Cse634

Data Mining Lecture Notes Classification Introduction Book Chapter 6

Professor Anita Wasilewska Computer Science Department Stony Brook University

Classification

- PART 1:
- Classification = Supervised Learning
- Building a Classifier

- PART 2: Classification Algorithms (Models, Basic Classifiers)
- **PART 3:** Classification by Association
- **PART 4:** Other Classification Methods

Part 1: Classification Introduction

- Supervised learning = Classification
- Data format: training and test data
- Class definitions and class descriptions
- Rules learned: characteristic and discriminant
- Classification process = building a classifier

Part 1: Classification

- Supervised learning = Classification
- Building a Classifier:
- Training and Testing
- Evaluating predictive accuracy
- the most common methods
- Unsupervised learning= Clustering

Classification Algorithms (Models, Basic Classifiers)

Part 2:

- Decision Trees (ID3, C4.5) –descriptive
- Neural Networks statistical
- Bayesian Networks statistical
- Rough Sets descriptive
- Genetic Algorithms descriptive or statistical- but mainly an optimization method

Part 3: Classification by Association - descriptive

Part 4: Other Classification Methods

- k-nearest neighbor classifier
- Case-based reasoning
- Support Vector Machines
- Fuzzy sets approaches

Classification Data Format

- Classification Data Format:
- a **data table** with **key attribute removed**
- A special attribute, called a class attribute must be distinguished
- The values of the class attribute are called class labels
- The class labels are discrete-valued and unordered.
- Class attributes are categorical in that each value serves as a category, or a class

Classification Data Format

- The records in the classification data
- are called data tuples with their associated class labels
- It means that we distinguish in a record its attribute part and class part
- The attribute part is called data tuple, or attribute vector, data vector, sample, example, instance, data point (with associate label)

Classification Data Example

Example: Data Table with class attribute C

Rec	a1	a2	a3	a4	С
01	1	1	m	g	c1
o2	0	1	V	g	c2
о3	1	0	m	b	c1

- This data consists of tuples (examples, instances):
- t1= (1, 1, m, g) with the **class label c1**
- t2= (0, 1, v, g) with the **class label c2**
- t3 =(1, 0, m, b) with the class label c1

Classification Data 1

- **Classification Data Format:** a data table with **key attribute removed**.
- Special attribute, called a class attribute is: buys_computer

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3040	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Classification Data 2 (with objects)

rec	Age	Income	Student	Credit_rating	Buys_computer
r1	<=30	High	No	Fair	No
r2	<=30	High	No	Excellent	No
r3	3140	High	No	Fair	Yes
r4	>40	Medium	No	Fair	Yes
r5	>40	Low	Yes	Fair	Yes
r6	>40	Low	Yes	Excellent	No
r7	3140	Low	Yes	Excellent	Yes
r8	<=30	Medium	No	Fair	No
r9	<=30	Low	Yes	Fair	Yes
r10	>40	Medium	Yes	Fair	Yes
r11	<-=30	Medium	Yes	Excellent	Yes
r12	3140	Medium	No	Excellent	Yes
r13	3140	High	Yes	Fair	Yes
r14	>40	Medium	No	Excellent	No

Class definitions

- Syntactically a class is defined by the class attribute
 C and its value V
- Semantically a class is defined as a subset of records
- A description of a class C defined by the class attribute C and its value v is written as :

C=V

Semantically, classes C1, C2.. are sets of all records for which the class attribute c has a value v1, v2, ... respectively, i.e.

C1 ={ r: c=v1}, C2 ={ r: c=v2},

Class and Class Description

• Example:

Set of records **C** = { r1, r2, r6, r8, r14} of the classification **Data 2** on the previous slide is a **class** defined by the **class attribute** buys_computer and its value **no**

- The class $C = \{r1, r2, r6, r8, r14\}$ description
 - is: **buys_computer= no** because

C = {r: buys_computer= no }

C = { r1, r2, r6, r8, r14} is a class defined by the
 class description buys_computer= no

Class characteristics

Characteristics of a class C ={ r: c=v}

- is a set of a **non-class** attributes a1, a2, ... ak and their respective values v1, v2, vk such that the **intersection** of the set of **all records** for which a1=v1 & a2=v2&....ak=vk with the set C is **not empty**
- **Characteristics** of the class **C** are written as

a1=v1 & a2=v2&.....ak=vk

REMARK: A class C can have many characteristics, i.e many characteristic descriptions

Characteristic Descriptions

Definition:

A formula a1=v1 & a2=v2&....ak=vk is called a characteristic description for a class C={ r: c= v } If and only if {r: a1=v1 & a2=v2&....ak=vk } /\ C = not empty set i.e.

{r: a1=v1 & a2=v2&....ak=vk } /\ {r: c= v } = not
 empty set

Characteristic Descriptions

Example: given classification Data 1, 2

- Some of the characteristic descriptions
 of the class C with description: buys_computer= no
 are
 are
 Output
 Description: buys_computer= no
 Description: buy
- Age=<= 30 & income=high & student=no & credit_rating=fair
- Age=>40& income=medium & student=no & credit_rating=excellent
- Age=>40& income=medium
- Age=<= 30
- student=no & credit_rating=excellent

Characteristic Descriptions

- A formula
- Income=low is a characteristic description of the class C1 with description: buys_computer= yes and of the class C2 with description: buys_computer= no
- A formula
- Age<=30 & Income=low is NOT a characteristic description

of the class C2 = {r: buys_computer=no }

because:

{ r: Age<=30 & Income=low } /\ {r: buys_computer=no }= emptyset</pre>

Characteristic Formula

Any formula of a form

IF class description THEN characteristics

is called a characteristic formula

Example: : given classification Data 1, 2

- IF buys_computer= no THEN income = low & student=yes & credit=excellent
- IF buys_computer= no THEN income = low & credit=fair

Characteristic Rule

- A characteristic formula:
- IF class description THEN characteristics is called a characteristic rule (for a given database) if and only if
- it is **TRUE** in the given database, i.e.
- {r: class description} /\{r: characteristics} = not
 emptyset

Classification Data 1

- **Classification Data Format:** a data table with **key attribute removed**.
- Special attribute, called a class attribute is buys_computer

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3040	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Characteristic Rule

EXAMPLE: : given classification Data 1, 2 The formula

 IF buys_computer= no THEN income = low & student=yes & credit=excellent

Is **a characteristic rule** for our database **because**

- {r: buys_computer= no } = {r1,r2, r6, r8, r16 }
- {r: income = low & student=yes &
 credit=excellent } = {r6,r7}

and

{r1,r2, r6, r8, r16 } /\ {r6,r7} = not empty set

Characteristic Rule

EXAMPLE: : given classification Data 1, 2

The formula

IF buys_computer= no THEN income = low & credit=fair

IS NOT a characteristic rule for our database because

{r: buys_computer= no } = {r1,r2, r6, r8, r16 }
{r: income = low & credit=fair} = {r5, r9 }
and

{r1,r2, r6, r8, r16 } /\ {r5,r9} = empty set

Discrimination

 Discrimination is the process which aim is to find rules that allow us to discriminate the objects (records) belonging to a given class from the rest of records (classes)

If characteristics then class

- Example : given classification Data 1, 2
- If Age=<= 30 & income=high & student=no & credit_rating=fair then buys_computer= no

Discriminant Formula

Discriminant Formula Definition

A discriminant formula is any formula

If characteristics then class

- **Example: :** given classification Data 1, 2
- IF Age=>40 & inc=low THEN buys_comp= no

Discriminant Rule

- Discriminant Rule Definition
- A discriminant formula

If characteristics then class

- is a **DISCRIMINANT RULE** (in a given database) If and only if
- 1. {r: characteristic} is a non empty set
- 2. {r: characteristic} □ {r: class}

Discriminant Rule

- **Example::** given classification Data 1, 2
- A discriminant formula

IF Age=>40 & inc=low **THEN** buys_comp= no

is NOT a discriminant rule in our data base because

{r: Age=>40 & inc=low} = {r5, r6} is not a subset
 of the set {r :buys_comp= no}= {r1,r2,r6,r8,r14}

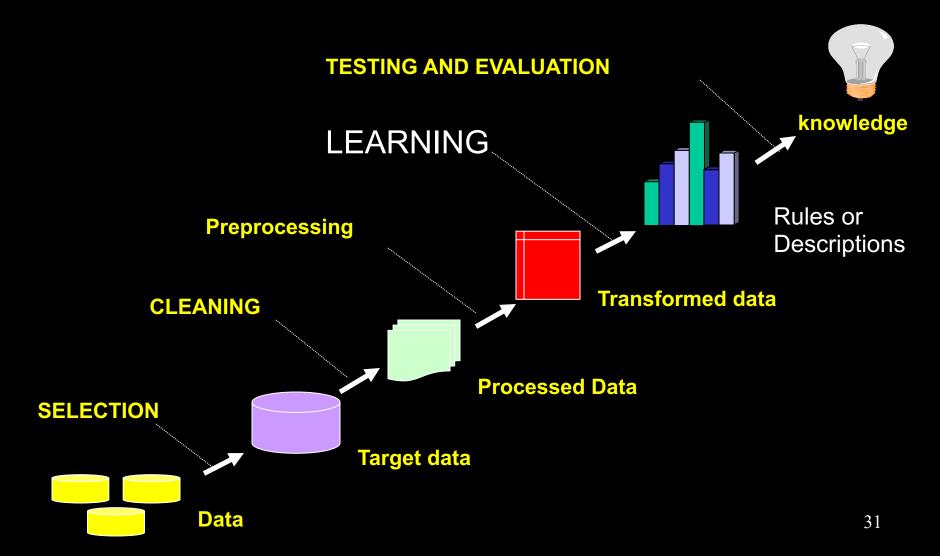
Characteristic and discriminant rules

- The **inverse** implication to the characteristic rule **is usually NOT** a discriminant rule
- Example: the inverse implication to the chracteristic rule:
- If buys_computer= no then income = low & student=yes & credit=excellent is
- If income = low & student=yes & credit=excellent then buys_computer= no
- The above rule is NOT a discriminant rule as it can't discriminate between classes with description buys_computer= no
- and buys_computer= yes
- (see records r7 and r8 in our Data 2)

Supervised Learning Goal (1)

- Given a data set and a class C defined in a given classification dataset
- Supervised Learning Goal is to
- FIND a minimal set (or as small as possible set) of characteristic and/or discriminant rules,
- or other descriptions of the class C, or of (all) other classes
- When we find **RULES** we talk about
- The Descriptive Supervised Learning

Supervised Learning Goal (2)


 We also want the found rules to involve as few attributes as it is possible

It means that we want **the rules** to have **as short** as possible length of the descriptions

Supervised Learning

- The process of CREATING (learning) discriminant and/or characteristic rules, or other descriptions and TESTING them is called a supervised learning process
- When the process (look at the Learning process slide) is finished we say that the classification has been learned and tested from examples (records in the classification dataset)
- It is called supervised learning because we know the class labels of all data examples

Data Mining Process

Classification Data 1

- **Classification Data Format:** a data table with **key attribute removed**.
- Special attribute, called a class attribute is buys_computer

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3040	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

A small, full set DISCRIMINANT RULES for classes: buys_comp=yes, buys_comp=no

- The rules are:
 - IF age = "<=30" AND student = "no" THEN buys_computer = "no"
 - IF age = "<=30" AND student = "yes" THEN buys_computer = "yes"
 - IF age = "31...40" THEN
 - buys_computer = "yes"
 - IF age = ">40" AND credit_rating = "excellent" THEN buys_computer = "no"
 - IF age = "<=30" AND credit_rating = "fair" THEN buys_computer = "yes"
 - **Exercise:** verify that they all are **true** in the Data1,2

Testing

- In order to use discovered rules for testing, and later, when testing is finished and predictive accuracy is acceptable to use them for future classification we write rules in a following predicate form:
 - IF age(x, <=30) AND student(x, no) THEN</p>
 - buys_computer (x, no)
 - IF age(x, <=30) AND student (x, yes) THEN</p>
 - buys_computer (x, yes)
 - Attributes and their values of a new record x are matched with the IF part of the rule and the record is classified accordingly to the THEN part of the rule

Testing and Training

- The Test Dataset has the same format as the Training Dataset, i.e.
- In both datasets the values of class attribute are known
- Test Dataset and Training Dataset are disjoint sets
- We use the Test Dataset to evaluate the predictive accuracy of our discovered set of rules

Predictive accuracy

- PREDICTIVE ACCURACY of the set of rules, or any other result of a classification algorithm is a percentage of well classified data in the Test Dataset
- If the predictive accuracy is not high enough we chose a different training and testing datasets and start learning process again
- There are many methods of training and testing and they will be discussed later

Classification Data

Classification Data Format: a data table with key attribute removed .

- •Special attribute, called a class attribute must be distinguished.
- •The values: c1, c2, ...cn of the class atrribute C are called class labels
- •Exercise: for the database below write 2 discriminant rules and 3 characteristic rules – and PROVE them to be what you claim

Obj	a1	a2	a3	a4	С
01	1	1	m	g	c1
o2	0	1	v	g	c2
о3	1	0	m	b	c1

Classification and Classifiers

- An algorithm (model, method) is called a classification algorithm
- if it uses the classification data to build a set of patterns:
- **discriminant** and /or **characteristic rules**
- or other pattern descriptions
- These patterns are structured in such a way that we can use them to classify unknown sets of objects: unknown tuples, records

Classification and Classifiers

- For the reason that
- we can use discovered patterns to classify unknown sets of objects a classification algorithm is often called shortly a classifier
- Remember that the name classifier implies more than just a classification algorithm
- A classifier is a final product of a process that uses data set and a classification algorithm

Building a Classifier

• Building a classifier consists of two phases:

training and testing

In both phases we use

- training data set and disjoint with it
- test data set for both of which the class labels are known for all of the records

Building a Classifier

- We use the training data set to create patterns: rules, trees, or to train a Neural or Bayesian network
- We evaluate created patterns with the use of test data
- The measure for a trained classifier is called predictive accuracy
- The classifier is build i.e. we terminate the process if it has been trained and tested and the predictive accuracy is on an acceptable level

Classifiers Predictive Accuracy

- PREDICTIVE ACCURACY of a classifier is a percentage of well classified data in the test data set
- PREDICTIVE ACCURACY depends heavily on a choice of the test and training data sets
- There are many methods of choosing test and and training sets and hence evaluating the predictive accuracy
- Basic methods are presented in Testing Classifiers lecture

Correctly and Not Correctly Classified Records

- A **record is correctly classified** if and only if the following conditions hold:
- (1) we can classify the record, i.e. there is a rule such that its LEFT side matches the record,
- (2) classification determined by the rule is correct, i.e. the RIGHT side of the rule matches the value of the record's class attribute

OTHERWISE

- the record is not correctly classified
- Words used:
- not correctly = incorrectly = misclassified

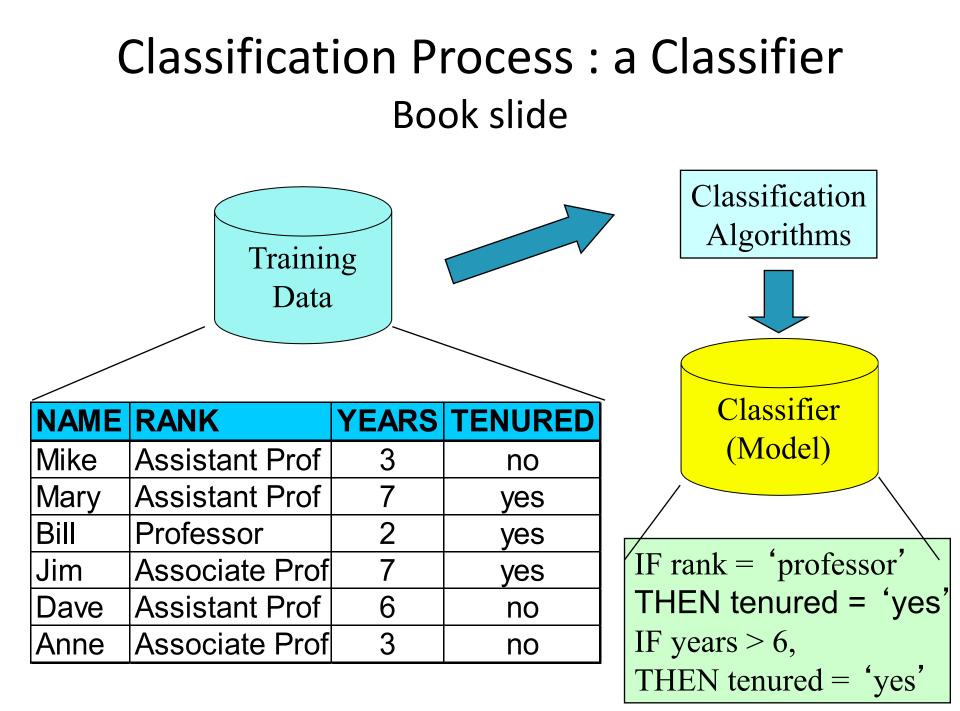
Exercise 1

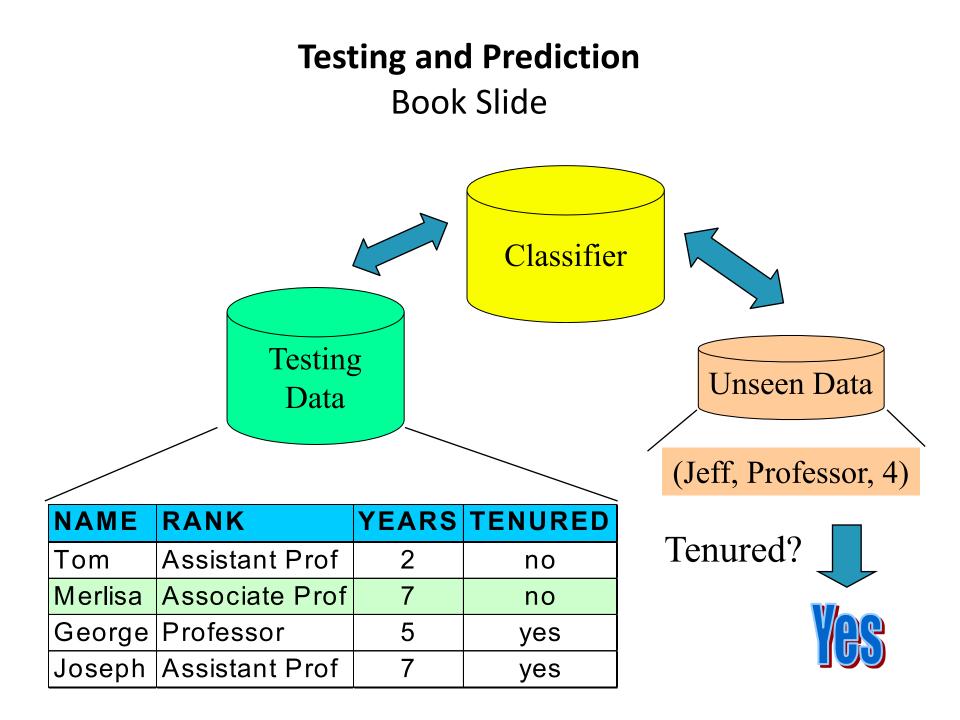
- Assume that we have a following set of rules:
- R1: a1=1 /\ a2= 0 => class= yes
- R2: a1=0 /\ a2=3 => class=no
- R3: a2=1 => class=yes
- The **TEST data** has the following 6 records, where the attributes are a1, a2, class
- r1 = (1, 0, yes), r2 = (0, 3, yes), r3 = (1, 1, no), r4 = (2, 1, yes), r5= (3, 1, yes), r6 = (1, 2, no)

WRITE the rules in predicate form and

CALCULATE the **Predictive Accuracy** of this set of rules with respect to the above **TEST data** of **6 records** above

Exercise 2


- Evaluate the **Predictice Accuracy** of the set of rules:
 - R1: IF age = "<=30" AND student = "no" THEN</p>
 - buys_computer = "no"
 - R2: IF age = "<=30" AND student = "yes" THEN</p>
 - buys_computer = "yes"
 - R3: IF age = "31...40" THEN buys_computer = "yes"
 - R4: IF age = ">40" AND credit_rating = "excellent" THEN buys_computer = "no"
 - R5: IF age = "<=30" AND credit_rating = "fair" THEN buys_computer = "yes"
 - with respect to the TEST data on the next slide .
 - REMARK: you must FIRST re-write the rules in predicate form


TEST DATA for Example 2

rec	Age	Income	Student	Credit_rating	Buys_computer
r1	<=30	Low	No	Fair	yes
r2	<=30	High	yes	Excellent	No
r3	<=30	High	No	Fair	Yes
r4	3140	Medium	yes	Fair	Yes
r5	>40	Low	Yes	Fair	Yes
r6	>40	Low	Yes	Excellent	yes
r7	3140	High	Yes	Excellent	Yes
r8	<=30	Medium	No	Fair	No
r9	3140	Low	no	Excellent	Yes
r10	>40	Medium	Yes	Fair	Yes

Predictive Accuracy

- For our 10 **TEST records** and 5 rules **R1**, **R2** ... **R5**
- Record r1 is well classified by rule R5
- Record r2 is misclassified
- Record r3 is well classified by rule R5
- Record r4 is well classified by rule R5
- Record r5 is misclassified
- Record r6 is misclassified
- Record r7 is well classified by rule R3
- Record r8 is well classified by rule R1
- Record r9 is well classified by rule R3
- Record r10 is misclassified
- We have 6 correctly classified records out of 10
- Predictive accuracy is 60%
- **Exercise:** prove that rules R1, R2 ... R5 are TRUE in the Classification Data 1, 2

Supervised vs. Unsupervised Learning

• Supervised learning (classification)

 Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations.

New data is classified based on a tested classifier

Supervised vs. Unsupervised Learning

- Unsupervised learning (clustering)
 - The class labels of training data are unknown
 - -We are given a set of records
 - (measurements, observations, etc.)
 - with the aim of establishing the existence
 of classes or clusters in the data