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Abstract

We present a model based approach to the integration
of multiple cues for tracking high degree of freedom artic-
ulated motions. We then apply it to the problem of hand
tracking using a single camera sequence. Hand tracking
is particularly challenging because of occlusions, shading
variations, and the high dimensionality of the motion. The
novelty of our approach is in the combination of multi-
ple sources of information which come from edges, optical
flow and shading information. In particular we introduce
in deformable model theory a generalized version of the
gradient-based optical flow constraint, that includes shad-
ing flow i.e., the variation of the shading of the object as it
rotates with respect to the light source. This constraint uni-
fies the shading and the optical flow constraints (it simpli-
fies to each one of them, when the other is not present). Our
use of cue information from the entirety of the hand enables
us to track its complex articulated motion in the presence
of shading changes. Given the model-based formulation we
use shading when the optical flow constraint is violated due
to significant shading changes in a region. We use a forward
recursive dynamic model to track the motion in response to
3D data derived forces applied to the model. The hand is
modeled as a base link (palm) with five linked chains (fin-
gers) while the allowable motion of the fingers is controlled
by recursive dynamics constraints. Model driving forces
are generated from edges, optical flow and shading. The
effectiveness of our approach is demonstrated with experi-
ments on a number of different hand motions with shading
changes, rotations and occlusions of significant parts of the
hand.

1. Introduction

In this paper we present a model based approach to high
degree of freedom articulated motion tracking, based on the
integration of visual cues and apply it to the problem of

hand tracking using a single camera sequence. Hand track-
ing has received significant attention in the last few years,
because of its crucial role in the design of new human com-
puter interaction methods, gesture analysis and sign lan-
guage understanding. Glove based devices capture human
hand motion directly, but are expensive and hard to use.
Vision-based hand tracking is a cost-effective, non invasive
alternative. Serious challenges lie in the high number of
degrees of freedom and the problem of occlusions.

Two general approaches have been suggested for this
problem. Model based approaches try to estimate the po-
sition of a hand by projecting a 3-D hand model to im-
age space and comparing it with image features (fingertips
[26, 25, 27], line segments [26]). A spline based hand shape
model was used in [24] to minimize differences between the
silhouettes. Others [30, 26] have used stereo to avoid occlu-
sions. Appearance based approaches estimate hand postures
directly from the images after learning the mapping from
image feature space to hand configuration space [29, 28].
Such systems are more useful for recognizing discrete hand
states than for general purpose hand tracking.

Study of motion and shading together has been recently
formalized [21, 23] and extended to multiple views [22].
Our approach is model-based and hence can work with a
single view. Our first contribution is in the combination of
cue forces from edges, optical flow and shading. In particu-
lar we introduce in deformable model theory a generalized
version of the gradient-based optical flow constraint, that in-
cludes shading flow i.e., the variation of the shading of the
object as it rotates with respect to the light source. This con-
straint unifies the shading and the optical flow constraints
and degenerates to each one of them when the other is not
present. Although optical flow and edges in deformable
models have been used in the past [20], as well as shad-
ing [19], these two methods were applied to different prob-
lem domains (moving and static objects respectively). In
this paper we combine them to correct for the errors due to
the brightness constancy assumption. We use cue informa-
tion from the entirety of the hand and we are able to track
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its complex articulated motion in the presence of shading
changes. Given the model-based formulation we augment
the optical flow constraint with shading information.

The hand can have as many as 26 degrees of freedom
when we model it as a multiple open chain structure. The
dynamic/kinematic problem of such a large system, which
contains not only open chains but also closed chains, can be
modeled as a sub-problem of robotic mechanisms. There
are many forward and inverse dynamics simulation tech-
niques for human and robotic motion [14], [16], [18] [10],
[17], [13], [15]. The second contribution of our approach
is the use of a forward recursive dynamic model, to track
motion in response to 3D data derived forces applied to the
model. The hand is modeled as a base link (palm) with five
linked chains (fingers). Using such a formulation we limit
the allowable motion of the fingers with the use of recur-
sive dynamics constraints. The model’s driving forces are
computed from image cues such as edges, optical flow and
shading.

In our formulation we compute from edge, optical flow
and shading cue constraints 2D data-based forces. The per-
spective camera model is used to convert these 2D forces
into 3D forces that drive the hand model. These 3D forces
are then used to calculate the acceleration of our dynamic
hand, its new velocity and new position. Since this is a sec-
ond order dynamic hand model we use it to predict finger
motion from one frame to the next so that we are closer
to the data in the next frame. To avoid unnecessary cal-
culations of the shading constraint we monitor the intensity
changes in several hand areas during tracking and use it only
if these changes are significant.

The dynamic hand model is described in Sec. 2. Sec.
3 presents model initialization and generation of image
forces. Sec. 4 introduces illumination information on the
optical flow constraint. Recursive dynamics of the hand
model and constraints on the allowable motion are pre-
sented in Sec. 5. Tracking experiments are shown in section
6, ranging including complex palm-finger tracking with sig-
nificant rotation.

2. Hand Model

In our forward dynamics formulation, the hand model
(Fig. 1(a)) consists of a base link (palm), and five link-
chains (fingers) connected to the base link through five two-
degree-of-freedom revolute joints. Each finger is three links
connected by two one-degree-of-freedom revolute joints.
The finger parts are modeled as cylinders and the palm is
modeled as a six-rectangle-side-solid.

A two-degree-of-freedom revolute joint can be sim-
plified as two one-degree-of-freedom revolute joints con-
nected by a zero length and zero mass link, (dummy
link)[4]. In the hand model there are 21 links including 5

dummy links and 20 one-degree-of-freedom revolute joints.
We number the palm (base link) as link 0. For each finger
there are 4 links including one dummy link and 4 joints. The
joint connecting the finger to the palm is joint 1, and link 1
connects joint 1 and joint 2 (Link 1 is the dummy link).Joint
i connects link (i�1) and link i; link i links joint i and joint
(i + 1). Each link has a local coordinate frame fixed to its
starting end.

The above geometric model is based on the measure-
ments of an average male. The user specifies the joint loca-
tions in the image to initialize model finger lengths. When
the hand is illuminated by a directional light, we recover
surface normal fields of parts of the hand by fitting this ba-
sic model (based on previous deformable model methodol-
ogy that uses shape from shading and edges [19]) to images
of the hand. These normals will be used to calculate the
generalized shading flow constraint.

3. Image Based Cues

3.1. Fitting the 3-D Model to 2-D images

This approach needs a geometric 3-D model to transform
2-D forces into 3-D ones which will be applied on the dy-
namic model. Initially the model is fitted to a known pose
of the hand, as can be seen in Figure 1(b). At this stage of
the work, we assume knowledge of the camera parameters.

At each frame visibility checking is performed in order
to match correctly image and model points. The computa-
tion of the relative motion to the palm of occluded fingers,
is based on the rigid motion of the hand. When the rela-
tive motion is not too large, we pick up the finger edges
when they reappear. This method will fail when the fingers
undergo significant relative motions when occluded. In or-
der to track them successfully in that case, other methods
should be integrated in the framework, such as appearance
based methods, which is outside the scope of this paper.

3.2. Force Calculation for Dynamic Model

The 3-D finger motion is recovered by fitting the model
to image-derived data. The external forces are applied on
the dynamic model, then the rotation and translation of fin-
ger joints are calculated. Figure 1(c) shows two kinds of
typical finger motion. We obtain the forces by calculating
displacements using the following procedure.

� Extract the finger edges using the Canny edge operator.
� A curvature-finding operator [7] is used to find the base

points of each finger such as Bi, Bj shown in Fig-
ure 1(d). The edges between Bi and Bj correspond to
the finger segment. The edge points of sub-segments
can be derived from the corresponding 3-D points in
the 3-D model during tracking.
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(a) (b) (c) (d) (e)

Figure 1. (a) Dynamic Model of Hand. (b) Initial posture of hand model. (c)Finger motion and force
from edge displacement. (d)finger segmentation and base points. (e) Representing the projection of
the model’s articulated segments by their medial axis (thick white line)

� Because the hand motion will result to the change
of base-point position between the current- and after-
frame, a normalization process is necessary to match
the base-points in current- and after- frame according
to the distance of two base-points and the length of fin-
ger segment.

� Let pk(i) and pk+1(i) corresponding edge points in k-
th frame and k+1-th frame. The 2-D force fedge from
edge displacement can be calculated by the equation.

fedge(i) = pk+1(i) � pk(i) (1)

Another force fopt can be directly derived from the opti-
cal flow of the image. In the optical flow equation:

Ixu+ Iyv + ft = 0; (2)

the temporal differential e = (u; v) at position (x; y) will be
considered as the external force. The optical flow of hand
motion is computed by the Lucas-Kanade method[9].

Optical flow near finger edges is not as reliable due to
possible mismatches of edge points, so we will only con-
sider the optical flow of the inside area of the finger segment
(obtained from the projection of the 3-D model in the image
plane). For optical flow computation, we select points with
significant gradient magnitude only. In Fig. 2 we see the
edge forces and the optical flow forces, applied to different
regions of the image.

3.3. Force transformation from 2-D to 3-D

We assume a perspective projection model. Therefore,
the point x = (x; y; z) in the world coordinate system and
the point xc = (xc; yc; zc)

T in the camera coordinate sys-
tem ensure the following equation.

x = Rcxc +Tc; (3)

where, Tc and Rc are translation and rotation matrices.

Following previous work [8], by taking the time deriva-
tives of the perspective projection equation, with an image
point xp we get _xp =H _xc =H(R�1c _x) , with

H =
f=zc 0 �xc=z2cf
0 f=zc �yc=z2cf

(4)

The focal length f is obtained by pre-calibration of the
camera. According to deformable model theory these 3D
forces are converted to generalized forces fq = J>f3d on
the model parameters q, with J = @x(x; y; z)=@q the Ja-
cobian of the model points, by _q = fq. Consequently,
the generalized forces calculated from 2-D images will be
fq = (JpJ)>f2d with Jp = HR�1c the Jacobian of the
model points under perspective projection.

To apply the external forces on the dynamic model, we
transform the individual forces obtained from edges and
the optical flow within every hand segment into one total
force and torque to be used in the recursive dynamic frame-
work. The total force and torque for each hand segment are
F =

Pn

i=1 fi;
Pn

i=1 ri � fi; respectively. fi and ri are the
individual force vector and force position vectors.

4 A new constraint

In previous work [19] a methodology was developed
for the incorporation of illumination constraints (any type
that is differentiable w.r.t. the model parameters) in a de-
formable model formulation. In that work, the fitting of
the model was done based on a static image, i.e. that data
did not change during the fitting process. Hence, any par-
tial derivatives with respect to time in the illumination con-
straint C were zero. Here we will generalize our constraint
formulation to include image motion. Instead of one image,
the fitting process will be guided by a sequence of moving
images.

We will start by taking the reflectance equation. Let us
assume that we have a reflectance function of the general
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Figure 2. Forces applied to the hand model, and the effects of shading. (a) Edge forces (b) optical
flow forces in the interior of the model. (d) is the change in average intensity in a small smooth area
of the hand (depicted in (c), when the illumination comes from the top (blue line) and from the side
(green dashed line) respectively.

form IL = L(lp;q), where IL is the observed image inten-
sity and lp are the lighting model parameters, which can be
differentiated with respect to the normaln of the surface and
q are the hand model parameters. This means that the re-
flectance of the surface is locally computable and that there
are no global illumination effects. We also assume that the
illumination parameters do not change with time. The con-
straint equation is C = IL � L(lp;q), and we differentiate
it w.r.t. time, and apply Baumgarte stabilization [3] in order
to obtain

_C(q; t) + �C = Cq _q+Ct + �C = 0; (5)

In this case we cannot ignore the partial derivativesCt w.r.t.
time. Therefore, using the above formulas we expand Equa-
tion 5 to:

@IL
@q

_q�
@L(lp;q)

@q
_q+

@IL
@t

�
@L(lp;q)

@t
+a(IL � L(lp;q)) = 0

(6)
We notice that if J is the Jacobian of the model points, and
Jp is the Jacobian of the model points under perspective
projection, as described in Sec. 3, then

@IL
@q

_q+
@IL
@t

= rILJp J _q+
@IL
@t

(7)

is the left hand side of the model based optical flow con-
straint equation [20]. In model based optical flow, motion
field vectors are vectors of velocities of model points, and
hence _x = J _q applies. Typically in the literature [11] this
optical flow term is set to 0. This is correct in the case of
ambient only illumination. For the case of light sources at
infinity it is also correct for pure translational motion. For
the simplest case of a Lambertian surface with a light source
at infinity it can be shown [12] that if ! is the angular veloc-
ity of the rotational motion and l the light source direction,
the magnitude of the error between the true motion field and
the apparent (and computable) optical flow is

jDvj = �
jl(! � n)j

krEk
(8)

This error is small when the change of gradient is big, but in
the case of smooth surfaces this effect becomes much more
pronounced. Similarly @L(lp;q)

@t
= 0 since normals change

based only on the model parameters q.
This means that when there is no motion the constraint

equation simplifies to the shading constraint. Therefore

@IL
@q

_q�
@L(lp;q)

@q
_q+

@IL
@t

� a(L(lp;q)� IL) = 0 (9)

encompasses both constraints. In the case of a smooth mov-
ing object (9) allows to deal with errors due to directed illu-
mination and offers the possibility of recovering the motion
of relatively smoothly shaded surfaces. Fig. 2(c), (d) shows
the change in average intensity in a small smooth area of the
hand, when the illumination comes from the top and from
the side respectively. In the second case, changes in the in-
tensity of the points are dramatic.

5 Dynamic Tracking of Hand Motion

In our methodology we estimate the hand motion in re-
sponse to the applied 3D forces on the hand as a Forward
Dynamics problem where given the external forces we want
to compute the velocity and position of the palm.

Since we use a recursive dynamic formulation we will
use Featherstone’s[2], [5] spatial notation to model our
kinematic and dynamic variables. We integrate the con-
straint of Eq. 9 in the above formulation to determine the
vector q of the model’s degrees of freedom which includes
the joint variables, global rotation and translation.

Furthermore, human fingers are not ideal dynamic links,
their joints have upper and lower bounds. Therefore, we
need to solve the above dynamic equations under joint limit
constraints. These joint limits which constrain the relative
motion of fingers together with our dynamic formulation
which does not allow the inter-penetration of fingers make
hand tracking significantly more robust. Our method has
the following steps:
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1. At time t, mark the joints that reach their joint limits.
2. Solve the dynamic equations of the hand at time t+ dt

recursively.
3. For each finger, starting at joint 1 (the joint that con-

nects the palm and the finger), mark the first joint that
keeps at its joint limit during the time period from t to
t+ dt. If there is no such joint, go to step 6.

4. Fix the joints marked at step 3, and merge two links
connected by a fixed joint to one link. Update the dy-
namic hand model.

5. Go back to step 2.
6. Output the status of the dynamic model of the hand at

time t+ dt. Increase time t = t+ dt, and go to step 1.

6. Experiments
We performed a series of experiments to test our method

with a variety of hand motions. All our experiments
run on a PIII 500MHz processor at approximately 4
frames per second. Two similar datasets were taken under
two different illumination conditions. The first dataset
(Fig. 3) was taken with the light coming from the top
of the hand, thus minimizing the variations in intensity
w.r.t. the illumination. The second dataset (Fig. 4) was
taken with the light on the side (approx 50 degrees) so
illumination effects are pronounced. Each sequence was
approximately 100 frames. Due to space limitations we
include only a few frames in this paper. The full se-
quences and the tracking results are available as movie files
http://www.cs.sunysb.edu/˜samaras/hand/.
Files trk top.mpg and trk side.mpg respectively.
To show the accuracy of the tracking we project the
segments of the hand model back onto the image. We
represent the segments by their medial axes (Fig. 1 (e)).
At the same web site, an additional data sequence where
fingers flex to a closed position and unflex back to open
without losing track is in movie file trk flex.mpg and
the full model while tracking but rendered from a different
viewpoint in movie file mdl flex.mpg. From such a
viewpoint, it can be seen that our dynamic model allows
for accurate tracking of segments that are almost occluded
from the camera.

In figure 3, we present a number of complex rotational
motions for the fingers and for the whole hand. First the
fingers bend away from the camera, then the whole hand ro-
tates with significant occlusions. Neither edges nor optical
flow alone would have succeeded in tracking this sequence.
Finally in figure 4 we demonstrate the increased power of
the shading flow constraint, since classic optical flow based
on the brightness constancy assumption fails due to the sig-
nificant appearance changes from frame to frame due to il-
lumination. We notice that tracking is quite successful in
these examples. There are some slight inaccuracies track-
ing the thumb, here modeled as a 3 segment finger with one

segment of zero lebgth, whereas a better model would have
2 segments only

7. Conclusions

In this paper we have augmented traditional optical flow
and replaced it with a more general equation that includes
shading information. We have used this formulation within
a deformable model framework and we were able to track
difficult hand motions under a variety of illumination con-
ditions. To improve the efficiency of the approach we use
the augmented equations only in areas where the optical
flow constraint is significantly violated. Our dynamic hand
model formulation allows the integration of multiple cues
and for robustness we also use edges in our tracking. We
have shown tracking results for simple and complex palm
and finger motions. Future work includes better occlusion
recovery handling using Kalman Filtering and the incorpo-
ration of other sources of visual information such as color,
in order to work on cluttered backgrounds.
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Finger Flexing

Hand Rotation
Figure 4. Eight frames from a longer sequence tracking flexing of fingers and hand rotation. Sideways
illumination causes significant deviations from classical optical flow constraint during rotation. The
generalized optical flow constraint with shading allows for accurate tracking. First and third row:
Original data. Second and fourth row: The accuracy of the tracking is demonstrated by projecting
the medial axes of each model finger (white lines) on the tracked data. The full sequence can be seen
in movie clip file http://www.cs.sunysb.edu/˜samaras/hand/trk side.mpg.
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