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Closed eyes and look-aways can ruin precious moments captured in pho-
tographs. In this article, we present a new framework for automatically
editing eyes in photographs. We leverage a user’s personal photo collection
to find a “good” set of reference eyes and transfer them onto a target image.
Our example-based editing approach is robust and effective for realistic im-
age editing. A fully automatic pipeline for realistic eye editing is challenging
due to the unconstrained conditions under which the face appears in a typical
photo collection. We use crowd-sourced human evaluations to understand
the aspects of the target-reference image pair that will produce the most re-
alistic results. We subsequently train a model that automatically selects the
top-ranked reference candidate(s) by narrowing the gap in terms of pose, lo-
cal contrast, lighting conditions, and even expressions. Finally, we develop a
comprehensive pipeline of three-dimensional face estimation, image warp-
ing, relighting, image harmonization, automatic segmentation, and image
compositing in order to achieve highly believable results. We evaluate the
performance of our method via quantitative and crowd-sourced experiments.
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1. INTRODUCTION

Faces are of great interest in photography and photo-sharing. Ac-
cording to a recent study [Bakhshi et al. 2014], Instagram photos
with faces are 38% more likely to get “likes” than photos without
faces. However, shooting a good portrait is challenging for several
reasons: The subject may become nervous when facing the camera,
causing unnatural facial expressions; the flash light could cause the
subject’s eyes to close; the camera might capture the image before
the subject depicts the perfect expression, and there is obviously
also the physiological aspect. The corneal reflex, or the blink reflex,
is an involuntary motion of the eyelids elicited by stimulation of
the cornea, such as by touching or by bright light. Keeping the eyes
open is therefore hard for subjects to control, sometimes resulting
in less-attractive expressions [Zhu et al. 2014]. In a recent study,
Zhu et al. [2014] tried to predict the attractiveness of facial expres-
sion using crowd-sourced knowledge. They designed an app to help
users train for their most attractive expressions. A more convenient
way to improve facial appearances in photos is through image edit-
ing. Image editing is especially useful for group photos, because it
is difficult to ensure that everyone in the photo has the “perfect”
look when the shutter is released [Agarwala et al. 2004]. However,
general image editing tools, such as Adobe Photoshop, require sig-
nificant expertise and manual work. In this article, we introduce a
way to post-process the appearance of the eyes to enhance facial
expressions in photos. We describe a fully automatic method for
eye editing that does not require any interaction with the subject. If
desired, however, then the method also provides the user with the
option to pick a few reference images him- or herself (Figure 1).

Example-based approaches have already been successfully used
in face editing [Bazin et al. 2009; Bitouk et al. 2008; Joshi et al.
2010; Yang et al. 2011; Dale et al. 2011; Garrido et al. 2014].
Our method applies the eye region from selected suitable image(s),
preferably images of the same subject, in order to replace the eye
region in the original image. Given that a personal photo album
typically has a large collection of photographs, it is easy to obtain
multiple “example” eye sets. The variety of examples to choose from
enables our method to provide very realistic eye appearances. The
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Fig. 1. Given a shut-eyes input face (a), our example-based method gen-
erates fully automatically a number of open-eyes images (b), based on
appropriate reference images of the same face (not shown). Image cred-
its: Adobe Stock/bruno135_406 (first row), Adobe Stock/Tanya Rusanova
(second row), Adobe Stock/gstockstudio (third row).

method is even able to account for eye expression, gaze direction,
make up, and more.

One limitation of an example-based approach is that the quality
of the result largely depends on how compatible the source and
the target images are [Hays and Efros 2007; Bitouk et al. 2008;
Yang et al. 2011; Laffont et al. 2014; Shih et al. 2014]. There
are many variables in the context of face editing, such as identity,
pose, illumination condition, and facial expression. The number of
variables increases the likelihood of incompatibility between the
example image(s) and the target image. We can account for some
of these incompatibilities through correction, but other factors are
more difficult to correct. In this article, we show how to correct
the factors related to geometric and photometric incompatibilities,
as well as how to avoid using highly incompatible examples with
factors that may be hard to fix. We approach the problem by adapt-
ing the example to match the target image. We do this by warping
the three-dimensional (3D) pose of the example and by adjusting
the color and intensity of the example using a novel approach. We
then seamlessly composite the example eyes onto the target eyes
using a new method that we call Background-Foreground Guided
Poisson (BFGP) compositing. It is robust to the mismatched bound-
aries and is based on a combination of Poisson blending and alpha
blending via a Guided Filter [He et al. 2013]. Although Expression
Flow [Yang et al. 2011] uses a similar approach for face warping, it
requires detailed user interaction to define the compositing bound-
aries in order to obtain satisfactory results. In contrast, our system
automatically alleviates the boundary mismatch artifacts through
local color transfer and robust compositing.

In order to provide a fully automatic function, we needed to guar-
antee the quality of the resulting image for each and every image that
was edited. This proved to be quite challenging. We approached the
task by learning the compatibility between the input (target) image
and the example images using crowd-sourced human annotations.
For a few subjects, we collected two “in-the-wild” datasets of face
images, one with the eyes shut and one with eyes open. We then
randomly selected 8,000 shut-eyes/open-eyes pairs (same subject)
and used our system to open the eyes. We subsequently collected

viewer ratings for these results on Amazon Mechanical Turk. We
learned a model from these human labels to predict the quality of
the results for novel input/example image pairs, even before gen-
erating the outputs. This model enabled us to efficiently find the
references that are most likely to produce realistic results. We used
30 to 50 reference images per person, a reasonable number for a typ-
ical photo album. The average precision of our model w.r.t. human
annotations is 0.70 on our test, while chance is 0.46.

Our contributions are as follows:

(1) A fully automatic pipeline for example-based eye editing.
(2) A new compositing method (BFGP) combined with local color

adjustment that ensures excellent results, outperforming tradi-
tional techniques.

(3) A learning approach based on crowd-sourced human annota-
tions for predicting the compatibility of an input/example image
pair for eyes replacement.

In addition to opening eyes, we show that our example-based
framework can also be used to change gaze and to improve ex-
pression attractiveness [Zhu et al. 2014]. Furthermore, our initial
results of eye appearance transfer across individuals demonstrate
the promise of applying our method to creative face editing.

2. RELATED WORK

This work is related to previous work involving face editing, lo-
cal color transfer, image compositing, and crowd-sourcing human
feedback.

Face Image Editing. For decades, faces have been prime tar-
gets for image enhancement and editing. Because of similarities
across faces, data-driven methods are widely applied: Blanz and
Vetter [Blanz and Vetter 1999] proposed a 3D morphable model to
synthesize, from a single image, faces with novel pose, expression,
or illumination; Nguyen et al. [2008] applied a subspace method
for beard and eyeglasses removal, Leyvand et al. [2008] devel-
oped a system to warp a face to improve its attractiveness, and
Kemelmacher et al. [2014] leveraged a dataset of people across sev-
eral years to synthesize faces at different ages. A closer line of re-
search is based on an example-based approach, where certain prop-
erties of the examples are transferred to the target input. Bitouk et al.
[2008] developed a system that automatically transfers an entire face
from one image to another. This approach was later extended to full
face performance replacement in video [Dale et al. 2011; Garrido
et al. 2014]. Guo et al. [2009] introduced a method to transfer facial
make up; Joshi et al. [2010] sought to improve face image quality
using personal examples; Shih et al. [2014] proposed to transfer
style from professional photographs to casual ones; and Yang et al.
[2011] developed an interactive system for example-based facial
expression editing. Differing from all previous work, our system
focuses on the local appearance of eyes, taking into account both
color and texture. Furthermore, it is fully automatic. We combine
the benefit of using real examples, with a learned model that predicts
result quality based on human feedback to find good examples.

Local Color Transfer. As shown in previous work, when faces
need to be composed from different sources [Bitouk et al. 2008], the
inconsistency of color and intensity distribution, which, in general,
is caused by different illumination conditions, is a major problem
jeopardizing the look of face composites. We adopt local color trans-
fer to bridge the gap of color and intensity distributions between the
input target and a given example. To deal with inconsistent illumi-
nations, Bitouk et al. [2008] relighted the example face with the il-
lumination of the target image. Common face relighting approaches
include the work done by Wen et al. [2003], Zhang et al. [2006],
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and Wang et al. [2009] that use spherical harmonics to estimate illu-
mination and apply ratio images [Liu et al. 2001; Wang et al. 2007,
2009] to transfer illumination; Chen et al. [2011] estimated the il-
lumination layer of a face using edge-preserving filters. In recent
work, Shih et al. [2014] achieved a certain amount of illumination
transfer effects via local color transfer, generating robust results in
the process. Inspired by this, we also addressed the color and inten-
sity inconsistency problem with a local color transfer approach.

Image Compositing. In copy-paste editing, the compositing
method is crucial for obtaining high-quality results. Commonly
used techniques include alpha blending, multi-scale compositing,
and gradient domain blending. Seamless cloning of content is usu-
ally powered by compositing in the gradient domain [Pérez et al.
2003; Agarwala 2007; Farbman et al. 2009; Bhat et al. 2010]. These
methods tend to suffer from artifacts when the boundaries of the
foreground and the background do not match well. Tao et al. [2013]
proposed to “hide” the errors in textured areas to avoid noticeable
bleeding artifacts. Sunkavalli et al. [2010] developed a multi-scale
histogram matching approach, which allows textures to be naturally
blended. In the context of eye editing, color artifacts are highly no-
ticeable. We therefore developed a simple technique that combines
the advantages of alpha blending and seamless cloning for more
plausible results.

Inverse Rendering. Recent advances in inverse rendering tech-
niques allow dynamic reconstruction of face geometry from videos
[Garrido et al. 2013; Shi et al. 2014; Suwajanakorn et al. 2014] and
enable interesting face manipulation applications [Garrido et al.
2013, 2015; Suwajanakorn et al. 2015]. Since we are only focusing
on editing eyes, our method is more lightweight. It is based on image
input and does not require very accurate geometry of the input faces.

Learning via Crowd-sourcing. In Shih et al. [2014] and Bitouk
et al. [2008], examples are selected by empirical hand-crafted
strategies. However, these strategies are not optimized according to
human preferences. Inspired by recent advances in computer vision
[Deng et al. 2009; Welinder et al. 2010; Parikh and Grauman 2011a]
and computer graphics [Zhu et al. 2014; O’Donovan et al. 2014;
Laffont et al. 2014] in which human knowledge is heavily taken into
account, we seek to improve example selection using crowd-sourced
feedback. Human labeled data have been used in many different
tasks. For example, Parikh et al. [2011b] proposed to model relative
attributes with crowd-sourced data and learning to rank; Kiapour
et al. [2014] studied what clothing reveals about personal style via
collecting human judgments of styles; Laffont et al. [2014] pro-
posed a high-level image editing method to enable users to adjust
the attributes of a scene by harvesting crowd-sourced annotations;
and Zhu et al. [2014] developed a system that provides feedback for
portrait attractiveness by learning from crowd-sourced evaluations.

3. AUTOMATIC EYE OPENING

In this section, we describe the overall eye-editing pipeline, illus-
trated in Figure 2. Given an image with undesired eyes (target), we
attempt to replace them with the eyes from another input image/
example (reference).

We first fit 3D face models to the reference and target faces
(Section 3.1). We estimate the poses and expressions for the 3D
fitting using the fiducial points given by a face detector [Saragih
2011]. We use a copy-blend approach for image synthesis. Local
contrast and lighting is paramount for producing highly believable
results, accurate alignment, and image harmonization in terms of
perceived skin tones. Subsequently, we warp the reference face
in 3D to match the target face (Section 3.2) and perform local
color correction (Section 3.3). After automatic selection of the eye

Fig. 2. Eye-editing overview. Given a target image in which eyes need
to be edited, and a reference with the desired eye appearance, our system
automatically transfers eye appearance by the following steps: (1) 3D face
fitting (3.1); (2) pose correction (3.2); (3) local color adjustment (3.3), and
(4): robust blending (3.4). In the latter part of our article, we also introduce
a tool to help users with step (0): selecting appropriate references. Image
credits: Adobe Stock/Sabphoto.

regions, we seamlessly blend the new eyes using a technique that is
robust to unmatched local boundaries (Section 3.4).

3.1 3D Face Fitting

Let the concatenation of n 3D points represent the 3D face: S =
(x1, y1, z1, . . . , xn, yn, zn) . We represent the space of all 3D faces
via a 3D morphable model [Blanz and Vetter 1999]. We conduct
Principle Component Analysis on a 3D face shape dataset to obtain
the eigenshapes (eigenvectors) of the face space denoted by Vn×m =
[V1, . . . , Vm] (we choose only the first m significant eigenvectors).
A 3D face can be approximated by the linear combination of the
face eigenshapes as follows:

S = S̄ +
m∑

i=1

βiVi = V · B, (1)

where S̄ denotes the average shape in the 3D face dataset. In an
image, a 2D face shape is assumed to be generated by projecting a
3D face shape to an image plane: S2D = R · S3D . Assuming a weak
perspective projection, we jointly recover the projection matrix R
and the shape eigenvalues B, by minimizing the error between the
projected 3D landmarks and 2D landmarks detected in the image:

E = 1

2
‖R · L3D − L2D‖2

, (2)
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Fig. 3. Local color adjustment using multidimensional histogram match-
ing. We match the color distribution of the face from refW (warped and
aligned reference) to the color distribution of the target face to get ref WLC.
Note that we only use the eye region from ref WLC for compositing into the
target. Image credits: Adobe Stock/Sabphoto.

where L3D denotes the 3D positions of the landmarks in the face
model and L2D denotes the 2D positions of the landmarks detected
in the image. With every iteration of the optimization, as the pose
of the 3D face (w.r.t the camera) varies, the landmarks along the
occluding contour of the 2D face correspond to different vertices of
the projected 3D face. To handle this situation, we use the image fit-
ting algorithm proposed by Yang et al. [2011] to optimize for R and
B. Since we focus on the eyes, we impose higher weights (4 times
the normal weights) on landmarks that are located on the eyebrows,
eyes, and nose. This reduces the fitting error due to expression
variations and yet robustly captures identity and pose variations.

3.2 Pose Correction

For image warping, we adapt the 3D point displacement pipeline
of Yang et al. [2011]. As described in the previous section, fitting
the 3D morphable face model to the reference and the target es-
tablishes explicit 3D vertex-to-vertex correspondences between the
two images. By projecting the images onto their corresponding 3D
face shapes that share the same topology, we establish a pixel-to-
pixel 2D displacement field that robustly captures the non-linear
effect of pose rotation. We use the 2D displacement field to warp
the reference image and denote it refW . The refW has eyes roughly
aligned to the undesired eyes in the target. Any small discrepancies
in the shape matching at the individual pixel level are robustly han-
dled by dense optical-flow estimation and correction, as described
in Section 3.4.

3.3 Local Color Adjustment

After rough alignment of the eyes into the refW that match the target,
the second step is to harmonize the refW image to match aspects
of the target image in terms of overall skin-tones, lighting, local
contrast, and so on. In this section, we introduce a novel approach
of multi-dimensional histogram matching to achieve robust local
color transfer:

Given two sets of N -dimensional data XN×M1 and YN×M2 , as
well as their distribution in N -dimensional space h(X) and h(Y ),
respectively, we seek a mapping function fN→N (·):

ZN×M1 = f (X), (3)

such that the distribution of Z matches the distribution of Y : h(Z) =
h(Y ). This is the histogram matching problem in N -dimensional
space. Pitié et al. [2005] proposed an iterative method to estimate a
continuous transformation that maps one N -dimensional distribu-
tion to another. When N = 1, the histogram matching problem can
be easily solved by a discrete lookup table. The algorithm in Pitié
et al. [2005] is briefly outlined as follows: Letting X(1) = X, in the
ith iteration, the algorithm first applies a random rotation R

(i)
N×N to

the data X(i) and Y to get X(i)
r = R(i)X(i) and Y (i)

r = R(i)Y . Then the

marginals of X(i)
r are matched to the marginals of Y (i)

r , respectively,
using 1D histogram matching. We denote the matching result with
Z(i)

r . After that, the data are rotated back to the original space:
Z(i) = (R(i))−1Z(i)

r and X(i+1) = Z(i). In theory, the algorithm con-
verges when i → +∞. However, in practice, the Kullback–Leibler
divergence between Z and Y drops quickly [Pitié et al. 2005].

Pitié et al. [2005] applied multi-dimensional histogram match-
ing to color transfer when N = 3 (RGB color space). For local
color transfer application, we adopt the idea of multi-dimensional
distribution matching but with extra dimensions to enforce spatial
locality during matching.

Image statistics like RGB histograms are global in nature and
hence do not capture local effects such as illumination and shading
variation on the face. In order to model local effects while color
matching, we propose to rewrite the image representation from
I (3)(x, y) = [r(x, y), g(x, y), b(x, y)] to

I (5)(i) = [ri , gi, bi, xi , yi], (4)

where i is the pixel index. This representation explicitly encodes
the locality of image pixels. Thus, we can build a five-dimensional
histogram for an image that encodes both locality and semantic pixel
information. We then carry out the multi-dimensional histogram
matching from target to refW .

The result of an exact matching from refW to target will be target
itself since the representation is unique. We remove all changes in
image coordinates x and y (the third andfourth dimensions of I (5))
to maintain the texture of refW . Since we are only interested in the
region around the eyes, the matching functions are only computed
from the face area in every iteration. In practice, we smooth the
matching functions to avoid quantized color artifacts.

3.4 BFGP Compositing

After applying local color transfer to refW , we obtain a pre-
processed example image ref WLC. The remaining eye-editing step
is to paste the eye region of ref WLC to the target. Before the final
compositing, we re-align the eye region ref WLC to the target using
dense optical flow [Brox and Malik 2011] around the eye region.
This removes most of the discrepancies caused by the warping
method introduced in Section 3.2. The discrepancies are caused
by expression change or inaccurate pose estimation. However,
we do not warp the image using the optical-flow. Instead, we
compute the mean motion of the optical-flow field [�̄x, �̄y] and
apply it to ref WLC. Subsequently, the boundary of the eye region is
automatically defined by using the landmarks in the eye region and
applying graph-cuts [Shi and Malik 2000; Kolmogorov and Zabin
2004] on the target and ref WLC.

The idea of optimizing the region for gradient domain blending
is similar to the work done by Agarwala et al. [2004] and Yang
et al. [2011]. Following the work of Yang et al. [2011], we define
the region on the image gradient domain. Specifically, high gradient
regions around a region of interest (ROI) are encouraged to be part
of the cut. In our application, the ROI is the eye region defined by
eye landmarks. We refer the reader to Section 3.6 [Yang et al. 2011]
for implementation details of the graph cut boundary optimization.

In previous copy-paste-based methods [Yang et al. 2011; Bitouk
et al. 2008], the compositing is obtained in the image gradient do-
main using Poisson blending [Pérez et al. 2003]. Gradient domain
compositing methods produce a seamless image composite only if
the boundary conditions in the image pair are roughly matched.
Real-life face photos are taken under unconstrained illumination
conditions. Our local color transfer algorithm matches the lighting
and local shading of target and reference at a relatively large scale.
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Fig. 4. BFGP compositing: combining gradient domain blending and alpha
blending. We perform gradient domain blending twice, once on the target
and once on the ref WLC. gdbF is the result of gradient domain blending so the
foreground (i.e., eyes) is preserved, while in gdbB the background (i.e., face)
is preserved. For gdbF , the error is the mean pixel value error of the back-
ground compared to target. For gdbB , the error is the mean pixel value error
of the foreground compared to ref WLC. The blending boundary is optimized
by graph-cuts. The Alpha matte is obtained by feathering the eyes mask to
ref WLC using the Guided Filter. Image credits: Adobe Stock/Sabphoto.

Thus, a boundary conditions mismatch may still exist due to small-
scale local shadows and shading around the eyes. Under unmatched
boundary conditions, visual artifacts arise in the form of color bleed-
ing. Tao et al. [2013] proposed error-tolerant image compositing,
in which the color bleeding error caused by mismatched boundary
conditions is “hidden” in a highly textured area such that it will be
less noticeable. However, since we observed our users to be very
critical of errors in the edited eye results, we took extra care when
blending eyes in the presence of unmatched boundary conditions.

In our system, we combine seamless gradient domain blending
with alpha blending to avoid visual artifacts. Since the background
of eye (skin region) is matched using local color transfer (Sec-
tion 3.3), alpha blending will only work if a proper alpha matte
can be defined for the eye foreground (eye region). Otherwise, the
non-smooth transitions in the boundaries or texture details from the
target (i.e., shut eyes in Figures 5 and 9) will cause artifacts. Our
approach, named BFGP compositing, takes advantage of the seam-
less blending property of gradient domain blending in a selective
manner by combining the best parts of multiple blended results, as
detailed below.

We define MF as the eye region (foreground) and MB as the
remaining face region (background). We first compute two image
composites, gdbF and gdbB , by gradient domain blending. For
gdbF , we fix the foreground such that the mismatched boundary
error will be propagated to the background; for gdbB , we fix
the background such that the mismatched boundary error will
be propagated to the foreground. Our final composite will be an
alpha blending of gdbF and gdbB that takes the background from
gdbF and the foreground from gdbB (Figure 4). The alpha matte
hereby is simply a smooth masking of the foreground region MF .
In practice, we obtain the alpha matte by the Guided Filtering [He
et al. 2013] of MF to the reference.

4. CROWD-SOURCING HUMAN EVALUATIONS

We evaluate the performance of our automatic eye editing system
via Amazon Mechanical Turk (AMT) crowd-sourcing. We first

Fig. 5. Results of different compositing methods. (a) Alpha blending with
ref W , with artifacts of both incompatible color and unwanted shut-eyes
detail. (b) Alpha blending with ref WLC, with artifacts from shut-eyes detail.
(c) Gradient domain blending with refW , resulting in poor contrast and
eye color caused by mismatched boundaries. (d) Gradient domain blending
with ref WLC, with less severe but still noticeable color and contrast artifacts.
(e) BFGP compositing with refW , with somewhat incompatible eye colors.
(f) BFGP compositing with ref WLC (our result) generates the most natural-
looking result.

generate a set of edited results (denoted by {O}) by running our
algorithm on a collection of “shut-eyes” images (which we call
the target set, denoted by {T }), together with a collection of
“open-eyes” example images (which we call the reference set,
denoted by {R}). In this section, we describe the collection of {T },
{R} (Section 4.1) and the evaluations of {O} collected with AMT
(Section 4.2 and Section 4.3).

4.1 Data Collection for Eye Opening Results

Although the system does not limit the identity of reference and
target to be the same, in our data collection, we do not conduct
cross-identity synthesis (both images are of the same person). We
sought to collect sufficient data (both shut eyes and open eyes) hav-
ing varying poses, illuminations, and expressions. However, people
seldom post accidental shut-eyes images in their online personal
photo albums (most are discarded). To simulate the real-life sce-
nario of correcting accidental shut-eyes photos, we (1) collected
shut-eyes target images from video stills and (2) specifically used
photographs as references.

We collected a target set {T } from HD videos. Given a video,
we detected face landmarks in every frame using a face alignment
algorithm [Saragih 2011]. To detect frames with shut eyes (e.g.,
a blink), we computed the eye-corner angle, based on which a
threshold applied. Together with each shut-eyes frame, we also
collected a ground-truth counterpart of the same person with open
eyes. The open-eyes frame was collected manually from a nearby
frame to ensure a similar appearance apart from the eyes. We denote
the collected ground-truth set by {G}.

For a subject k, we first collected her target set {T (k)} as
previously described. Then we collected her reference set {R(k)}
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consisting of photos of the same person but not from the video
in which {T (k)} was collected. For the purpose of testing our
algorithm under variable data collection conditions, the target
set and reference set were collected with different face pose,
expression, illumination conditions, and so on. If, for a particular
subject, we had m target images and n reference images, then {O}
contained m × n results for that subject. We used celebrities as
the subjects in our dataset. For each subject, we collected shut-eye
frames from 10 different interview videos in which the faces
are clear and in relatively high resolution. For every subject, the
differences between the videos included head pose, expression,
illumination, makeup, age, and shooting location, and so on. The
reference set were photos of the same celebrities from the Internet,
also under uncontrolled conditions. Therefore, both the targets and
references were collected “in-the-wild.”

4.2 Crowd-Sourcing Image Ratings

We use AMT to collect evaluations by asking the workers (partic-
ipants) the following question: “Do the eyes look realistic in this
image?” Four answers are made available for each question:

1. Definitely unrealistic;
2. Probably unrealistic;
3. Probably realistic, and
4. Definitely realistic.

To control the quality of the evaluation, in each assignment, we
present a worker with 24 images to rate. Three of the 24 images
are unedited open-eyes frames from {G}, called positive controls.
One image is a manually chosen obviously failed result called the
negative control. The other 20 images are random synthetic results
in {O}. The identities of the results are mixed in the assignments
such that each assignment contains images from different subjects.
We collected evaluations for 8,000 randomly sampled results from
eight subjects (approximately 20,000 results in total). Each image
is evaluated by three different workers. We exclude random clicks
by removing assignments for which either the negative control is
rated high or the positive controls are rated low. Specifically, we
require that for each assignment:

(1) At least two of three positive controls should be rated 3 or 4;
(2) None of the positive controls should be rated 1;
(3) Negative control should be rated either 1 or 2.

4.3 Human Evaluations

We collected 24,000 clicks from AMT on the results in {O}:
28.7% were rated 1, Definitely unrealistic;
23.3% were rated 2, Probably unrealistic;
23.6% were rated 3, Probably realistic;
24.6% were rated 4, Definitely realistic.
Please find in our online supplementary document1 examples of the
results with corresponding evaluation scores from AMT workers.

Among all unedited open-eyes images from {G}, 3.3% were rated
2, 18.9% were rated 3, and 77.9% were rated 4. The average score
of an unedited image in our experiment is 3.7. In addition, among
all negative controls, 94.8% are rated 1 and 5.2% are rated 2.

For every result, for which we have collected ratings from Ama-
zon Mechanical Turk, we assigned a unique score to it by taking the
most agreed score from different workers. For example, if result Oi

received three AMT scores [3, 3, 4], then its score is S(Oi) = 3, and
the agreement level for this result is A(Oi) = 2. The distribution

1http://www3.cs.stonybrook.edu/ cvl/content/eyeopener/eyeopener.html.

Fig. 6. Statistics of ratings harvested from Amazon Mechanical Turk.
(a) Most-agreed score statistics. The most-agreed rating score is assigned as
a label for each image in the results. For those images with no agreed rating,
we take the lowest score. (b) Agreement level statistics: Most results have
two equal scores from three different raters.

of unique scores and agreement levels is shown in Figure 6. We
discard data with an agreement level less than 2.

5. LEARNING TO PREDICT BETTER EXAMPLES

Under a fully automatic pipeline, with a few computer vision com-
ponents involved, it is hard to guarantee the quality of the result
for every target and reference. For example, opening the eyes in a
face image with frontal pose using a profile face example would be
difficult or may not even be feasible in some extreme cases. Given
an image with shut eyes, there will be a limited number of images
in a personal album that can be used as an example to generate a
realistic result. It is interesting and important to identify which of
those examples would ensure good results by applying our method.
In related previous work [Shih et al. 2014; Bitouk et al. 2008], the
compatibility of example and input were considered important, as
image pairs were ranked in a pre-defined manner. In contrast, we
learn the ranking that automatically predicts good examples for eye
editing on the basis of crowd-sourced annotated data.

5.1 Input Pair Compatibility

Our method works in an example-based fashion. It can be described
as a function F from an input pair 〈T ,R〉 to an output result O:

O = F (〈T ,R〉). (5)

We represent the quality of the result (how realistic the result looks)
using a scoring representation, which can be written as a function
of the result S(O) where S denotes a human perceptual scoring
function. We can see that, given an input pair 〈T ,R〉, the quality
of result is

S(O) = S(F (〈T ,R〉)) = f (〈T ,R〉). (6)

In other words, the quality score of the output is a function f of
the input pair 〈T ,R〉. Note that both F and S are highly nonlinear
and very complex to model.

In related previous work [Shih et al. 2014; Bitouk et al. 2008] the
similarity of the input image pair was considered an indicator of the
output quality. The function S(·) was defined simply as

S(O) = f (ψ(T ,R)) = f (‖φ(T ) − φ(R)‖), (7)

where ψ(·, ·) is a function of the input pair, φ(·) is a feature ex-
tracted from the input image, and f (·) is either a real-value func-
tion (for ranking or score regression) or a thresholding function
(for classification). However, the limitations of this approach are

ACM Transactions on Graphics, Vol. 36, No. 1, Article 1, Publication date: September 2016.
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Fig. 7. Image pair feature extraction. The result of our algorithm is com-
puted based on the features extracted from the target and reference inputs:
(1) φL: landmarks; (2) φP : estimated face pose; (3) φT : “tiny image” in-
tensity descriptor, and (4) φHOG: HOG descriptor extracted from a cropped
face region. Image credits: Adobe Stock/Sabphoto.

(1) The distance between the input pair features captures only the
difference between them but not their individual properties (only a
binary term, no unary), and (2). the similarity measure and f (·) are
defined heuristically and are not necessarily optimal in any sense. In
our work, we propose to learn a more general function using human
evaluations as a better strategy to predict the output score.

5.2 Image Pair Features

The score depends on multiple factors in both the target and ref-
erence, including their poses, expressions, and illumination condi-
tions. However, since the algorithm is not affected by any region of
the image other than the face, we design features that focus on the
face area.

We use F to denote the feature type and, given an image I , we
extract the following features φF (I ):

—φL(I ) is simply the normalized landmark positions in the image.
Landmarks play an important role in our algorithm, especially in
pose warping and expression flow.

—φP (I ) is a three-dimensional vector representing the pose of the
face in the image.

—φT (I ) is a “tiny image” [Torralba et al. 2008] representation
of the intensity pattern on the face. Since the face is aligned
by landmarks, we crop image I to Iface such that Iface is a square
region on the face space(see Figure 7). We subsample the intensity
of Iface to a 7 × 7 patch to capture the large scale intensity pattern
of the face, and use the 49-dimensional vector as the feature.

—φHOG(I ) is the Histogram of Oriented Gradients feature [Dalal
and Triggs 2005] that captures both pose and expressions. We
extract HOG on the cropped image shown in Figure 7. We divide
the crop into 7 × 7 cells (the crop is re-scaled to 224×224 pixels,
where each cell has size 32 × 32).

As previously described, the simplest feature for an input pair is
the feature distance between two images:

ψF
1 (T ,R) = ||φF (T ) − φF (R)||, (8)

in which F ∈ {L, P, T , HOG}.
Figure 8 illustrates how the crowd-sourced evaluation varies with

different feature distances ψ1(T ,R). From Figure 8, we can see that
outputs with larger feature distances are more likely to produce a

Fig. 8. Feature distance-score statistics. The distribution of different fea-
ture distances: (a) ψL

1 (landmarks), (b) ψP
1 (pose), (c) ψT

1 (intensity), and
(d) ψHOG

1 (HOG). We use different colors to denote the distribution of the
results for different scores. Blue: All scores. Red: Scores 1 and 2 (unrealis-
tic); Green: Scores 3 and 4 (realistic). The distributions show that pairs with
larger feature distances are more likely to generate results that are scored as
unrealistic (i.e., score 1 or 2).

lower score (less realistic). Thus, all chosen features are at least
weakly correlated with the human evaluated quality of the output.

Note that ψ1 is a similarity-based method like those in Shih et al.
[2014] and Bitouk et al. [2008] in which compatibility is defined as
feature similarity between the target and reference images. How-
ever, unlike Shih et al. [2014] and Bitouk et al. [2008], when there
are no human evaluations, for example, selection, our method builds
on well-defined criteria.

One alternative feature for describing an input pair is the feature
concatenation of target and reference:

ψF
2 (T ,R) = [

φF (T ), φF (R)
]

(9)

in which F ∈ {L, P, T , HOG}.
Combining different types of ψ1, we obtain a feature representing

the differences of the image pair on all feature types described
above:

ψC
1 = [

ψL
1 , ψP

1 , ψT
1 , ψHOG

1

]
. (10)

Concatenating different types of ψ2, we have a feature representing
the information in both the target and reference:

ψC
2 = [

ψL
2 , ψP

2 , ψT
2 , ψHOG

2

]
. (11)

5.3 Realistic result prediction

In order to predict what references are potentially compatible with
a given target, we train a predictive model based on crowdsourced
data.

We are interested in predicting a score to indicate how realistic
the result looks using the AMT feedback. We model the prob-
lem as a regression task, in which we learn a regression function

ACM Transactions on Graphics, Vol. 36, No. 1, Article 1, Publication date: September 2016.
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Fig. 9. A comparison between different image compositing methods. (a) Target image; (b) reference image; (c) result by alpha blending; (d) result by Error
Tolerant Gradient-domain Blending [Tao et al. 2013] ; (e) result by Image Harmonization [Sunkavalli et al. 2010] ; (f) our result. Our method is more robust
to differences in illumination conditions. Image credits: Adobe Stock/mimagephotos (first row), Adobe Stock/auremar (second row), Adobe Stock/Sabphoto
(third, fourth, and seventh row), Adobe Stock/BillionPhotos.com (fifth row), Adobe Stock/gstockstudio (sixth row).

between the human evaluation score S(O) and the image pair fea-
ture ψ(T ,R). Our regression model is learned by support vector
regression (SVR) [Smola and Schölkopf 2004] with a non-
linear radial basis function kernel. We report the correlation and

root-mean-square error (RMSE) between the prediction and ground-
truth human labeling in Table I. We obtain a 0.48 correlation of pre-
dicted scores with human-labeled scores by using the combination
feature ψc2 where the RMSE is 1.07.
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Table I. Accuracy of the Regression Model (SVR) Learned Using Different Features,
Reported as Correlation and RMSE w.r.t. Human Labeling

Feature Type(F) Landmarks Pose Intensity HOG Combination

Feature ψL
1 ψL

2 ψP
1 ψP

2 ψT
1 ψT

2 ψHOG
1 ψHOG

2 ψC
1 ψC

2

Correlation 0.29 0.38 0.35 0.4 0.38 0.41 0.45 0.44 0.47 0.48

RMSE 1.18 1.18 1.16 1.18 1.12 1.15 1.09 1.07 1.07 1.07

Fig. 10. Predicted scores indicate the level of realism of the result directly from the input pair features described in Section 5.2. Given a target, we use a
trained regression model to predict the score of the results. The higher the score, the more realistic the result. The violet numbers above the result images
indicate the prediction and the black numbers are human evaluations. The image below each result is the corresponding reference. Results are sorted from the
highest predicted score to the lowest. Training data do not include any image of the test subject. Image credits: Adobe Stock/Sabphoto.

6. EXPERIMENTAL RESULTS

We compare the results of our color adjustment and blending
(Section 3.3 and Section 3.4) with other common techniques de-
scribed in Figure 9. All results are produced after applying the pose
correction [Yang et al. 2011] described in Section 3.2. Our
approach generates more natural-looking eye-opening results
compared to alpha-blending, gradient domain blending [Tao et al.
2013], or multi-scale image harmonization [Sunkavalli et al. 2010].
Note that Yang et al. [2011] used a gradient domain compositing
technique, similar to the one shown in Figure 9(d), which is
sensitive to varying illumination conditions. Therefore, carefully
selected examples and certain human interactions were required
for expression flow [Yang et al. 2011] in order to achieve realistic
results. Instead, our approach is fully automatic and our results
are more robust to boundary mismatches caused by different
illumination conditions. Moreover, our experiments verify the
argument of Expression Flow [Yang et al. 2011] that 3D warping
achieves better face-edit results compared to a purely 2D warping
(We compared results of SIFT flow [Liu et al. 2011] and large
displacement optical flow (LDOF) [Brox and Malik 2011]). In the
3D warping method, the correspondences being regularized by the
3D face structure and pose prior are more functionally robust.

In previous sections, we have shown that AMT users found ap-
proximately half of our results to be realistic. Using this feedback,

we train models to predict compatible references from a personal
album, given a target. We show two examples in Figure 10, where
our model can find reasonably good examples for a given target.
We trained a SVR [Smola and Schölkopf 2004] model with features
extracted from an input image pair ψc2 (see Section 5.2) to predict
a score Ŝ(O) to describe how compatible the pair is. Our trained
model computes only simple features from the input pair to predict
the score. Therefore, we can efficiently mine a very large album for
potentially good references that can generate realistic results, even
before running the editing algorithm.

Figure 10 shows the predicted score values Ŝ(O) (in violet) on the
top-left of the results for a few subjects. The black number under
the predicted score is the actual human rating. Below the results
are the corresponding references used by the editing algorithm. The
results are sorted according to the predicted score. Please find more
results in our online supplementary document.1

We directly apply our regression model to reference retrieval. We
assign the following labels L(O) to the results according to AMT
scores S(O):

L(O) =
{+1 if S(O) ∈ {3, 4}
−1 if S(O) ∈ {1, 2} . (12)

From the album, we retrieve the references that will generate results
with L(O) = 1. In testing, we decide on the labels using a single
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threshold t on the scores predicted by the SVR model:

L̂(O, t) =
{+1 if Ŝ(O) ≥ t

−1 if Ŝ(O) < t
. (13)

We perform leave-one-out subject cross-validation. On the AMT
feedback dataset, we train on data from seven subjects’ data and test
on the eighth subject. We repeat this for all eight subjects. Figure 13
shows the average of the Precision-Recall curves of the models
trained by the different features defined in Section 5.2. Precision
and recall are defined as follows with a threshold t :

Precision(t) = #(L̂(O, t) = +1 ∧ L(O) = +1))

#(L̂(O, t) = +1)
, (14)

Recall(t) = #(L̂(O, t) = +1 ∧ L(O) = +1))

#(L(O) = +1)
. (15)

Using the SVR model trained by feature ψC
2 , we achieved a 0.7

average precision (AP) in retrieving “suitable” reference images for
realistic eye opening results, while the random guess AP was 0.46.
For all target images in our dataset, the average hit rate of top 1,
top 2, and top 5 ranked results are 0.7, 0.69, and 0.64, respectively.
We also trained Random Forests Regression [Breiman 2001] on
our collected dataset and observed a 0.67 AP and RMSE of 1.10
with the ψC

2 feature (see Figure 17 in our online supplementary
document1 for the precision-recall curve).

To provide intuition on how future work could be directed to
improve the performance of the automatic editing pipeline, we con-
ducted a visual inspection of 2,000 randomly sampled results in our
dataset. For each result, we assigned one or more of the follow-
ing five tags: (a) realistic results, (b) with pose warping artifacts,
(c) with unmatched illumination artifacts, (d) with unrealistic ex-
pression, and (e) look unrealistic due to other reasons. Of the results,
48.6% were tagged (a), 25.1% were tagged (b), 25.8% were tagged
(c), 15.9% were tagged (d), and 4.3% were tagged (e). We conclude
that improvements in illumination matching and pose-warping al-
gorithms would be the most beneficial for our system. Please find
examples with these labels in the online supplementary document.1

According to Zhu et al. [2014], the eye expression is crucial for
overall facial expression attractiveness. Figure 11 shows compar-
isons of facial expression attractiveness between shut-eyed images
(Figure 11(a)) and results generated by our algorithm (Figures 11(b)
and (c)). We randomly sampled 100 images from our datasets, which
included shut-eyed images from different subjects and correspond-
ing open-eyed images generated by our algorithm with predicted
score higher than 3. The average expression attractiveness score for
shut-eyes images was 0.50, while for open-eyed images it was 0.74.
Based on the scores predicted by the off-the-shelf model trained by
Zhu et al. [2014], appearing on the top-left of the images (Fiure 11),
we demonstrate that our algorithm can improve perceived facial
expression attractiveness for appropriately chosen examples.

Moreover, besides the eye opening, our system is applicable to
example-based gaze editing as shown in Figure 12. Gaze correction
and editing are of interest in applications such as video conferenc-
ing [Yang and Zhang 2002; Wolf et al. 2010; Kuster et al. 2012;
Kononenko and Lempitsky 2015], where a small range of correc-
tions to frontal gaze in real time is important.

So far in this article, we have discussed the application of our
technique to image pairs of the same subject. However, the algo-
rithm scope extends to cross-identity eye appearance transfer. This
could be useful for artistic purposes or avatar creation. We show
a few cross-identity results in Figure 14. We use Anne Baxter’s

Fig. 11. Improving expressions. We compare the perceived attractiveness
of the facial expressions in the shut-eyes images and the open-eyes results
generated by our algorithm using the off-the-shelf model trained by Zhu
et al. [2014]. (a) Shut-eyes images; ((b) and (c)) open-eyes results. The
attractiveness score is indicated above each image. Higher values indicate a
more attractive expression. Our algorithm can be applied to make a facial
expression more attractive. Image credits: Adobe Stock/gstockstudio (first
row), Adobe Stock/Tinatin (second and third row), Adobe Stock/Sabphoto
(fourth row).

Table II. Average Running Time of Each Step
in Our Implementation

Image size Warp & Align Local color Boundary Compositing Total
5502 3.7s 3.4s 1.8s 2.1s 11s
10002 11.8s 10s 6s 6.2s 34s

portrait as the target and Bette Davis’s portraits as references (ac-
tresses from the movie “All About Eve” (1950)). The algorithm
works reasonably well for both eyes compositing and predicting
the realism level of the results. See additional results in our online
supplementary document.1

The typical image size in our experiments is 550 × 550 pixels.
In our MATLAB implementation, the average running time of the
entire synthesis pipeline is 11s. For 1000 × 1000 pixel inputs, the
average running time is 34s. We show average times per step in
Table II.
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Fig. 12. Gaze editing. Our method can be used to change gaze given
an appropriate example. Image credits: Adobe Stock/StockRocket (first
row), Adobe Stock/Tanya Rusanova (second row), Adobe Stock/auremar
(third row).

Fig. 13. Precision-Recall curves for compatible reference retrieval using
an SVR model with different features. Combining features provides better
performance than using individual features. Using feature ψC

2 , our model
achieves average precision of 0.70, while chance level is at 0.46.

7. LIMITATIONS AND FUTURE WORK

Our method has certain limitations: At this time, the automatic
eye-opening system cannot handle extreme differences in pose and
illumination (Figure 15) between the target and the reference. We
can see from Figure 8 that the more distinct the input pair is, the less
likely our algorithm is to generate plausible results. It is apparent that
our system would benefit from further progress in face relighting and

Fig. 14. She’s Got Bette Davis Eyes: experiment on cross-identity eye
appearance transfer. Target: Anne Baxter as Eve Harrington in the motion
picture All About Eve (1950). References: portraits of Bette Davis. On the
top right of the result images, the yellow number indicates the predicted level
of realism. Image credits: Getty Images/Bettmann Archive (first reference
from left to right).

Fig. 15. Large differences in poses or illumination conditions be-
tween target and reference images are challenging. Image credits: Adobe
Stock/gstockstudio (first row), Adobe Stock/Sabphoto(second row).

pose correction. However, despite this limitation, for most image
pairs, our system manages to automatically recover and “edit away”
pose and illumination mismatches. This explains the relatively lower
impact these features have on the prediction scores (Figure 13 ). On
the other hand, the compatibility of a given reference and target in
global expression (as measured by HOG) is a stronger predictor of
a good result. That is because our system does not automatically
minimize expression differences in the image pair but relies on a
good match from the photo collection instead. In future work, such
automatic expression morphing may allow the use of a wider range
of reference images.

There are several potential ways to improve our system:

—Robustness. Our method is based on a few assembled compo-
nents. The robustness of every stage is crucial to the entire sys-
tem. For example, pose warping cannot handle large differences
in pose; local color transfer might produce artifacts under drasti-
cally different illumination conditions, and blending techniques
do not address warping and re-coloring failures well. We believe
the robustness of each stage itself can be improved in the future.

—Face relighting. Manipulating the illumination of face images is
a challenging task. Our system, as well as other image editing
applications, can benefit from better techniques for the control of
face illumination.
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—Predicting realism of face images. There are multiple factors in-
fluencing human perception of face realism and our current work
explores the compatibility of the input images using handcrafted
image features. In future, it would be useful to learn (possibly
using deep learning) which features are important for our task.

—Run-time. Our MATLAB implementation takes around 10s,
which is relatively slow. Improving the speed of the system will
be important for interactive and video applications.

8. CONCLUSION

We presented an automatic eye-editing method that works effec-
tively on face photos “in the wild.” Its success is based on a new
algorithm for local color adjustment and robust blending. We also
present a learning approach for predicting the compatibility of an
image pair based on crowd-sourced human annotations. This crowd-
sourcing approach can be extended to other example-based editing
tasks such as entire face replacement [Bitouk et al. 2008; Dale et al.
2011; Garrido et al. 2014].
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