRI sequenceOtest, we computed two likelihoodsP test

c = P (Otest|Bc) and
P test

s = P (Otest|Bs) using the two trained DBNs. Since the two DBNs may have dif-
ferent structures, instead of directly comparing the two likelihoods, we used the difference
between these two likelihoods for classification. More specifically, during training, for each
training sequenceTRi, we computed the ratio of two likelihoodsRTR

i = P i
c/P i

s where
P i

c = P (TRi|Bc) andP i
s = P (TRi|Bs). As expected, generally the ratios of Group C

training data were significantly greater than those of Group S. During testing, the ratio
Rtest = P test

c /P test
s for each test sequence was also computed and compared to the ratios

of the training data for classification. Fig. 4 reports the classification rates of the different
DBNs on each data set. For comparison, the k-th Nearest Neighbor (KNN) algorithm was
applied on the fMRI sequences directly and Fig. 4 shows that by using DBNs, classification
rates are significantly better with DML-HMM outperforming all other models.

5. Conclusions and Future Work

In this work, we contributed a framework of exploiting Dynamic Bayesian Networks to
model the functional information of the fMRI data. We explored four types of DBNs: a
Parallel Hidden Markov Model (PaHMM), a Coupled Hidden Markov Model (CHMM),
a Fully-linked Hidden Markov Model (FHMM) and a Dynamically Multi-linked Hidden



Markov Model. Furthermore, we proposed and compared two structural learning schemes
of DML-HMMs and applied the DBNs to a group classification problem. To our knowl-
edge, this is the first time that Dynamic Bayesian Networks are exploited in modeling
the connectivity and interactivity among brain voxels from fMRI data. This framework
of exploring functional information of fMRI data provides a novel approach of revealing
brain connectivity and interactivity and provides an independent test for the effect of psy-
chopathology on brain function.

Currently, DBNs use independently pre-selected brain regions, thus some other important
interactivity information may have been discarded in the feature selection step. Our future
work will focus on developing a dynamic neuronal circuit modeling framework performing
feature selection and DBN learning simultaneously. Due to computational limits and for
clarity purposes, we explored only 5 brain regions and thus another direction of future
work is to develop a hierarchical DBN topology to comprehensively model all implicated
brain regions efficiently.
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