ANALYTICAL TECHNIQUES FOR DATA VISUALIZATION

CSE – 537 Artificial Intelligence Professor Anita Wasilewska

GROUP 2

TEAM MEMBERS:

SAEED BOOR BOOR - 110564337

SHIH-YU TSAI - 110385129

HAN LI – 110168054

SOURCES

- Slides 9 10: Visualization and Visual Analytics, Fundamental Tasks, Klaus Muller, SBU
- Slides 13 17: Clustering, Eamonn Keogh, UC Riverside
- Slides 19 26: Pattern Recognition and Machine Learning, Christopher M. Bishop, Chapter 9
- Slides 28 30: Visualization and Visual Analytics, Fundamental Tasks, Klaus Muller, SBU
- Extra Sources:
 - Lecture Notes by Anita Wasilewska, Chapter 2: Preprocessing, Chapter 6: Classification
 - http://bl.ocks.org/ for types of visualizations
 - https://www.youtube.com/watch?v=_aWzGGNrcic_for K-Means algorithm

STEPS (PRESENTATION OUTLINE)

PROLOGUE

Interaction • Definition of Visual Analytics : Data Science Visualization Data Mining Data Analytics

PROLOGUE

- What: Analytical Techniques for Data Visualization
- Why: so much data => visualize (see, perceivable)
- How:
 - Al or Machine Learning Methods to read, sample, clustering
 - K-means clustering algorithms/E-m algorithms/Nearest neighbor
 - Eliminating dimensions to 2D : Principal component analysis (PCA)
 - Types of aesthetic visualizations

DATA CLEANING

- fill in missing values
- smooth noisy data
- identify or remove outliers
- resolve inconsistencies

MISSING VALUES

- Data is not always available
 - e. g, many tuples have no recorded value for several attributes, such as customer income in sales data

Age	Income	Team	Gender
23	24,200	Red Sox	М
39	?1	Yankees	F
45	45,390	?2	F

- Ways to solve:
 - Ignore tuple
 - Fill manually
 - Use Global Constant
 - Attribute Mean
 - Most probable value

NOISY DATA

- Why?
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - technology limitation
 - inconsistency in naming convention
- What to do?
 - Binning Method
 - Clustering
 - Regression
 - Semi Automatic: Computer Algorithm + Human input

DATA MINING TECHNIQUES – ANALYZE DATA

CLASSIFICATION -> REGRESSION -> CLUSTERING -> SIMILARITY MATCHING -> LINK PREDICTION

TASK # 1: CLASSIFICATION (COVERED IN CLASS)

- Predict which class a member of a certain population belongs to
 - absolute
 - probabilistic
- Requires Classification Model
 - Supervised Learning
 - Unsupervised Learning
- Scoring with a Model
 - each population member gets a score for a particular class/category
 - sort each class or member scores to assign
 - scoring and classification are related

TASK # 2: REGRESSION

- Regression = value estimation
- Fit the data to a function
 - often linear, but does not have to be
 - quality of fit is decisive
- Regression vs. classification
 - classification predicts that something will happen
 - regression predicts how much of it will happen

TASK # 3: CLUSTERING

- Group individuals in a population together by their similarity
- Cluster methods
 - K-means algorithms
 - E-m algorithms

K-MEANS ALGORITHMS

- Input: K, set of points $x_1 \dots x_n$
- Place centroids c₁ ... c_K at random positions
- Repeat the following procedure until it converges
 - For each x_i
 - Find nearest centroid c_j
 - Assign x_i to cluster j
 - For each cluster j
 - New c_i is the mean of all point x_i in cluster j in previous step

Source:

K- MEANS - COMMENTS

Strength

- Relatively efficient: O(tKn), where t is # iterations. Normally, K, t << n.
- Often terminates at a local optimum.

Weakness

- Applicable only when mean is defined, then what about categorical data?
- Need to specify K, the number of clusters, in advance
- Unable to handle noisy data and outliers
- Not suitable to discover clusters with *non-convex shapes*

E-M ALGORITHMS

Sometimes K-mean is not intuitive

Horrible result from K-mean

Source:
Pattern Recognition and
Machine Learning,
Christopher M. Bishop,
Chapter 9

EM APPROACH -- MIXTURE MODEL

Source:
Pattern Recognition and
Machine Learning,
Christopher M. Bishop,
Chapter 9

weighted sum of a number of pdfs where the weights are determined by a distribution

$$p(x) = \pi_0 f_0(x) + \pi_1 f_1(x) + \pi_2 f_2(x) + \ldots + \pi_k f_k(x)$$

where $\sum_{i=0}^k \pi_i = 1$

EM APPROACH -- ADD HIDDEN VARIABLES

Source:
Pattern Recognition and
Machine Learning,
Christopher M. Bishop,
Chapter 9

Suppose we are told that the mixture model is.....

Observed data

$$x = (x_1, x_2, \dots, x_N)$$

Hidden distribution

$$z = (z_1, z_2, \dots, z_N)$$

Each point, for example mixture of gaussian

$$p(x) = \pi_0 f_0(x) + \pi_1 f_1(x) + \pi_2 f_2(x) + \ldots + \pi_k f_k(x)$$

$$p(x) = \sum_{i=0}^{k} \pi_i N(x|\mu_k, \Sigma_k) = \sum_{z} p(z)p(x|z)$$

EM APPROACH -- ADD HIDDEN VARIABLES

Suppose we are told that the mixture model is.....

Log likelihood distribution for whole data set, n points

Target:

$$\ln p(x|\pi,\mu,\Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(x_n|\mu_k,\Sigma_k) \right\}$$

Use MLE to to get optimal solution

But hard to calculate, not concave or convex function

Source:

Pattern Recognition and Machine Learning, Christopher M. Bishop, Chapter 9 • WE KNOW:

$$L(\theta) = \log P(X; \theta)$$
$$= \log \sum_{Z} P(X, Z; \theta)$$

$$L(\theta) = \log \sum_{Z} P(X, Z; \theta)$$

$$= \log \sum_{Z} Q(Z) \frac{P(X, Z; \theta)}{Q(Z)}$$

$$= \log E_{Z \sim Q} \left[\frac{P(X, Z; \theta)}{O(Z)} \right]$$

WE HAVE: JENSEN'S INEQUALITY

$$L(\theta) = \log E_{Z \sim Q} \left[\frac{P(X, Z; \theta)}{Q(Z)} \right] \ge E_{Z \sim Q} \left[\log \frac{P(X, Z; \theta)}{Q(Z)} \right]$$

When $\frac{P(X,Z;\theta)}{O(Z)}$ is constant, the equality holds, we get the boundary

$$Q(Z) = \frac{P(X,Z;\theta_t)}{\sum_{Z} P(X,Z;\theta_t)} = P(Z|X;\theta_t)$$

Then optimize the boundary: that is what we can do easily, take the derivative and equal to 0

$$\theta_{t+1} := \arg \max_{\theta} E_{Z|X;\theta_t} \left[\log \frac{P(X,Z;\theta)}{P(Z|X;\theta_t)} \right]$$

Source:

Pattern Recognition and Machine Learning, Christopher M. Bishop, Chapter 9

TOO ABSTRACT.

Source:

Pattern Recognition and Machine Learning, Christopher M. Bishop, Chapter 9

E-M ALGORITHMS

- Initialize K cluster centers
- Iterate between two steps

- probability that d_i is in class $c_i \setminus \setminus$
- Expectation step: assign points to clusters

 (Bayes) $P(d \subseteq a)$ $= \Pr(d \vdash a) / \sum_{i=1}^{n} \Pr(d \vdash a)$

(Bayes)
$$P(d_i \in c_k) = w_k \Pr(d_i | c_k) / \sum_j w_j \Pr(d_i | c_j)$$

$$-w_k = \frac{\sum_{i} \Pr(d_i \in c_k)}{N} = \text{probability of}$$

$$\text{class } c_k$$

- Maximation step: estimate model parameters (optimization) $1 \stackrel{m}{\smile} d_i P(d_i \in c_k)$

$$\mu_k = \frac{1}{m} \sum_{i=1}^m \frac{d_i P(d_i \in c_k)}{\sum_k P(d_i \in c_j)}$$

EM APPROACH -- ILLUSTRATION

Source: Pattern Recognition and Machine Learning, Christopher M. Bishop, Chapter 9

TASK # 4: SIMILARITY MATCHING

Picture from Klaus Muller

SIMILARITY MEASURE - DISTANCES

Manhattan distance

b dist(a,b) =
$$||a - b||_1 = \sum_i |a_i - b_i|$$

Euclidian distance

$$\mathsf{dist}(\mathsf{\ a,b\ }) = \|a-b\|_2$$

dist(a,b) = $||a - b||_2 = \sqrt{\sum_i (a_i - b_i)^2}$

Cosine Similarity

dist(a,b) =
$$cos^{-1} \frac{\langle a,b \rangle}{\|a\| \|b\|}$$

how is this related to correlation?

SIMILARITY MEASURES

Jaccard Distance

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}.$$

TASK # 5 : LINK PREDICTION

- Predict connections between data items
 - usually works within a graph
 - predict missing links
 - estimate link strength
- Applications
 - in recommendation systems
 - friend suggestion in Facebook (social graph)
 - link suggestion in LinkedIn (professional graph)
 - movie suggestion in Netflix (bipartite graph people movies)

DATA REDUCTION

DATA REDUCTION

- Why?
 - Tuples are multi dimensional Humans can "see" only 3 dimensions on the screen
- How?
 - PCA Principal Component Analysis

PCA PRINCIPAL COMPONENT ANALYSIS

- Ultimate goal:
 - find a coordinate system that can represent the variance in the data with as few axes as possible
- Steps:
- First characterize the distribution by
 - covariance matrix Cov
 - correlation matrix Corr
 - lets call it C
- perform QR factorization or LU decomposition to get :

$$C = Q\Lambda Q^{-1}$$

Q: matrix with Eigenvectors

 Λ : diagonal matrix with Eigenvalues λ

- now order the Eigenvectors in terms of their Eigenvalues
- drop the axes that have the least variance

TYPES OF VISUALIZATION

AESTHETIC AND **CLEAR AND UNDERSTANDABLE** GRAPHICS FOR REPRESENTATION OF DATA

COLLAPSIBLE TREE

- A standard tree, but one that is scalable to large hierarchies
- http://mbostock.github.io/d3/talk/20111018/tree.html

ZOOMABLE PARTITION LAYOUT

- A tree that is scalable and has partial partition of unity
- http://mbostock.github.io/d3/talk/20111018/partition.html

COLLAPSIBLE FORCE LAYOUT

- Relationships within organization members expressed as distance and proximity
- http://mbostock.github.io/d3/talk/20111116/force-collapsible.html

HIERARCHICAL EDGE BUNDLING

Relationships of individual group members, also in terms of quantitative measures such as information

flow http://mbostock.github.io/d3/talk/20111116/bundle.html Flare imports hierarchical edge bundling

CIRCLE MAPPING

Quantities and containment, but not partition of unity

• http://mbostock.github.io/d3/talk/20111116/pack-hierarchy.html

DEMO

THANK YOU!

QUESTION AND ANSWERS