Web Mining

CSE 537 Atrtificial Intelligence, Spring 2016
Group #: 3

Author: Feigiao Wang

Student ID: 104965863

Professor: Anita Wasilewska




Topics Covered Today

Motivation to choose the topic

What is web mining and why need web mining?
How to collect data from web?

Web mining methods summary

Web mining use cases review

Controversial issue of web mining

Semantic web and semantic web mining

4/26/2016 WEB MINING CSE 537 ARTIFICIAL INTELLIGENCE, SPRING 2016 PROFESSOR: ANITA WASILEWSKA



Motivation

Extend the topics teaching in class;
Share the knowledge and learn from each other;
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What is Web Mining?

Web mining is the use of data mining techniques to
automatically discover and extract information from Web

documents and services. Web mining is subset of data

mining.

4/26/2016 WEB MINING CSE 537 ARTIFICIAL INTELLIGENCE, SPRING 2016 PROFESSOR: ANITA WASILEWSKA



Web Mining Categories
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Why need web mining?

Better search result.

Business intelligence

Competitive intelligence

Pricing analysis

Events

Product data

Popularity

Reputation (credit card score calculation etc..)

Other ...
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Web Mining vs Data Mining

Scale — Huge dataset for web mining, small to large dataset for the traditional data mining;

Access — For web mining, Data is extracted explicitly or in most case inexplicitly (hidden) with
web crawler. For traditional data mining, we access data explicitly from local database or from
web.

Structure — A traditional data mining task gets information from a database, which provides some
level of explicit structure. A typical web mining task is processing unstructured or semi-structured

data from web pages.
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Web Mining — History

Term first used in [E1996], defined in a ‘task oriented’ manner
Alternate ‘data oriented’ definition given in [CMS1997]

1st panel discussion at ICTAI 1997 [SM1997]

Continuing forum

WebKDD workshops with ACM SIGKDD, 1999, 2000, 2001,
2002, ... ; 60 — 90 attendees

SIAM Web analytics workshop 2001, 2002, ...
Special issues of DMKD journal, SIGKDD Explorations

Papers in various data mining conferences & journals
Surveys [MBNL 1999, BL 1999, KB2000]
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How to collect data from web?

 Human copy-and-paste

* Text grepping and regular expression matching
* HTTP programming

* HTML parsers

* DOM parsing

* Web-scraping software

* Vertical aggregation platforms

* Semantic annotation recognizing

* Computer vision web-page analyzers
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Example of Web data collection:

Clickstream is the recording of the parts of the screen a computer user clicks on

while web browsing or using another software application.

As the user clicks anywhere in the webpage or application, the action is logged on a client or inside the web

server, as well as possibly the web browser, router, proxy server or ad server.

Clickstream analysis is useful for web activity analysis, software testing, market research, and for analyzing

employee productivity.
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Another Example of Open Data Source From Web
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Web mining methods summary
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What is web content mining ?

It describes the discovery of useful information from Web documents.
Basically, Web content consists of several types of data such as text, image, audio,
video, metadata as well as hyperlinks. Research in mining multiple types of data is
now termed multimedia-data mining. We could consider multimedia-data mining as
an instance of Web-content mining. The Web content data consist of unstructured
data such as free text, semi-structured data such as HTML documents, and a more
structured data such as tables and database- generated HTML pages. The goal of
Web-content mining is mainly to assist or to improve information-finding or filtering
the information. Building a new model of data on the Web, more sophisticated

queries other than the keywords-based search could be asked.
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4 steps of Web Content Mining

* Collect — fetch the content from the Web
» Parse — extract usable data from formatted data (HTML, PDF, etc)
* Analyze — tokenize, rate, classify, cluster, filter, sort, etc.

* Produce — turn the results of analysis into something useful (report, search index, etc)
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Web Content /

e )

(Source: Google Images)
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WEB CONTENT MINING USING

DIFFERENT ALGORITHMS

(Source: K.Dharmarajan-Scholar,
“CURRENT LITERATURE REVIEW -
WEB MINING “, Elysium Journal,
September 2014, Volume-1, Special
Issue-1 )
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WEB CONTENT MINING

Author
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Method Used

(Ahonen, 199R)
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(Billsus & Pazzani,

1999)
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Naive Bayes

(Cohen, 1995)
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(Feldman & Dagan,
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(Freitag & McCallum,

Bag of words

Hidden Markov

1999) Models
Unsupervised
(Hoffmann, 1999) Bag of words statistical
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WEB CONTENT MINING USING

DIFFERENT ALGORITHMS

( Source: K.Dharmarajan-Scholar,
‘CURRENT LITERATURE REVIEW -
WEB MINING “, Elysium Journal,
September 2014, Volume-1, Special
Issue-1)
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Continue ...
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What is Web Structure Mining?

The structure of a typical Web graph consists of . O\/» yperlin
Web pages as nodes, and hyperlinks as edges o b o

connecting between two related pages

Web
Document

Web Structure Mining can be the process of Web Graph Structure
discovering structure information from the Web

v This type of mining can be performed
either at the (intra-page) document level
or at the (inter-page) hyperlink level

v The research at the hyperlink level is also
called
Hyperlink Analysis
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Motivation to study Hyperlink Structure

- Hyperlinks serve two main purposes.

v Pure Navigation.

v Point to pages with authority* on the same topic
of the page containing the link.

- This can be used to retrieve useful information
from the web.

* - a set of ideas or statements supporting a topic
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Web Structure Terminology(1)

D Web-graph: A directed graph that represents the
Web.

D Node: Each Web page is a node of the Web-graph.

D Link: Each hyperlink on the Web is a directed edge
of the Web-graph.

D In-degree: The in-degree of a node, p, is the
number of distinct links that point to p.

D Out-degree: The out-degree of a node, p, is the
number of distinct links originating at p that point to
other nodes.
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Web Structure
Terminology(2)

D Directed Path: A sequence of links, starting from p
that can be followed to reach q.

D Shortest Path: Of all the paths between nodes p

and g, which has the shortest length, i.e. number of
links on it.

D Diameter: The maximum of all the shortest paths
between a pair of nodes p and q, for all pairs of
nodes p and q in the Web-graph.
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WEB STRUCTURE MINING

Algorithms Used Author Year
[n Degree Marchiori 1997
Page Rank Brin and Page 1998
Link Analysis Kleinberg 1998
HITS Klienberg 1999
PHITS Cohm and 2000
Chang
SALSA Lempel and Moran 2000
. Wenpu Xing and Ali
Weighted Page Rank Ghorbani 2004
Page Rank based on | Gyanendra Kumar, Neelam 011
visits of links Duhan, A. K. Sharma
Weighted Pag.f:. Rank Neclam Tyagi
based on wisits of . 2012
Simple Sharma

links(VOL)

4/26/2016

WEB MINING

CSE 537 ARTIFICIAL INTELLIGENCE, SPRING 2016

WEB STRUCTURE MINING USING

DIFFERENT ALGORITHMS

(Source: K.Dharmarajan-Scholar,
‘CURRENT LITERATURE REVIEW -
WEB MINING “, Elysium Journal,
September 2014, Volume-1, Special
Issue-1 )
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. Weighted
, Weighted | PageRank .
Algorithm PageRank PageRank with VOL PageRank with COMPARISON OF DIFEERENT WEB
VoL STRUCTURE ALGORITHMS
Web
Web mining Web Web structure | Web structure
technique | Structure | Structure mining, mining, web
used mining mining | webusage | usage mining
mining
Backlinks . .
Input Backlinks Fnrward’ Backlinks | Backlinks and ( Source: K.Dharmarajan-Scholar,
Parameters links and VOL VOL “CURRENT LITERATURE REVIEW -
WEB MINING “, Elysium Journal,
Importance More More More More September 2014, Volume-1, Special
Issue-1)
Relevancy Less Less More More
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What is Web Usage Mining?

A Web is a collection of inter-related files on one or more Web servers
Web Usage Mining

-+ Discovery of meaningful patterns from data generated by client-server
transactions on one or more Web localities

Typical Sources of Data

-+ automatically generated data stored in server access
logs, referrer logs, agent logs, and client-side cookies

-+ user profiles
-+ meta data: page attributes, content attributes, usage data
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Web Mining

Phases of Web Usage Mining
(Source: Google Images)

Pre-Processing
Session
Reconstruction
Heuristics

Pattern Analysis
Applications

Pattern Discovery
Apriori, GSP,

session Rules and Interesting
Server log File Patterns Knowledge
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Missed Page Views at Server

*Viewing time for cached pages

Page 1 viewing time  Page 2 viewing time
et et
t1-0 t1-3 t2-0 t2-3 t3-0 R
Client
______ e
Cache t21 t22
Server :
ti-1 ti2

4/26/2016

v

Viewing time calculated from server log

(Source PDF file: Web Mining : Accomplishments & Future Directions , Jaideep Srivastava, University of Minnesota, USA )
WEB MINING
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Algorithms Used Author Year
fuzzy clustering Bezdek 1981
Self-Organizing Map Kohonen 1982
Association Rules Agrawal 1993
Ontologies Gruber 1993
Apriori or FP Growth -

y . Srikant 4

Module Agrawal and R. Srikan 199
Direct Hashing and J. S. Park. M. Chen. P.S.

. = 1995
Pruning Yu
Sequential Patterns R. Agrawal and R. Srikant 1995
e R. Srikant and R. Agrawal 1996
Pattern
Parameter Space Shiffrin & Nobel 1998
Partition
FP-GROWTH Jiawei Han. J i_an Pei. 2000

Yiwen Yin
Vertical data format Zaki 2000
Ramesh C. Agarwal.
TREE-PROJECTION Charu C. Aggarwal. 2000
V.V.V. Prasad

Baraglia and Palmerini SUGGEST 2002
An average L José Borges . Mark Levene 2004
algorithm
Harmony Wang et al 2005
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WEB USAGE MINING USING

DIFFERENT ALGORITHMS

(Source: K.Dharmarajan-Scholar,
‘CURRENT LITERATURE REVIEW -
WEB MINING “, Elysium Journal,
September 2014, Volume-1, Special
Issue-1 )
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—————————

semantic web mining Berendt 2005

Freq1'1ent Pattem-based Cheng et al 2007

classification

Lee and Fu e 2008
principl

g;ftee'l';la:ed .- Fan et al 2008

Zhihua Zhang intelligent algorithm 2009

Sequential pattern

mining with K~ order A. Anitha 2010

Markov model

clustering

Mehrdad. Norwati Ali, . .

Md Nasir LCS Algorithm. clustering 2010

Bing Liu’s tools & technology 2011

Nicolas T)oggi. Vinod

lé,dal;?;r:a::l}(fl II():I :11: process mining techniques 2013

Khalaf

WEB MINING
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WEB USAGE MINING USING

DIFFERENT ALGORITHMS

(Source: K.Dharmarajan-Scholar,
“‘CURRENT LITERATURE REVIEW -
WEB MINING “, Elysium Journal,
September 2014, Volume-1, Special
Issue-1 )
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Web Mining Use Cases Review
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Use Case 1: Recommendation System (Source PDF file: Web Mining :

amazoncom. Accomplishments & Future

>
r.i— F . . .
e N - N e Directions , Jaideep Srivastava,
IRSRE S aoons| mecraomcs | owo “T]m aswe O oM™ i
Jaideep's Gold Box

» INTERNATIONAL »\TOP SELLERS » (O TARGET » TODAY'S DEALS » SELL YOUR STUFF University of Minnesota, USA )

Jaideep Srivastava, Vlike to read magazines? Like to receive $10--or $207? Visit
Today's Deals. 29 NEW FORYOU

(If you're not Jaideep

WELCOME

Use of Web mining
e Cookies tC

Srivastava, click here.)

ser Your Message Center
o You have 6 new

 analysis of user’s past behavior and o messages.
\ =7 our opping Car
peer grOUP analysis’ fo \j You have 0 items in

* vour Shopping Cart.

» personalized(messages>

More Categories

e category 4% ommendatio ®  science Fiction
e Use of c‘ustering, association analysis, —
temporal sequence analysis, etc. © luema

4/26/2016 WEB MINING CSE 537 ARTIFICIAL INTELLIGENCE, SPRING 2016 PROFESSOR: ANITA WASILEWSKA



Use Case 2: Google Search Page Ranking

PageRank Formula:
PR(q)
—d s
PR(p) = d/n+(1 Z Outdegree(q)
(¢,p)eC

Here, n is the number of nodes in the graph and OutDegree(q) is the number of hyperlinks on page q. Intuitively, the
approach can be viewed as a stochastic analysis of a random walk on the web graph. The first term in the right hand

side of the equation is the probability that a random web surfer arrives at a page p by typing the URL or from a

bookmark; or may have a particular page as his/her homepage. Here d is the probability that the surfer chooses a URL

directly, rather than traversing a linksand 1—d is the probability that a person arrives at a page by traversing a link. The
second term in the right hand side of the equation is the probability of arriving at a page by traversing a link.
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Continue...

Use Case 2: Google Search Page Ranking

Key idea

Rank of a web page depends

on the rank of the web pages
pointing to it

(Source PDF file: Web Mining : Accomplishments & Future Directions , Jaideep Srivastava, University of Minnesota, USA )
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Use Case 3: Advertisement serving ;

To offer what customers need and disseminate the promotion
to the target community to keep their customers. Company like

DoubleClick does this type of business for their clients.
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Use Case 4: Social Media Network Data Mining

Collect data from social media network, such as Facebook, Twitter

etc. to answer some question, for example, “who will win the presidential

» n

election”, "THow the disease spread out globally”.
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Use Case 5: Fight against terrorism

Government agencies are using this technology to classify threats and fight
against terrorism. The predicting capability of mining applications can benefit

society by identifying criminal activities

Use Case N ...
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Controversial Issue of Web Mining

» The web usage mining may cause the INVASIiON Of privacy.

 The companies collecting the data for a specific purpose might use the data for a totally

different purpose, and this essentially violates the user’s interests. no law
preventing them from selling or trading the data.

* Some mining algorithms might US€ controversial attributes like Sex,
race, religion, or sexual orientation to categorize

individuals. These practices might be against the anti-discrimination legislation. The

applications make it hard to identify the use of such controversial attributes, and there is
no strong rule against the usage of such algorithms with such attributes.
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What is Semantic Web?

A new form of Web content that is

meaningful to computers will unleash a
revolution of new possibilities

By Tim Berners-Lee, James Hendlerand
Oralassila

May 17, 2001
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Why need Semantic Web ?

« Huge amount of data is interpretable by humans only; machine support is
limited.

» Berners-Lee suggested to enrich the Web by machine processable
information which supports the user in his tasks

« To reach this goal the Semantic Web will be built up in different levels, the
one we care about is ontologies.

« Make data sharing feasible in an automatically manner.

« Refine Data mining algorithms and enhance quality of web mining result

(attributes reduction and rules pruning in classification).
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About Semantic Web

Ontology vocabulary

Digital Signature

Unicode

(Source: https://www.youtube.com/watch?v=rhgUDGtT2EM)
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! Semantic Technology Stack

User Interface & Applications ' * Basic Techno|ogies

Trust

== |

- URI
* Uniform Resource |dentifier

RDF

* Resource Description
Framework

RDFS

* RDF Schema

OWL

* Web ontology language

SPARQL

* Protocol and Query
Language

Ontology
Query: OWL Rule:

SPARQL RIF
RDFS '

Data interchange:
RDF

Crypto

URI/IRI '

(Source: https://www.youtube.com/watch?v=rhgUDGtT2EM)
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Key Features of Semantic Web

* ONTOLOGY ----- OWL

 RDF ---- SPARQL

* LINKED DATA
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What is an Ontology ?

- An ontology is a formal explicit description of
concepts in a domain of discourse ,properties
of each concept describing various features
and instances of the concept

- An ontology together with a set of individual
instances of classes constitutes a
knowledge base.
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Ontology is a precise explanation of
terms and reasoning in a subject area.

- Computers can act as if the "understand" the
information they are handling.

Semantic

- Making the meaning so clear a computer can
understand it, or at least utilize it.

- 00000000000

(Source: https://www.youtube.com/watch?v=rhgUDGtT2EM)
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Ontology Example

Lower limbs

Upper limbs

(Source: Google Images)
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ONTOLOGY

A DATA MODEL THAT REPRESENTS
KNOWLEDGE AS A SET OF CONCEPTS WITHIN A
DOMAIN AND THE RELATIONSHIPS BETWEEN
THESE CONCEPTS

POLICIES
RULES

RELATIONSHIPS
DEFINITIONS

PROCESSES

o) 0:24/435

(Source: https://www.youtube.com/watch?v=jfUPLuPL3Ho)
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What is OWL?

The W3C Ontology Web Language is a Semantic Web
language designed to represent rich and complex
knowledge about things, groups of things, and relations

between things.

4/26/2016 WEB MINING CSE 537 ARTIFICIAL INTELLIGENCE, SPRING 2016 PROFESSOR: ANITA WASILEWSKA



<?xml version="1.0"?>
<rdf:RDF
xmlns:shop="http://www.workingontologist.org/Examples/Chapter5/Shopping.owl#"
xmlins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmlins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmins:owl="http://www.w3.0rg/2002/07/owl#"
xmins:daml="http://www.daml.org/2001/03/daml+oil#"
xml:base="http://www.workingontologist.org/Examples/Chapter5/Shopping.owl!">
<owl:Ontology rdf:about="">
<owl:versionInfo rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string"
>Created with TopBraid Composer</owl:versioninfo>
</owl:Ontology>
<owl:Class rdf:ID="0xfords">
<rdfs:subClassOf rdf:resource="#Shirts"/>

</owl:Class>
<shop:0xfords rdf:ID="ClassicOxford">
<rdf:type rdf:resource="#Shirts"/>

</shop:Oxfords>
<shop:Henleys rdf:ID="ChamoisHenley"/> . .
<shop:Tshirts rdf:ID="BikerT"> Typlcal OWL File
<rdf:type rdf:resource="#MensWear"/>
</shop:Tshirts>
</rdf:RDF>
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Resource Description Framework

A Sentence

subject vyerb/predicate ©oObject
Jane sells books.

—

(Source: https://www.youtube.com/watch?v=rhgUDGtT2EM)
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RDF Example

Domain

Citizen (Source: Google Images)

subclassof

Non '
Voting : . Taluka
Citizen

Voting
Citizen

Steiys in

Thatte

( Predicate)

Subject Object
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SPARQL Example

PREFIX g: <http://data.example.com/graphs/>
PREFIXex: <...> % Default Graph
SELECT *
FROMK...>
FROM NAMED g:g1
FROM NAMED g:g2
FROM NAMED g:g3 % ~
WHERE { /
5 . Al * oy .
?s ex:pl ex:01 ; ex:p2 ex:02 . ot cxomplecomTorne/e1 (Source: Google Images)

GRAPH g:g1 {?s ex:p3 ex:03 }
GRAPH ?g { |
ex:sl ex:pd ?s. R

ex:s1 ex:p5 ex:05 . 5 >Named Graphs
}
} - http://data.example.com/graphs/g2

/

)

)

http://data.example.com/graphs/g3
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What is Linked Data ?

NKED @PEN) DATA

7~ On the web e

*: * Machine-readad®
** * * Non-propﬁ on= ,
t** * ' RDF standards .

5 Linked RDF e .
OUR DATA 5 %
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LINKING OPEN DATA

DBpedia

RDF Book
Mashup

As of May 2007

Diagram maintained by Richard Cyganiak (DERI, NUI Galway) and Anja Jentzsch (Freie Universitat Berlin)
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Semantic web mining

Semantic web mining combines semantic web methodology and web mining
technology. Better semantic web ontology can refine web mining algorithm and
enhance web mining result. The web mining result can also extend the scope of

semantic web ontology (domain knowledge). This is a win — win situation.
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Semantic web perspective

Metadata
~
Ontologies
Concepts Ontology Description
Languages
Web Services
Semantic
Web Methodologies for
Software Ageats Ontology Development
—
Semantic Desktop { Tools for Ontology
Art Applications Technologies Developments
Geospatial Semantic Web L Ontology Sources

Fig. 2. Semantic web perspectives [9].

(Source: Hamed Hassanzadeh and Mohammad Reza Keyvanpour;/nternational
Journal of Computer Theory and Engineering, Vol. 4, No. 4, August 2012)
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Semantic web mining components

Mining
ontologies

Semantic
Web mining

(Source: Hamed Hassanzadeh and Mohammad Reza Keyvanpour;/nternational
Journal of Computer Theory and Engineering, Vol. 4, No. 4, August 2012)
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Semantic web major requirements and tasks

Sophisticated Interoperability

Services Standardization

( Maximizing Web Application

Ontology Construction

Ontology Mapping j

Ontology Merging

Enhancing Web Contents

~

Knowledge Extraction

Semantic Annotation

—

Fig. 3. Semantic web major requirements and tasks.

(Source: Hamed Hassanzadeh and Mohammad Reza Keyvanpour;/nternational
Journal of Computer Theory and Engineering, Vol. 4, No. 4, August 2012)
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Extraction, Modeling, Reasoning & Discovery

Workflow
. Transform & Edit Load, Query Applications & Commercial companies
ransaction
Systems 1
- Tools & Inference Analysis Tools are ready for semantic
: web
Un(s:tru::tu:ed Entity Extraction - Bl Analytlcs
& Transform * Graph Visualization
. (» | Ontology )
Engineering - Social Network
RSS, email Analysis
Categorization
. - Metadata Registry
Other Data Custom Scripting * Faceted Search
F°""-°‘s - SPARQL Endpoint
Data
Sources Partner ORACLE Partner/Oracle
Tools SPATIAL Tools

ORACLE

4/26/2016 WEB MINING CSE 537 ARTIFICIAL INTELLIGENCE, SPRING 2016 PROFESSOR: ANITA WASILEWSKA



4/26/2016

Semantic web mining applications

* Faculty Report Card project:
Local Project for Stony Brook University School of Medicine Dean’s office.
Data source is from Triple store of PubMed.

* Bio2RDF Project

The Bio2RDF project aims to transform silos of life science data into a globally
distributed network of linked data for biomedical knowledge translation and
discovery.

(source: https://datahub.io/dataset/bio2rdf-pubmed)

378 datasets found

* BestBuy use of GoodRelations/RDFa Markup to increase site traffic and
promote better search result for their users
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Future direction of semantic web mining:

Semantic web mining is a new area in web mining. The combination of these two areas will
bring a great success to World Wide Web. But due to the lack of global standards and lack of
rugged database management system to manage semantic web mining opens up new
avenues for the researchers to develop KIMS (Knowledge extraction management system) for
unstructured data available on the web this area is slowly developing. If these fields explored in
a right manner it will provide unlimited opportunities to extract knowledge from the goldmine of

unstructured data available across the globe.

(Source: Amruta Arun Joshi et al, / (IJCSIT) International Journal of Computer Science
and Information Technologies, Vol. 6 (1), 2015, 431-433)
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Thank You !
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