Genetic Algorithms for Classification and Feature Extraction

Group 4
Hari Prasath Raman - 110283168
Venkatakrishnan Rajagopalan - 110455765
What is GA?
"Select The Best, Discard The Rest"

- Randomized heuristic search/optimization strategy
- Simulate natural selection
 - Initial population is composed of candidate solutions.
 - Evolve population from which strong and diverse candidates can emerge via mutation and crossover (mating).
Simple_Genetic_Algorithm()
{
 Initialize the Population;
 Calculate Fitness Function;

 While(Fitness Value != Optimal Value)
 {
 Selection;//Natural Selection, Survival Of Fittest
 Crossover;//Reproduction, Propagate favorable characteristics

 Mutation;//Mutation
 Calculate Fitness Function;
 }
}
Basic Components

- Encoding
 - representing the solution in the form of a string
- Successor function(s)
 - Mutation, crossover
- Fitness function
- Some parameters
 - Population size
 - Generation limit
A different approach...

- Data mining techniques we learnt till now are based on modern database based languages
- Due to high dimensionality of the data, a numerical approach is needed
- The approach used here is 'statistical'
- Data Mining applies to many kinds of data and the type of data determines the language to be used
- Data used here is always a set of SPECIAL tuples
 - a data vector is similar to record in this unified table
- It does no apply to any set of data (collection of different tuples)
- We represent attributes as features (just a different term)
Pattern Recognition and Classification System
Curse of Dimensionality

- Extra information often leads to "non-optimal" use of data

- Removal of redundant and irrelevant features, increases classifier reliability

- But use of too few features or of non representative features can make the classification difficult
Feature(Attribute) Selection

- Task of finding the "best" subset of size d of features from the initial N features in the data pattern space.
- Criterion used to define the best subset is usually the probability of misclassification.
Feature (Attribute) Extraction

- Transformation from pattern space to feature space such that the new feature set gives better separation of pattern classes and reduces dimensionality

- Feature Extraction is superset of feature selection (identity transformation of feature extraction)
Formal Definition of Feature Selection

- Define the set of N features representing the pattern in the pattern space as a vector x
 \[x = [x_1, x_2, \cdots, x_N] \]
- Goal is to find the best subset of features y that satisfies some optimal performance assigned by criterion function $J(.)$, ideally the probability of misclassification
 \[y = [y_1, y_2, \cdots, y_n] \]
 \[\min J(y) = \min \{ (\forall y) J(y) \} \]
Formal Definition of Feature Extraction

- Goal is to yield a new feature vector of lower dimension by defining a mapping function $M(\cdot)$ such that $y = M(x)$ which satisfies some optimal performance assigned by criterion function $J(\cdot)$.
- The result of applying M is to create y such that $|y| \leq |x|$
 \[
 y = M(x) \\
 \min J\{M(x)\} = \min \{(\forall M(x)) J(M(x))\}
 \]
- In general, $M(x)$ can be linear or non linear but majority of existing methods restrict to linear mapping
 \[
 y = Wx, \text{ where } W \text{ is a (NxE) matrix of coefficients}
 \]
Classification & Feature Evaluation

- Feature selection and extraction are crucial in optimizing performance and strongly affect classifier design.
- Inherent relation: Feedback linkage between feature evaluation and classification
- Feature extraction and classifier design carried out simultaneously through "Genetic learning and evolution"
Feature Extractor and Classifier with Feedback Learning System
Benefits of GA

- GAs search from population not a single point.
- Discover new solutions by speculating on many combination of best possible solutions from within current pop.
- Useful in multi class high dimensionality which guarantees performance.
- A global optimum search method.
Approach

- GA/KNN hybrid approach
- GA/RULE approach
k-NN classifier

Test document

Slide from Prof. Leman Akoglu lectures
k-NN classifier (k=5)

What should we predict? ... Average? Majority? Why?

Slide from Prof. Leman Akoglu lectures
k-NN classifier

- **Optimal Classifier:**
 \[f^*(x) = \arg \max_y P(y|x) = \arg \max_y p(x|y)P(y) \]

- **k-NN Classifier:**
 \[\hat{f}_{kNN}(x) = \arg \max_y \hat{p}_{kNN}(x|y)\hat{P}(y) = \arg \max_y k_y \text{ (Majority vote)} \]

 \[\hat{p}_{kNN}(x|y) = \frac{k_y}{n_y \Delta_{k,x}} \rightarrow \# \text{ training pts of class } y \text{ that lie within } \Delta_k \text{ ball} \]

 \[\hat{P}(y) = \frac{n_y}{n} \rightarrow \# \text{ total training pts of class } y \]

Slide from Prof. Leman Akoglu lectures
1-Nearest Neighbor (kNN) classifier

Slide from Prof. Leman Akoglu lectures
2-Nearest Neighbor (kNN) classifier

Slide from Prof. Leman Akoglu lectures
3-Nearest Neighbor (kNN) classifier

Slide from Prof. Leman Akoglu lectures
5-Nearest Neighbor (kNN) classifier

*Slide from Prof. Leman Akoglu lectures
Non Linear Transformation

\[\bar{y} = M(\bar{x}) = W\bar{x}^* \]

where

\[\bar{x}^* = [x_1, x_2, \cdots, x_N, (x_1 x_j)_1, (x_n x_m)_2, \cdots, (x_r x_s)_k] \]

\[W = \begin{bmatrix}
 w_1 & 0 & \cdots & 0 \\
 0 & w_2 & \cdots & 0 \\
 0 & \cdots & \cdots & \cdots \\
 0 & \cdots & \cdots & 0 \\
 0 & 0 & 0 & 0 & w_{N+k}
\end{bmatrix} , \quad \text{or} \quad \bar{w}^* = [w_1, w_2, \ldots, w_N, w_{N+1}, \ldots, w_{N+k}] \]

- weight components that move towards 0 indicate that their corresponding features are not important for the discrimination task and are dropped in feature extraction
- resulting weights indicate the usefulness of a particular feature, its discriminatory power
Problems in Running GA

- Chromosome Encoding
 - For feature selection, $w_i = \{0,1\}$ $1 \leq i \leq N$, the chromosome encoding requires a single bit for each w_i, a component of weight vector w^*
 - For feature extraction $w_i = [0,10]$ $1 \leq i \leq N$, weight's resolution is determined by number of bits used

- Normalization of Training Datasets
 - KNN evaluation is affected by scaling so we need to pre-normalize the training data to some range such as $[0,1]$

- Evaluation Criteria -- Fitness functions
Fitness Function

- Classifier is defined as a function from pattern space to feature space then to classification space

\[
Fitness = J(w^*) = \frac{(TotPats - CorrectPats)}{Totpats}
\]

\[
Fitness = J(w^*) + T = \gamma \frac{(TotPats - CorrectPats)}{Totpats} + \delta \frac{nmin/K}{Totpats}
\]

\(nmin\) is the cardinality of the near-neighbor minority set and \(K\) is the number of nearest neighbors. Constants \(gamma\) and \(delta\) are used for tuning the algorithm.
Need for Speed

- GA can be implemented as a parallel algorithm easily.
- Most of the computational time is spent in evaluating the chromosome.
- The idea is to distribute the evaluation of individuals in the population to several nodes (processors).
GA/KNN is not good enough

- Computational cost of the GA/KNN method is very high and requires parallel or distributed processing
- The very high computational cost comes from the problem of feature selection and extraction of high dimensionality data patterns
- Decrease computational cost without sacrificing performance by directly generating rules i.e, using a GA combined with a production (rule) system
GA/RULE Approach

- GA combined with a production rule system
- Focuses on the classification of binary feature patterns
- A single, integrated rule format
 - uses a known “training” sample set
 - result is a small set of “best” classification rules
- Directly manipulates a rule representation used for classification rather than transformation on KNN rule
Advantages

- Simpler to implement
- Requires substantially fewer computation cycles to achieve answers of similar quality.
- Accuracy of this method is significantly better than the classical KNN method
- “good” rules created for classifying “unknown” data
- Reveal those features which are important for the classification, based on the features used by the rules.
Classification rule format

\[\text{<classification_rule>} : : = \text{<condition>} : \text{<message>} \]

- A classification rule is a production rule which is used to make a decision assigning a pattern \(x \) to one of many classes.
- The \(<\text{condition}>\) part of the rule is a string which consists of \(k \) class-attribute vectors.
- Each vector consists of \("n" \) elements, where \("n" \) is the number of attributes (features) being used for the classification of that class.
- Class-attribute vectors determine features to be used in this rule’s decision for classification i.e act as classification predicate.
- The \(<\text{message}>\) indicates the class into which the rule classifier places an input pattern matching against the feature vector.
Classification Rule Format

\[<\text{classification_rule}> ::= <\text{condition}> : <\text{message}> \]

\[(Y_{11}, ..., Y_{1i}, ..., Y_{1n}), ..., (Y_{j1}, ..., Y_{ji}, ..., Y_{jn}), ..., (Y_{k1}, ..., Y_{ki}, ..., Y_{kn}) : \omega \]

where \(i = 1, 2, \cdots, n; j = 1, 2, \cdots, k \)

\(\omega \) is a variable whose value can be one of the 'k' classes.

The alphabet of the class-feature vector consists of 0, 1 and a "don’t care" character, i.e., \(Y_{ji} \in \{0, 1, \#\} \)
Training and Evaluation using GA

The training data consists of a training vector (record) X with a known classification label.

$$X = [X_1, X_2, \cdots, X_i, \cdots, X_n]$$ where $i = 1, 2, \cdots, n$ and $X_i \in \{0, 1\}$

Each rule is evaluated by matching it against the training data set.

Every class-feature vector of the rule’s condition is compared with the training vector at every position.

0 matches a 0, a 1 matches 1 and # don’t-care matches either 0 or 1
Training and Evaluation using GA

- For a training set with three classes, the training vector would be compared with the three vectors in each rule.
- The number of matching features in each vector is counted and the vector with the highest number of matches determines the class of the sample.
- Since the class of each training sample is already known, this classification can then be judged correct or not.
- Based on the accuracy of classification, the decision rule can be directly rewarded or punished.
- Based on this rule “strength”, the GA can evolve new rules.
GA/RULE Approach

1. Initialize Population (random set of rules)
2. Evaluation Decision Rule with/without weight
 - Training data set
3. Satisfy?
 - Yes: Best set of rules and optimal feature subset
 - No: GA Evolution
 - Selection
 - Crossover
 - Mutation
4. New Population
Genetic Operators

• **Crossover**
 - Standard one-point crossover

• **Mutation**
 - Standard bit-modification

• The entire population (except for the best solution) is replaced each generation

• **Fitness Function**
 - Fitness = \(\text{CorrectPats/TotPats} + \alpha \times \frac{n_don'tcare}{\text{TotPats}} \)
 - This fitness function guides the GA to search out best rule sets as a multiobjective optimization problem.
Determining Invalid Features

For each rule, we arrange the class vectors as a matrix, then determine whether every class vector has the same value (1 or 0) or a don’tcare (#) at any position (column).

If they do, the n_don’tcare variable is incremented, as this feature is useless for classification.
Summary

- GA plays an important role in classification and feature extraction for high dimensionality and multi-class data patterns
- An automatic pattern recognition method utilizing feedback information from classifier being used to change the decision space
- GA/KNN works by transforming the decision space and reducing its dimensionality
- GA/RULE works by modifying the decision rule using inductive learning and evolution
- GA can be used with other classifier to solve other complex pattern recognition problems