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What is Cluster Analysis?

m Cluster: a collection of data objects
- Similar to one another within the same cluster
- Dissimilar to the objects in other clusters

m Cluster analysis

- Finding similarities between data according to the characteristics found in the
data and grouping similar data objects into clusters

= Unsupervised learning: no predefined classes
m Typical applications

- As a stand-alone tool to get insight into data distribution

- As a preprocessing step for other algorithms



Quality: What Is Good Clustering?

m A good clustering method will produce high quality clusters with

- High intra-class similarity

- Low inter-class similarity

= The guality of a clustering method 1s also measured by its ability
to discover some or all of the hidden patterns

s The guality of a clustering result depends on both the similarity

measure used by the method and its implementation



Requirements of Clustering in Data
Mining

Scalability
Ability to deal with different types of attributes

Ability to handle dynamic data
Discovery of clusters with arbitrary shape

Minimal requirements for domain knowledge to determine input
parameters

Able to deal with noise and outliers
Insensitive to order of input records

High dimensionality



Density-based Clustering



Density-Based Clustering Methods

* Clustering based on density (local cluster criterion), such as
density-connected points

« Major features:
» Discover clusters of arbitrary shape
 Handle noise

* Need density parameters as termination condition
« Several interesting studies:
« DBSCAN: Ester, et al. (KDD'96)

 DENCLUE: Hinneburg & D. Keim (KDD'98)

A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise
Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu

Institute for Computer Science, University of Munich
2nd International Conference on Knowledge Discovery and Data Mining (KDD-96)



Density-Based Clustering: Basic
Concepts

m [wo parameters.
- Eps: Maximum radius of the neighborhood
- MinPts: Minimum number of points 1n an Eps-neighborhood of
that point

n Ng,(q): {p belongs to D | dist(p,q) <= Eps}

m Directly density-reachable: A point p 1s directly density-
reachable from a point g w.r.t. Eps, MinPts 1f

- p belongs to Ny,,(q)

- Core point condition:
- |Ngy (@)l >= MinPts o

MinPts = 5
Eps=1cm



Density-Reachable and Density-
Connected

m Density-reachable:
- A point p 1s density-reachable from a point
g w.r.t. Eps, MinPts 1f there 1s a chain of

points py, ..., p,, ;= ¢, p,= p such that p;
1s directly density- reachable from p;

» Density-connected
- A point p 1s density-connected to a point g
w.r.t. Eps, MinPts 1f there 1s a point o such
that both p and g are density-reachable
from o w.r.t. Eps and MinPts




DBSCAN: Density Based Spatial
Clustering of Applications with Noise

m Relies on a density-based notion of cluster: A cluster 1s
defined as a maximal set of density-connected points

m Discovers clusters of arbitrary shape 1n spatial databases
with noise
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DBSCAN: The Algorithm

m Arbitrarily select a point p

m Retrieve all points density-reachable from p w.r.t. Eps and
MinPits.

m If p 1s a core point, a cluster 1s formed.

m If p is a border point, no points are density-reachable from p
and DBSCAN visits the next point of the database.

m Continue the process until all of the points have been
processed.



DBSCAN: Advantages and
Disadvantages

m No need to specify the number of clusters

m No bias towards/against larger clusters

m Can learn arbitrary patterns

m Need to tune parameter Eps and MinPts manually



DBSCAN: Sensitive to Parameters

Figure 8. DBScan
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DBSCAN: Sensitive to Parameters (cont.
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Model-based clustering



Mixtures of Gaussians

* Gaussian mixture models )
e p(x)=)cTEmlc N (xudc,olc) T

e Mean xic, variance aic , “size” nic

* Multivariate Gaussian models
s N(x;u,2)=1/Q2m)Td/2 [E]T-1/2 exp{—1/2 (x —u )ITET-1 (x—u )}

G. J. MclLachlan and K. E. Bkasford. Mixture Models: Inference
and Applications to Clustering. John Wiley & Sons, 1988.



ANEMIA PATIENTS AND CONTROLS
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EM ITERATION 10
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Self-Organizing Maps (SOMs)

* Developed by professor Kohonen

* A type of artificial neural network (ANN) that is
trained using unsupervised learning to produce a
low-dimensional (typically two-dimensional),
discretized representation of the input space of the
training samples, called a map.

T. Kohonen, "The self-organizing map," in Proceedings of
the IEEE, vol. 78, no. 9, pp. 1464-1480, Sep 1990.



Self-Organizing Maps (SOMs)

* Unsupervised learning

* Competitive learning network

* Provides a topology preserving mapping from high-D to map units
* Detect features inherent to the problem, provide feature map

* Generalization capability

T. Kohonen, "The self-organizing map," in Proceedings of
the IEEE, vol. 78, no. 9, pp. 1464-1480, Sep 1990.



Network Architecture

* Two layers of units

* Input: n units (length of training vectors)
o« VI1,VI2,VI3,-Vin

e Output: m units (number of categories)
* Each node 4 has a weight vector [wilk ,wi2k ,wi3k, -, wink |

* Input units fully connected with weights to output units

e OQutput neurons are ordered according to the topology
of the map
* Usually rectangular or hexagonal




Output Layer Topology

* Intra-layer(“lateral”) connections
* Within output layer

* Defined according to some topology @ @ @

* No weight between these connections, but used in
algorithm for updating weights

e Often view output in spatial manner
* Eg. A1D or 2D arrangement
e 2D: Rectangular or Hexagonal

ONORONO



SOM Algorithm

 Select output layer network topology
* Initialize current neighborhood distance,2(0), to a positive value

* |nitialize weights from inputs to outputs to small random values
e Let =1

* While computational bounds are not exceeded do
* 1) Select an input sample 74/

 2) Compute the square of the Euclidean distance of /{/ from weight vectors (wl/)
associated with each output node

* 3) Select output node / T+ that has weight vector with minimum value from step 2)

 4) Update weights to all nodes within a topological distance given by 2(Z) from T+,
using the weight update rule:

wlj (t+1)=wl; (t)+n(t)((dl—wlj (¢))
* 5)Increment ¢

e Endwhile

Mehotra, K., Mohan, C. K., & Ranka, S. (1997). Elements
of Artificial Neural Networks. MIT Press pp. 187-202



SOM Examole Iris Flower Dataset

SOM Topology

Source: technical Report on SOM Toolbox 2.0 for Matlab



Iris Flower Dataset

SOM Example:

SOM Neighbor Weight Distances
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Source: technical Report on SOM Toolbox 2.0 for Matlab



SOM Example: Iris Flower Dataset

Weights from Input 1 Weights from Input 2
6 -
4 L
Sepal length Sepal width
2 L
0 L
Weights from Input 3 Weights from Input 4
6 | 6
4t 4
Pedal length Pedal width
2 2
Source: technical Report
0 L
0 on SOM Toolbox 2.0 for

0 2 4 6 8 0 2 4 6 8 Matlab



SOM Example: Iris Flower Dataset

Quadratic error 86.67 91.35
Std(Qerr) 0.33 25.76
ClassErr 90.22 15.23
Struct Err 0 18

F. Bacao, V. Lobo, and M. Painho. Self-organizing maps as substitutes
for k-means clustering. In Computational Science - ICCS 2005,
Pt. 3, Lecture Notes in Computer Science, pages 209-217, 2005.



SOM - Visualization of World Poverty

Data: World Bank statistics of countries in 1992 Source: Neural Networks Research Centre,
Helsinki University of Technology, Finland



SOM - Visualization of World Poverty
Map

Data: World Bank statistics of countries in 1992 Source: Neural Networks Research Centre,
Helsinki University of Technology, Finland



Clustering High-
Dimensional Data



Clustering High-Dimensional Data

* Clustering high-dimensional data
* Many applications: data mining, DNA micro-array dataMany

* Challenges:

* Distance measure becomes meaning less-due to equi-distance
* Many irrelevant dimensions may mask clusters
e Clusters may exist only in some subspaces

* Approaches
* Subspace-Based Methods

e Correlation-Based Methods
* Bi-Clustering Methods



The Curse of Dimensionality

(graphs adapted from Parsons Subspace Clustering for High Dimensional Data: A Review KDD
Explorations 2004)
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From one dimension to three dimensions, points go from packed to sparse. As the
dimensions increase, points gradually become equi-distance, so distance measure
becomes meaningless. (dataset: 20 points, 3 dimensions, random number between
0 and 2 in each dimension)



Subspace clustering

(graphs adapted from Parsons Subspace Clustering for High Dimensional Data: A Review KDD
Explorations 2004)

 Clusters may exist only in some
subspaces

» Subspace-clustering: find clusters in
all the subspaces
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400 instances in 3 dimensions, divided into 4 clusters of 100 Dimension a
Instances. First two clusters exist in dimensions a and b. The data

forms a normal distribution with means 0.5 and -0.5 in dimension

a and 0.5 in dimension b. The second two clusters are in dimension

b and c and were generated in the same manner.
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Subspace clustering

(graphs adapted from Parsons Subspace Clustering for High Dimensional Data: A Review KDD
Explorations 2004)
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* The figures above shows the data projected in a single dimension
(organized by index on the x-axis for ease of interpretation). We can
see that none of these projections of the data are sufficient to fully
separate the four clusters. Alternatively, if we only remove one
dimension, we produce the graphs in next page.



Subspace clustering

(graphs adapted from Parsons Subspace Clustering for High Dimensional Data: A Review KDD

Explorations 2004)
e.N 0:;0:.: \‘ * .‘.
o Fa “}.' w'~‘. n‘o ’ ¢ :. ..'o.
p . o by :0 (&) '$
S 5 v 5 X
2 § -1 S B
qé . qC, .0 .?, "". qC) e ,° ""’:m"’:’%"’.‘.ﬁ.: '.o .lo
a - £ gt £ K
.g. ()] Yot 5 o.?
0 o _ '
D.|menS|on a Dimension b ; Dimenosion a
(2) Dims a & b (b) Dims b & ¢ (c) Dims a & c

e The first two clusters (red and green) are easily separated from each other and
the rest of the data when viewed in dimensions a and b. This is because those
clusters were created in dimensions a and b and removing dimension c removes
the noise from those two clusters. The other two clusters (blue and
purple)completely overlap in this view since they were created in dimensions b
and c and removing ¢ made them indistinguishable from one another. Thus, the

key to finding each of the clusters in this dataset is to look in the appropriate
subspaces.



Subspace Clustering Methods

* Bottom-Up Subspace Search Methods
* CLIQUE
* ENCLUS
* MAFIA
 CBF

* lterative Top-Down Subspace Search Methods
* PROCLUS
* ORCLUS

 FINDIT
e O0-Clusters



CLIQUE

e CLIQUE(Clustering In QUEst)(Agrawal, Gehrke, Gunopulos, Raghavan:
SIGMOD’98)

* CLIQUE is a density-based and grid-based subspace clustering
algorithm

* Grid-based: It discretizes the data space through a grid and estimates the
density by counting the number of points in a grid cell

* Density-based: A cluster is a maximal set of connected dense units in a
subspace(dense unit: total data points in the unit exceeds the input model
parameter)

» Subspace clustering: A subspace cluster is a set of neighboring dense cells in
an arbitrary subspace. It also discovers some minimal descriptions of the
clusters



Example of CLIQUE:

graph from Jyoti Yadav Subspace Clustering using CLIQUE: An Exploratory Study 2014 pg4
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Start at 1-D space and discretize numerical intervals in each axis into grid
Find dense regions(clusters) in each subspace and generate their minimal descriptions
Use the dense regions to find promising candidates in 2-D space based on the Apriori principle



Major Steps of the CLIQUE Algorithm

* |[dentify subspaces that contain clusters

e Partition the data space and find the number of points that lie inside each cell
of the partition

* |dentify the subspaces that contain clusters using the Apriori principle

* |dentify clusters
* Determine dense units in all subspaces of interests
 Determine connected dense units in all subspaces of interests

* Generate minimal descriptions for the clusters

* Determine maximal regions that cover a cluster of connected dense units for
each cluster

* Determine minimal cover for each cluster



Strengths and Weaknesses of CLIQUE

e Strengths

e Automatically finds subspaces of the highest dimensionality as long as high
density clusters exist in those subspaces

* Insensitive to the order of records in input and does not presume some
canonical data distribution

 Scales linearly with the size of input and has good scalability as the number of
dimensions in the data increases

e Weaknesses

* Asin all grid-based clustering approaches, the quality of the results crucially
depends on the appropriate choice of the number and width of the partitions
and grid cells
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