Cse537
Artificial Intelligence
Short Review 2
for Midterm 2

Professor Anita Wasilewska
Computer Science Department
Stony Brook University
Data Mining Process

- Data
 - Target data
 - Processed Data
 - Transformed data
 - Knowledge
 - Rules, Patterns, models

- Selection
- Cleaning
- Data Preparation
- Data Mining (proper)
- Interpretation and Evaluation
Preprocessing stage

• **Preprocessing:**
 - includes all the operations that have to be performed before a data mining algorithm is applied

• **Data in the real world is dirty:** incomplete, noisy and inconsistent.

• **Quality decisions** must be based on quality Data.
Preprocessing stage

• Data cleaning
 – Fill in missing values, smooth noisy data (binning, clustering, regression), identify or remove outliers, and resolve inconsistencies

• Data integration
 – Integration of multiple databases, data cubes, or files
Preprocessing stage

• **Data transformation**

• **Normalization** and aggregation

• **Data reduction** and attribute selection

• Obtains reduced presentation in volume but produces the same or similar analytical results (stratified sampling, PCA, cluster)

• **Data discretization**

• Part of data reduction but reduces the number of values of the attributes by dividing the range of attributes into intervals (segmentation by natural partition, hierarchy generation)
DM Proper

• **DM proper** is a step in the **DM process** in which algorithms are applied to obtain patterns in data.

• It can be re-iterated- and usually is
Descriptive / non descriptive data mining and models

• **Statistical** - descriptive

• **Statistical** data mining uses historical data to predict some unknown or missing numerical values

• **Descriptive** data mining aims to find patterns in the data that provide some information about what the data contains

• often presents the knowledge as a set of rules of the form **IF.... THEN...**
Models

• **Discriptive**: Decision Trees, Rough Sets, Classification by Association

• **Statistical**: Neural Networks, Bayesian Networks, Cluster, Outlier analysis, Trend and evolution analysis

• **Optimization method**: Genetic Algorithms – can be descriptive
Classification

- **Classification:**
- Finding models (rules) that describe (characterize) or/and distinguish (discriminate) classes or concepts for future prediction

- **Classification Data Format:**
 - a data table with key attribute removed.
 - Special attribute, called a **class attribute** must be distinguished.
 - The values: \(c_1, c_2, \ldots c_n \) of the class attribute \(C \) are called **class labels**
 - The class label attributes are discrete valued and unordered.
Classification

• Goal:

• FIND a minimal set of characteristic and/or discriminant rules, or other descriptions of the class C, or all, or some other classes

• We also want the found rules to involve as few attributes as it is possible
Classification

- **Stage 1:** build the basic patterns structure-
 training
- **Stage 2:** optimize parameter settings; can use (N:N) re-substitution- parameter tuning
- **Re-substitution error rate = training data error rate**
- **Stage 3:** use test data to compute- predictive accuracy/error rate - testing
Decision Tree

• DECISION TREE
• A flow-chart-like tree structure;
• Internal node denotes an attribute;
• Branch represents the values of the node attribute;
• Leaf nodes represent class labels
DT Basic algorithm

- The **basic DT algorithm** for decision tree construction is a greedy algorithm that constructs decision trees in a top-down recursive divide-and-conquer manner.

- **Tree STARTS** as a single node representing all training dataset (data table with records called samples).

- **IF** the samples (records in the data table) are all in the same class, **THEN** the node becomes a leaf and is labeled with that class.

- The algorithm uses the same **process recursively** to form a **decision tree** at each partition.
DT Basic Algorithm

• The recursive partitioning **STOPS** only when any one of the following conditions is TRUE

• **1.** All records (samples) for the given node belong to the same class

• **2.** There are no remaining attributes on which the samples (records in the data table) may be further partitioned

• **Majority voting** involves converging node N into a leaf and labeling it with the most common class in D which is a set of training tuples and their associated class labels

• **3.** There is no records (samples) left – a **LEAF** is created with **majority vote** for training sample
Attribute Selection Measures

• Some Heuristics:
• Attribute Selection Measures
• Information Gain, Gini Index

• We use them for selecting the attribute that “best” discriminates the given tuples according to class
Neural Networks

• Neural Network is a set of connected INPUT/OUTPUT UNITS, where each connection has a WEIGHT associated with it
• Neural Network learns by adjusting the weights so as to be able to correctly classify the training data and hence, after testing phase, to classify unknown data
• Neural Network needs long time for training Determining network topology is difficult
• Choosing single learning rate impossible (train with subset)
• Neural Network has a high tolerance to noisy and incomplete data
• NN is generally better with larger number of hidden units
Neural Networks

- **The inputs** to the network correspond to the attributes and their values for each training tuple.
- **Inputs** are fed simultaneously into the units making up the input layer.
- **Inputs** are then **weighted** and fed simultaneously to a **hidden layer**.
- The number of **hidden layers** is arbitrary, although often only one or two.
- The **weighted outputs** of the last **hidden layer** are **input** to units making up the output layer, which emits the **network's prediction**.
Neural Networks

• For each training sample, the weights are first set random then they are modified as to minimize the mean squared error between the network’s classification (prediction) and actual classification

• **Backpropagation Algorithm:**
 • **STEP ONE:** initialize the weights and biases
 • **STEP TWO:** feed the training sample
 • **STEP THREE:** propagate the inputs forward
 • **STEP FOUR:** backpropagate the error
 • **STEP SIX:** repeat and apply terminating Conditions
Backpropagation Formulas

Output vector

Output nodes

Hidden nodes

Input nodes

Input vector: \(x_i \)

\[
Err_j = O_j (1 - O_j) \sum_k Err_k w_{jk}
\]

\[
\theta_j = \theta_j + (l) Err_j
\]

\[
w_{ij} = w_{ij} + (l) Err_j O_i
\]

\[
Err_j = O_j (1 - O_j) (T_j - O_j)
\]

\[
O_j = \frac{1}{1 + e^{-I_j}}
\]

\[
I_j = \sum_i w_{ij} O_i + \theta_j
\]
Backpropagation

- Terminating Conditions:
- **Process Stops** when:
 - All wij in the previous epoch are below some threshold
 - The percentage of samples misclassified in the previous epoch is below some threshold
 - A pre-specified number of epochs has expired
Building a classifier

- **Building a classifier** consists of two phases: training and testing.
- We use the training data set to create patterns: rules, trees, or to train a Neural or Bayesian network.
- We evaluate created patterns with the use of test data.
- We terminate the process if it has been trained and tested and the predictive accuracy is on an acceptable level.

- **PREDICTIVE ACCURACY** of a classifier is a percentage of well classified data in the test data set.
Training and Testing

• The main methods of predictive accuracy evaluations are:
 • Resubstitution $(N ; N)$
 • Holdout $(2N/3 ; N/3)$
 • k-fold cross-validation $(N- N/k ; N/k)$
 • Leave-one-out $(N-1 ; 1)$
AssociationAnalysis

- Finding frequent patterns called *associations*, among sets of items or objects in transaction databases, relational databases, and other information repositories

Confidence:
- The rule $X \rightarrow Y$ holds in the database D with confidence c if the $c\%$ of the transactions in D that contain X also contain Y

Support:
- The rule $X \rightarrow Y$ has support s in D if $s\%$ of the transactions in D contain XUY

- We (user) fix MIN support usually low and Confidence high