Cse537 Artifficial Intelligence Short Review 1 for Midterm 2

Professor Anita Wasilewska Computer Science Department Stony Brook University

Data Mining Process

- Questions:
- Describe and discuss all stages of the Data Mining Process
- Describe the role of Preprocessing stage and its main methods
- Discuss the Data Mining Proper stage
- Describe what is Descriptive/ non Descriptive Data Mining
- Which Models you would use for the Descriptive Data Mining and which for the non Descriptive Data Mining
- How and what decides which type of Data Mining is the best to use (implement)
- Give examples of types of applications and the best Models (algorithms) for them

Classification

- Describe what is CLASSIFICATION; type of data, goals and applications
- Describe all stages of the classification process
- Describe and discuss basic classification Models and their differences
- Discuss the Decision Tree Induction and its strengths and weaknesses
- Discuss the Neural Network Model and its strengths and weaknesses
- Define a CLASSIFIER
- Describe a process of building a CLASSIFIER

Given a classification dataset **DB** with a set

A = {a1, a2,..., an} of attributes and a class attribute C with values

{c1, c2,..., ck} - k classes

Definition 1

Any expression a1 = v1 & ... & ak = vk where $ai \in A$ and vi are corresponding values of attributes from A

is called a **DESCRIPTION**

Any expression C = ci is for $ci \in \{c1, c2,..., ck\}$

Is called a **CLASS DESCRIPTION**

Definition 2

A CHARACTERISTIC FORMULA is any expression

$$C = ck \Rightarrow a1 = v1 \& ... \& ak = vk$$

We write is as

Definition 3

A **DETERMINANT FORMULA** is any expression

$$a1 = v1 \ \Lambda ... \ \Lambda \ ak = vk \implies C = ck$$

We write it as

Definition 4

```
CLASS ⇒ DESCRIPTION

is called a CHARACTERISITIC RULE of the classification dataset DB

iff

it is TRUE in DB, i.e. when the following holds

{o: DESCRIPTION} ∩ {o: CLASS} not= Ø

Where

{o: DESCRIPTION}

is the set of all records of DB corresponding to the DESCRIPTION

{o: CLASS} is the set of all records of DB corresponding to the CLASS
```

Definition 5

A discriminant formula

DESCRIPTION ⇒ **CLASS**

is called a **DISCRIMINANT RULE** of **DB**

iff

it is TRUE in DB, i.e. the following conditions hold

- 1. {o: DESCRIPTION} not= \emptyset
- 2. $\{o: DESCRIPTION\} \subseteq \{o: CLASS\}$

PROBLEM 1

Prove

that for any classification data base **DB** and any of its **DISCRIMINANT RULES** of the form

DESCRIPTION ⇒ **CLASS**

the formula

 \subseteq

CLASS ⇒ **DESCRIPTION**

is a **CHARACTERISTIC RULE** of the **DB**

PROBLEM 1 Solution

```
By definition 5, for any database DB:

DESCRIPTION ⇒ CLASS
is a DISCRIMINANT RULE iff

1. {o: DESCRIPTION} not= Ø

2. {o: DESCRIPTION} ⊆ {o: CLASS}
Therefore,

{o: DESCRIPTION} ∩ {o: CLASS} not= Ø

and by Definition 4

CLASS ⇒ DESCRIPTION
```

Is the **CHARACTERISITIC RULE**

PROBLEM 2

Given a dataset:

Record	A1	A2	А3	A4	С
01	1	1	1	0	1
02	2	1	2	0	2
03	0	0	0	0	0
04	0	0	2	1	0
05	2	1	1	0	1

Find the set **{o :DESCRIPTION}** for the following descriptions

- 1) a1 = 2 & a2 = 1
- 2) a3 = 1 & a4 = 0
- 3) a2 = 0 & a3 = 2
- 4) c=1
- 5) c=0

PROBLEM 2 SOLUTION

Find the set {o:DESCRIPTION} for the following descriptions

2)
$$a3 = 1 \& a4 = 0$$

3)
$$a2 = 0 \& a3 = 2$$

4)
$$c=1$$

$$5) c=0$$

Answer: {o1}

Answer : {o1, o5}

Answer: {o4}

Answer : {**o1,o5**}

Answer: {03,05}

PROBLEM 3

For the following formulae use proper definitions to determine (it means prove) whether they are / are not DISCRIMINANT / CHARACTERISTIC RULES of our dataset.

6)
$$a1 = 1 \& a2 = 1 \Rightarrow C = 1$$

7)
$$C = 1 \Rightarrow a1 = 0 \& a2 = 1 \& a3 = 1$$

8)
$$C = 2 \Rightarrow a1 = 1$$

9)
$$C = 0 \Rightarrow a1 = 1 \& a4 = 0$$

10)
$$a1 = 2 \& a2 = 1 \& a3 = 1 \Rightarrow C = 0$$

11)
$$a1 = 0 \& a3 = 2 \Rightarrow C = 1$$

PROBLEM 3 SOLUTION

For the following formulae use proper definitions to determine (it means prove) whether they are / are not DISCRIMINANT / CHARACTERISTIC RULES of our dataset.

- 6) $a1 = 1 \& a2 = 1 \Rightarrow C = 1$ {o1} is a subset of {o1, o5} so this is a DISCRIMINANT rule
- 7) C=1 ⇒ a1 = 0 & a2 = 1 & a3 = 1
 {o: a1 = 0 & a2 = 1 & a3 = 1 } is an empty set so this is
 not a CHARACTERISTIC rule
- 8) C = 2 ⇒ a1 = 1
 As the intersection is empty so this is **not** a **CHARACTERISTIC** rule
- 9) $C = 0 \Rightarrow a1 = 1 \& a4 = 0 ---- \{o3, o4\} / \{o5\}$ is empty set so this is **not a CHARACTERISTIC** rule
- 10) a1 = 2 & a2 = 1 & a3 = 1 \Rightarrow C = 0 ----- {o5} is not a subset of {o3, o4}, so this is not a DISCRIMINANT rule
- 11) a1 = $0 \& a3 = 2 \Rightarrow C = 1 \{04\}$ is not a subset of $\{01, 05\}$, so this is not a DISCRIMINANT rule

Classification

- Describe what is Classification; which is the goal, what data one needs etc....
- Describe all stages of the Classification Process
- Describe basic methods of training and testing
- Describe the process of building a CLASSIFIER
- What is a CLASSIFIER?

Problem: Classification by Association

- 1. Use TRAIN data to find the set of classification rules using the Apriori Algorithm
 - 2. **Test** the rules with the TEST Data
 Use 2 different testing Method of your choice and compare the results
 TRAINING DATA

Record	A1	A2	С
1	1	1	1
2	0	0	0
3	0	1	0
4	0	0	0
5	1	1	1
6	1	1	0
7	0	0	0
8	1	0	1

Transactional Data and Support calculations

	I1 (A1 =0)	I2(A1 = 1)	13(A2 = 0)	I4(A2= 1)	15(C=0)	I6(C=1)
1		+		+		+
2	+		+		+	
3	+			+	+	
4	+		+		+	
5		+		+		+
6		+		+	+	
7	+		+		+	
8		+	+			+
Count	4	4	4	4	5	3

Let the minimum support count = 3

L1:

Item set	Support Count
I1	4
12	4
13	4
14	4
15	5
16	3

Candidate two item sets:

Item Set	Support Count
1,2	0
1,3	3
1,4	1
1,5	4
1,6	0
2,3	1
2,4	3
2,5	1
2,6	0
3,4	3
3,5	1
3,6	2
4,5	2
4,6	0

Classification by Association

Frequent 2 item set:

Item Set	Support Count
1,3	3
1,5	4
2,4	3
2,6	3
3,5	3

Classification by Association

Candidate 3 item set:

Item Set	Support Count
1,3,5	3
2,4,6	1

Classification by Association

Frequent 3 item Set:

Item set	Support Count
1,3,5	3

$$L = \{(1,5),(2,6),(3,5),(1,3,5)\}$$

This is the set used to find the classification rules by association

Don't forget to FIX and calculate Confidence and Support!

Testing:

Record	A1	A2	Expected class	Actual class	Correctly classified
1	1	1	1	1	Yes
2	1	0	0	?	No
3	0	0	1	0	No
4	1	0	0	0	Yes

Predictive accuracy = 3/4 * 100 = 75 %

PROBLEM:: BUILDING a CLASSIFIER

For a given data set **build a classifier** following all steps needed in the constructions:

preprocessing, training, and testing

Describe and motivate your choice of algorithms and methods used at each step.

Problem: Neural Networks

Given two records (Training Sample)

A1	A2	A3	Class
0.5	0	0.2	1
0	0.3	0.2	1
0.2	0.1	0	0

Construct a Neural Network with your own 2 different topologies and evaluate- describe a passage of ONE EPOCHS (use learning rate I = 0.7). Backpropagation formulas will be given

Topology:

Input = 3, hidden = 2 and output = 2.

Problem: Neural Networks

For the **first iteration** we take the following values as input:

We take any random values for weights and BIASES