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Introduction:
Outliers

* One definition:
“An outlier is an observation which deviates so much from the other observations
as to arouse suspicions that it was generated by a different mechanism”

-D. Hawkins. Identification of Outliers, Chapman and Hall, 1980.
* Also referred to as abnormalities, discordants, deviants, or anomalies
* Many applications

« How do we classify a data point as an outlier?



Introduction:
Applications

Intrusion Detection Systems
e Credit Card Fraud

* Interesting Sensor Events

* Medical Diagnosis

* Law Enforcement

e Earth Science




Introduction:
Extreme Univariate Value Analysis

The process of defining outliers as points on tails of distributions
Univariate models date back to the 19t century

Most current datasets contain multiple dimensions, so Univariate Extreme Values
are not as useful for anomaly detection in these cases

However many multidimensional outlier detection algorithms return a single
outlier score for each data point



Introduction:
Outlier Scores

 When data is multidimensional methods are used to get outlier scores for each
data point (discussed later)

e Qutlier scores can then be treated as a single variable

* Extreme Univariate Analysis can be performed on the outlier scores as a last step
in the overall anomaly detection



Statistical Methods for EUVA:
Probabilistic Tail Inequalities

A Statistical Tail is the set of extreme values in a distribution (low likelihood)

Tail inequalities are used to determine whether points in the tails of a distribution
are truly anomalous
e

The following Tail Inequalities are covered:
1. Markov Inequality

Chebyshev Inequality

Chernoff Bound

Hoeffding Bound

The Central Limit Theorem
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Tail Inequalities:
Markov Inequality

 The Markov inequality provides inference about the upper tails of any positive
probability distribution

THEOREM 2.1 (MARKOV INEQUALITY) Let X be a random wvariable,
which takes on only non-negative random values. Then, for any con-
stant « satisfying E[X| < a, the following is true:

P(X > a) < E[X|/a (2.1)

» Useful for relating Expectations to probabilities, bounds the right tail based on the
mean

e Also can be used to prove Chebyshev’s Inequality



Tail Inequalities:
Chebyshev’s Inequality

* Gives insight as to both tails of any probability distribution based on mean and
standard deviation, or variance

THEOREM 2.2 (CHEBYCHEV INEQUALITY) Let X be an arbitrary ran-
dom wvariable. Then, for any constant «, the following is true:

P(|X — E[X]| > a) < Var[X|/a? (2.3)
 Restated: P(]JX — p|l > ao) < 1/a?, or at most (1/a?)*100% lie in the tails of the
distribution

e Similarin nature to (68-95-97.5) rule for a Gaussian

* Tighter bounds can usually be found as this inequality assumes nothing about the
distribution, including shape and symmetry.



Tail Inequalities:
Chernoff Bounds

e Gives bounds on a Random Variable that can be expressed as the sum of
independent Bernoulli variables (non identical)

THEOREM 2.6 (LOWER TAIL CHERNOFF BOUND) Let X be random vari-

able, which can be expressed as the sum of N independent binary (Bernoulli)
random variables, each of which takes on the value of 1 with probability

Pi-
N
X =) X
i=1

Then, for any 6 € (0,1), we can show the following:

P(X < (1-96)-E[X]) < e EIX]6°/2 (2.4)



Tail Inequalities:
Chernoff Bounds (cont’d)

Gives tighter bounds (exponential decay) on Lower tail than inequalities above
Upper tail has similar (also exponential) bound (for different 6 values)

Chernoff gives tighter tails (good for anomaly detection) but can be used much
more infrequently (large assumptions)

Example usage: Grocery Shoppers (Sum of i.d. Bernoulli)



Tail Inequalities:
Hoeffding Bounds

e Gives bounds on a distribution that can be expressed as the sum of any bounded
independent Random Variables (also non identical)

e General case to the Chernoff Bound

THEOREM 2.8 (HOEFFDING INEQUALITY) Let X be random wvariable,
which can be expressed as the sum of N independent random variables,
each of which is bounded in the range [l;, u;].

Then, for any 6 > 0, the following can be shown:

_ 2.62
P(X —E[X] > 0) <e Zimilal)? (2.10)
2.92

PE[X]- X >0) <e Titul)? (2.11)




Tail Inequalities:
Hoeffding Bounds

* Gives tighter bounds than Markov or Chebyshev, like Chernoff with different
assumptions

* Lower tail has exact same bound

 Example usage: Sports Statistics (Sum of i.d. bounded)



Tail Inequalities:
Central Limit Theorem

* Gives an exact distribution for a Random Variable that can be expressed as a
sufficiently large sum of any independent, identically distributed (i.i.d.) Random

Variables

THEOREM 2.9 (CENTRAL LiMmIiT THEOREM) The sum of a large num-
ber N of independent and identically distributed random wvariables with
mean |t and standard deviation o converges to a normal distribution with

mean (1 - N and standard deviation o -/ N.

* Generally introduced for the Sampling Distribution of the Sample Mean



Tail Inequalities:
Central Limit Theorem (cont’d)

* Since an exact distribution is Normal, the Tail Inequality is that of the “68-95-99.7”
rule

 Example usage: Quality Control, is a machine an outlier in terms of failures?
(Sum of i.i.d. Bernoulli)

* Also a generalized CLT for non identical, independent, Random Variables:
Lyupanov CLT



Tail Inequalities:
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By Dan Kernler - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?
curid=36506025



Statistical Tail Confidence Testing:
Normal Distribution

e Used for when data values are assumed to come from a Normal Distribution (i.e.
means, summations, or from domains proven to be Normal)

e Described by the following density function:

1 —(z—p)?
fx(z) = R (2.16)
og-\2-m

* To find the probability of the tails, P(|X| > 0), need to integrate the above density

e However this has no closed form



Statistical Tail Confidence Testing:
Standard Normal Distribution

* In order to evaluate Tail Probabilities of points from a Normal, we generally
standardize values to fit a Normal Distribution with u=0,0=1

» Standardization is done by the following formula, result is called a Z-score:
2z = (x; — p)/o (2.17)
 Can use a Z-table to evaluate tail probabilities of all standardized data points

* Probabilities then used to determine anomalies



Statistical Tail Confidence Testing:
Student’s T-Distribution

* Zdistribution has strict assumption that the population mean and standard
deviation are known (Or estimated well from large sample sizes)

e T-distribution is hence used when the mean and standard deviation of the
underlying distribution of the data are unknown

T(v) = Lo (2.18)

v 2
V(L Uy
* Ratio of a Normal ana cni->quarea vistrioution, with parameter v,
degrees of freedom




Statistical Tail Confidence Testing:
Student’s T-Distribution (cont’d)

 Above is the T-distribution for varying degrees of freedom it generally has wider
tails than the normal (more conservative)

e Data values standardized same way as Z-score (but with sample mean and STD)
« AT-Table then used to evaluate tail probabilities



Extreme Multivariate Value Analysis:
Overview

* Designed to determine data points at the boundaries of multivariate data
* Useful when a vector of outlier scores is given for each data point

 Types To Be Discussed:
1. Depth Based Methods
2. Deviation Based Methods
3. Angle Based Methods
4. Distance-Distribution Based Methods



Extreme Multivariate Value Analysis:
Depth Based Methods
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Figure 2.3. Depth-based outlier detection

* An Iterative process: Constructs a convex hull around outer most data points, assigns a
depth based on iteration, removes them, and repeats until all points are removed.

* All points before a depth of r are outliers.
* Not statistical in nature, Not scalable to high dimensions

« Also not effective in high dimensions as a convex hull in d dimensions has at least 2% points



Extreme Multivariate Value Analysis:
Deviation Based Methods

* These methods find the change in variance of the data when a point is removed

* Removing outliers should reduce the variance significantly, the amount of reduction
when points are removed is called the Smoothing Factor of these points.

* Qutliers are defined as the subset of all points, E, for which has the greatest
smoothing factor of any other subset of points, R.

 Determination of this £ is difficult since there exist 2V possible subsets of N points

A Random Sampling of points is usually employed to find a good E. (Smallest set
with largest smoothing factor)



Extreme Multivariate Value Analysis:
Angle Based Methods
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Figure 2.4. Angle-based outlier detection

The idea is that extreme data points on the boundaries should be able to enclose all the

data points with the smallest angle, while data points in the interior should have multiple
points around them at multiple angles

In order to find the angle between two sets of points, a cosine measure is used where
X —Y denotes the vector formed between data point X and Y

WCos(V X7 - %)= 0 X (Z-%) >
N | TN -XEZ-XI




Extreme Multivariate Value Analysis:
Angle Based Methods (cont’d)

* Note that the Cosine measure is weighted, as the magnitudes of the vector are
squared, further reducing the angle (and thus penalizing) far away points

* One of the points (X) is held constant while the other two are varied to obtain the
variance in spectrum of X

 The Angle Based Outlier Factor of X, is thus the set containing weighted Cosine
measure of X and varying points from the set of all points, D

ABOF(X) =Varyy zepyWCos(Y — X, Z — X))



Extreme Multivariate Value Analysis:
Angle Based Methods (cont’d)

 ABOF can be computed a variety of different ways (naive, nearest neighbor)

* Low values of ABOF denote outliers (far away points, non varying angles)

e ABOF is not safe from the ‘curse of dimensionality’ (not guaranteed to be robust
for very high dimensions) due to sparsity of the data points, and thus narrower

variation in angles for all points.



Extreme Multivariate Value Analysis:
Distance Distribution Based

A distance distribution approach is to model the entire multidimensional dataset as
Normally Distributed, given by the following density:

1) == (21 — exp(-2- (X —71) - 51 (X —70)7)

2

* Here lis a dx1 vector of means and X is a dxd matrix of covariances

* The exponential term is known as the Mahalanobis Distance from the center of the
density

* The Mahalanobis Distance allows computation of probabilities based on the
Principal Directions of Correlation rather than Euclidian distance



Extreme Multivariate Value Analysis:
Distance Distribution Based (cont’d)
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point B. (This would not be the case for angle or deviation based measures)
e Limited by assumptions that all variables are Normally Distributed (one cluster)

* Parameters can be learned through EM



Probabilistic Mixture Modeling
Generative Distributions

Outliers are usually determined by their relative positions to the data, not just by
being on the data’s boundaries

To do this a Generative Distribution is assumed for the data

This Generative Distribution can be a single distribution (as introduced previously)
or a mixture of distributions M = {G4, G, G3, ... }, where M is then called the
Mixture Model

These Distributions have the same dimensions as the data and have initially
unknown (but assumed) parameters



Probabilistic Mixture Modeling
Generative Distributions (cont’d)

* |In order to obtain the best fit Mixture Model to the data, the parameters of each
distribution, as well as the proportion of each distribution in the model, need to

be estimated.
* This is done via Expectation Maximization

* This process requires us to define the fit of the data to the model



Probabilistic Mixture Modeling
Model Fit

* First we define the fit of a data point, )?j to the model, where f* is the joint density
of the ith distribution, and «; is the mixture probability of the ith distribution:

P (X5IM) Zaz ' (2.19)

* For the fit of the data to the model we then compute the following known as the
Likelihood Function: (often Log- Likelihood is used for efficiency)

data D'M H fpoznt X |M)

7=1

 The goal of EM is to obtain a Model that maximizes the Likelihood Function



Probabilistic Mixture Modeling
Expectation Maximization

« EMis an iterative procedure

1) Expectation
* Let B represent the current state of all parameters and mixture probabilities

* Then the Bayes Probability that data point )?j was generated by G; is:

. L9,
P(YJE gz|@) _ kaz f (XJ)

— (2.21)
Z’r‘zl G fr, (XJ)

 We assume for the next step )?j belongs to the G; with the highest Bayes Probability



Probabilistic Mixture Modeling
Expectation Maximization (cont’d)

2) Maximization

First the a values are maximized using Laplacian Smoothing
- N
(142521 P(X; € Gil©))/(k+ N)

The parameter values of each G; are then computed, and updated, using the Maximum
Likelihood Estimator with the points that were assigned to it in the Expectation step

l.e. For each distribution G;, take the Partial Derivative of the (Log) Likelihood Function with
respect to each parameter, set it to O and solve for the parameter.

For example, if G, is a Multivariate-Gaussian, the MLE’s of the parameters i, and X, are
the means and co-variances of the data points assigned to G, in the E step



Probabilistic Mixture Modeling
Expectation Maximization (cont’d)

 EM iterates for a defined number of steps until convergence of the parameters is

reached

* The result is a Generative Mixture model, where the
probabilistic fit of each point can be calculated
using fP°"(not true probabilities)

* These values can be ranked to produce outlier
scores for each point

* EM very often used to Mixture Model univariate
outlier scores from a variety of methods
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Figure 2.6. Relating Fit Probabilities to the Anomalous Behavior



Probabilistic Mixture Modeling
L/m/tanons

Susceptible to overfitting if the chosen distribution is too restrictive.

e (Can be too general, for example, often Mixture of Independent Gaussians use
naive independence.

* Does not scale well to high dimensions due to increasing number of parameters to
estimate

* Note: EM is one of the most widely used algorithms in all of Data Mining/
Statistics. It was coined by Dempster, Laird, and Rubin in 1977 in the Journal of the

Royal Statistical Society. (paper has over 34k citations to date!)



