
1 Introduction to Predicate Resolution

The resolution proof system for Predicate Logic operates, as in propositional
case on sets of clauses and uses a resolution rule as the only rule of inference.

The first goal of this part is to define an effective process of transforma-
tion of any formula A of a predicate language L = L{¬,∪,∩,⇒}(P,F,C) into
its logically equivalent set of clauses CA.

The second goal of this part is extend the definition of the propositional
resolution rule to the case of predicate language.

Observe that define, as in propositional case, a clause as a finite set of literals
and we define a literal as an atomic formula or a negation of an atomic
formula. The difference with propositional resolution is in the language, i.e.
what is a predicate atomic formula as opposed to propositional atomic
formula. Reminder:
An atomic formula of a predicate language L(P,F,C) is any element of
A∗ (finite strings over the alphabet of L) of the form

R(t1, t2, ..., tn)

where R ∈ P,#R = n and t1, t2, ..., tn ∈ T.

The set of all atomic formulas is denoted by AF and is defined as

AF = {R(t1, t2, ..., tn) ∈ A∗ : R ∈ P, t1, t2, ..., tn ∈ T, n ≥ 1}

We use symbols R,Q, P, ... with indices if necessary to denote the atomic
formulas and we define formally the set L of all literals of L(P,F,C) as follows.

L = {R : R ∈ AF} ∪ {¬R : R ∈ AF}.

Reminder:
A formula of a predicate language is an open formula if it does not contain
any quantifiers, i.e. it is a formula build out of atomic formulas and propo-
sitional connectives only.

Transforming any formula A of a predicate language into a set CA of clauses
means that we can represent the formula A as a certain collection of atomic
formulas and negations of atomic formulas, i.e. as a certain collection of open
formulas.

1



In order to achieve our first first goal we start with transformation of any
formula A of a predicate language into an open formula A∗ of some larger
language such that A ≡ A∗. The process is described in the following 2 section.

2 Prenex Normal Forms

We remind the following important notion.

Term t is free for x in A(x). Let A(x) ∈ F and t be a term, A(t) be a result
of substituting t for all free occurrences of x in A(x).

We say that t is free for x in A(x), if no occurrence of a variable in t
becomes a bound occurrence in A(t).

In particular, if A(x), A(x1, x2, ..., xn) ∈ F and t, t1, t2, ..., tn ∈ T, then

A(x/t), A(x1/t1, x2/t2, ..., xn/tn)

or, more simply just

A(t), A(t1, t2, ..., tn)

denotes the result of replacing all occurrences of the free variables x, x1, x2, ..., xn,
by the terms t, t1, t2, ..., tn, respectively, assuming that t, t1, t2, ..., tn are free for
x, x1, x2, ..., xn, respectively, in A.

The assumption that t is free for x in A(x) while substituting t for x, is
important because otherwise we would distort the meaning of A(t). This is
illustrated by the following example.

Example. Let t = y and A(x) be

∃y(x 6= y).

Obviously t is not free for y in A. The substitution of t for x produces a formula
A(t) of the form

∃y(y 6= y),

which has a different meaning than ∃y(x 6= y).

Here are more examples illustrating the notion: t is free for x in A(x).
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Example Let A(x) be a formula

(∀yP (x, y) ∩Q(x, z))

and t be a term f(x, z), i.e. t = f(x, z).

None of the occurrences of the variables x, z of t is bound in A(t), hence we say
that t = f(x, z) is free for x in (∀yP (x, y) ∩Q(x, z)).

Substituting t on a place of x in A(x) we obtain a formula A(t) of the form

(∀yP (f(x, z), y) ∩Q(f(x, z), z)).

Example Let A(x) be a formula

(∀yP (x, y) ∩Q(x, z))

The term t = f(y, z) is not free for x in A(x) because substituting t = f(y, z)
on a place of x in A(x) we obtain now a formula A(t) of the form

(∀yP (f(y, z), y) ∩Q(f(y, z), z))

which contain a bound occurrence of the variable y of t (∀yP (f(y, z), y)). The
other occurrence (Q(f(y, z), z)) of y is free, but it is not sufficient, as for term
to be free for x, all occurrences of its variables has to be free in A(t).

Another important notion we will use here is the following notion of similarity of
formulas. Intuitively, we say that A(x) and A(y) are similar if and only if A(x)
and A(y) are the same except that A(x) has free occurrences of x in exactly
those places where A(y) has free occurrences of y.

Example. The formulas ∃z(P (x, z) ⇒ Q(x)) and ∃z(P (y, z) ⇒ Q(y)) are
similar.

The formal definition of this notion follows.

Definition Let x and y be two different variables. We say that the formulas
A(x) and A(x/y) are similar and denote it by A(x) ∼ A(x/y) if and
only if y is free for x in A(x) and A(x) has no free occurrences of y.

Example
The formulas A(x): ∃z(P (x, z)⇒ Q(x, y)) and A(x/y): ∃z(P (y, z)⇒ Q(y, y))
are not similar; y is free for x in A(x), but the formula A(x/y) has a free
occurrence of y.
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Example. The formulas A(x): ∃z(P (x, z)⇒ Q(x, y)) and A(x/w): ∃z(P (w, z)⇒
Q(w, y) are similar; w is free for x in A(x) and the formula A(x/w) has no
free occurrence of w.
Directly from the definition we get the following.

Lemma 2.1 For any formula A(x) ∈ F , if A(x) and A(x/y) are similar, i.e.
A(x) ∼ A(y), then

∀xA(x) ≡ ∀yA(y),

∃xA(x) ≡ ∃yA(y).

We prove, by the induction on the number of connectives and quantifiers in a
formula A the following.

Theorem 2.1 (Replacement Theorem) For any formulas A,B ∈ F , if B
is a sub-formula of A, if A∗ is the result of replacing zero or more occurrences
of B in A by a formula C, and B ≡ C, then A ≡ A∗.

Directly from the above lemma and the replacement theorem we get that the
following theorem holds.

Theorem 2.2 (Change of Bound Variables) For any formula A(x), A(y), B ∈
F , if A(x) and A(x/y) are similar, i.e. A(x) ∼ A(y), and the formula ∀xA(x)
or ∃xA(x) is a sub-formula of B, and B∗ is the result of replacing zero or more
occurrences of A(x) in B by a formula ∀yA(y) or ∃yA(y), then B ≡ B∗.

Definition 2.1 (Naming Variables Apart) We say that a formula B has
its variables named apart if no two quantifiers in B bind the same variable
and no bound variable is also free.

We can now use theorem 2.2 to prove its more general version.

Theorem 2.3 (Naming Variables Apart) Every formula A ∈ F is logically
equivalent to one in which all variables are named apart.

We use the above theorems plus the equational laws for quantifiers to prove,
as a next step a so called a Prenex Form Theorem.
In order to do so we first we define an important notion of prenex normal
form of a formula.

4



Definition 2.2 (Closure of a Formula) By a closure of a formula A we
mean a closed formula A′ obtained from A prefixing in universal quantifiers all
those variables that a free in A; i.e. if A(x1, . . . . , xn) then A′ ≡ A is

∀x1∀x2....∀xnA(x1, x2, . . . . ., xn)

Example
Let A be a formula (P (x, y) ⇒ ¬∃z R(x, y, z)), its closure A′ ≡ A is
∀x∀y(P (x, y)⇒ ¬∃z R(x, y, z)).

Definition 2.3 (Prenex Normal Form) Any formula A of the form

Q1x1Q2x2....QnxnB

where each Qi is a universal or existential quantifier, i.e. for all 1 ≤ i ≤ n,
Qi ∈ {∃,∀}, xi 6= xj for i 6= j, and B contains no quantifiers, is said to be
in Prenex Normal Form (PNF).
We include the case n = 0 when there are no quantifiers at all.

We assume that the formula A in PNF is closed. If it is not closed we form
its closure (definition 2.2) instead. We prove that, for every formula, we can
effectively construct a formula that is its equivalent PNF.

Theorem 2.4 (PNF Theorem) There is an effective procedure for transform-
ing any formula A ∈ F into a logically equivalent formula A′ in the prenex
normal form.

We define the procedure by induction on the number k of occurrences of con-
nectives and quantifiers in A.
Let’s consider few examples.

Exercise
Find a prenex normal form PNF of a formula A: ∀x(P (x)⇒ ∃xQ(x)).

We find PNF in the following steps.

Step 1: Rename Variables Apart

By the theorem 2.2 we can make all bound variables in A different, i.e. we
transform A into an equivalent formula A′

∀x(P (x)⇒ ∃yQ(y)).
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Step 2: Pull out Quantifiers

We apply the equational law

(C ⇒ ∃yQ(y)) ≡ ∃y (C ⇒ Q(y))

to the sub-formula B : (P (x)⇒ ∃yQ(y)) of A′ for C = P (x), as P(x) does
not contain the variable y. We get its equivalent formula B∗ : ∃y(P (x)⇒
Q(y)). We substitute now B∗ on place of B in A′ and get a formula A′′:

∀x∃y(P (x)⇒ Q(y))

such that A′′ ≡ A′ ≡ A.

A′′ is a required prenex normal form PNF for A

Example
Let’s now find PNF for the formula A:

(∃x∀y R(x, y)⇒ ∀y∃x R(x, y))

Step 1: Rename Variables Apart
Take a sub- formula B(x, y) : ∀y∃x R(x, y) of A, get B(x/z, y/w) : ∀z∃w R(z, w)
and replace B(x,y) by B(x/z, y/w) in A and get

(∃x∀y R(x, y)⇒ ∀z∃w R(z, w))

Step 2: Pull out quantifiers
We use corresponding equational laws for quantifiers to pull out first quantifiers
∀x∃y and then quantifiers ∀z∃w and get the following PNF for A

∃x∀y∃z∀w (R(x, y)⇒ R(z, w))

Observe we can also perform Step 2 that by pulling first the quantifiers ∀z∃w
and then quantifiers ∀x∃y and obtain another PNF for A

∃z∀w∃x∀y (R(x, y)⇒ R(z, w))

3 Skolemization

We will show now how any formula A in its prenex normal form PNF we can
transformed it into a certain open formula A∗, such that A ≡ A∗.
The open formula A∗ belongs to a richer language then the initial language to
which the formula A belongs. The transformation process adds new constants,
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called Skolem constants, and new function symbols, called Skolem function
symbols to the initial language.
The whole process is called the Skolemization of the initial language, the such
build extension of the initial language is called the Skolem extension.

Elimination of Quantifiers

Given a formula A be in its Prenex Normal Forma PNF

Q1x1Q2x2 . . . QnxnB(x1, x2, . . . xn)

where each Qi is a universal or existential quantifier, i.e. for all 1 ≤ i ≤ n,
Qi ∈ {∃,∀}, xi 6= xj for i 6= j, and B(x1, x2, . . . xn) contains no quantifiers.

We describe now a procedure of elimination of all quantifiers from the for-
mula A and hence transforming into a logically equivalent open formula A∗.
We assume that A is closed. If it is not closed we form its closure instead.
We considerer 3 cases.
Case 1
All quantifiers Qi for 1 ≤ i ≤ n are universal, i.e. formula A is

∀x1∀x2 . . . ∀xnB(x1, x2, . . . , xn)

We replace the formula A by the open formula A∗:

B(x1, x2, . . . . , xn).

Case 2
All quantifiers Qi for 1 ≤ i ≤ n are existential, i.e. formula A is

∃x1∃x2....∃xnB(x1, x2, . . . xn)

We replace the formula A by the open formula A∗:

B(c1, c2, . . . . , cn)

where c1, c2, . . . . , cn and new individual constants, all different, added to
our original language L. We call such constants added to the language Skolem
constants

Case 3
The quantifiers are mixed . We assume that A is closed. If it is not closed we
form its closure instead. We eliminate quantifiers one by one and step by step
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depending on first, and consecutive quantifiers.

Given a closed PNF formula A

Q1x1Q2x2 . . . QnxnB(x1, x2, . . . xn)

Step 1 Elimination of Q1x1

We have two possibilities for the first quantifier Q1x1, namely P1 Q1x1 is uni-
versal or P2 Q1x1 is existential.

Consider P1
First quantifier in A is universal, i. e. A is

∀x1Q2x2 . . . QnxnB(x1, x2, . . . xn)

We replace A by a formula A1 :

Q2x2 . . . QnxnB(x1, x2, . . . xn)

We have eliminated the quantifier Q1 in this case.

Consider P2
First quantifier in A is existential, i. e. A is

∃x1Q2x2 . . . QnxnB(x1, x2, . . . xn)

We replace A by a formula A1 :

Q2x2 . . . QnxnB(b1, x2, . . . xn)

where b1 is a new constant symbol added to our original language L. We
call such constant symbol added to the language Skolem constant symbol.
We have eliminated the quantifier Q1 in this case. We have covered all cases
and this ends the Step 1.

Step 2 Elimination of Q2x2.

Consider now the PNF formula A1 from Step1- P1

Q2x2 . . . QnxnB(x1, x2, . . . xn)

Remark that the formula A1 might not be closed.
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We have again two possibilities for elimination of the quantifier Q2x2, namely
P1 Q2x2 is universal or P2 Q2x2 is existential.

Consider P1
First quantifier in A1 is universal, i.e. A1 is

∀x2Q3x3 . . . QnxnB(x1, x2, x3, . . . xn)

We replace A1 by the following A2

Q3x3 . . . QnxnB(x1, x2, x3, . . . xn)

We have eliminated the quantifier Q2 in this case.

Consider P2
First quantifier in A1 is existential, i.e. A1 is

∃x2Q3x3 . . . QnxnB(x1, x2, x3, . . . xn)

Observe that now the variable x1 is a free variable in B(x1, x2, x3, . . . xn) and
hence in A1.
We replace A1 by the following A2

Q3x3 . . . QnxnB(x1, f(x1), x3, . . . xn)

where f is a new one argument functional symbol added to our original
language L. We call such functional symbols added to the original language
Skolem functional symbols.
We have eliminated the quantifier Q2 in this case.

Consider now the PNF formula A1 from Step1 - P2

Q2x2Q3x3 . . . QnxnB(b1, x2, . . . xn)

Again we have two cases.

Consider P1
First quantifier in A1 is universal, i.e. A1 is

∀x2Q3x3 . . . QnxnB(b1, x2, x3, . . . xn)

We replace A1 by the following A2

Q3x3 . . . QnxnB(b1, x2, x3, . . . xn)
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We have eliminated the quantifier Q2 in this case.
Consider P2
First quantifier in A1 is existential, i.e. A1 is

∃x2Q3x3 . . . QnxnB(b1, x2, x3, . . . xn)

We replace A1 by A2

Q3x3 . . . QnxnB(b1, b2, x3, . . . xn)

where b2 6= b1 is a new Skolem constant symbol added to our original language
L.
We have eliminated the quantifier Q2 in this case. We have covered all cases
and this ends the Step 2. Step 3 Elimination of Q3x3

Let’s now consider, as an example formula A2 from Step 2; P1 i.e. the formula

Q3x3 . . . QnxnB(x1, x2, x3, . . . xn)

We have again 2 choices to consider, but will describe only the following.

P2 First quantifier in A2 is existential, i. e. A2 is

∃x2Q4x4 . . . QnxnB(x1, x2, x3, x4, . . . xn)

Observe that now the variables x1, x2 are free variables in B(x1, x2, x3, . . . xn)
and hence in A2.

We replace A2 by the following A3

Q4x3 . . . QnxnB(x1, x2, g(x1, x2), x4 . . . xn)

where g is a new two argument functional symbol added to our original
language L.
We have eliminated the quantifier Q3 in this case.

Step i
At each Step i, for 1 ≤ i ≤ n), we build a binary tree of possibilities P1Qixi

is universal or P2 Qixi is existential and as result we obtain a formula Ai

with one less quantifier. The elimination process builds a sequence of formulas

A, A1, A2, . . . , An = A∗

where the formula A belongs to our original language

L = L{¬,∪,∩,⇒}(P,F,C),
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the formula A∗ belongs to its Skolem extension.
The Skolem extension SL is obtained from Lin the quantifiers elimination
process and

SL = L{¬,∪,∩,⇒}(P,F ∪ SF, C ∪ SC)

Observe that in the elimination process an universal quantifier introduces
free variables in the formula B(x1, x2, . . . xn). The elimination of an existen-
tial quantifier that follows universal quantifiers introduces a new functional
symbol with number of arguments equal the number of universal quantifiers
preceding it.
The resulting open formula A∗ logically equivalent to the P

¯
NF formula A.

Example 1
Let A be a PNF formula

∀y1∃y2∀y3∃y4 B(y1, y2, y3, y4, y4)

We eliminate ∀y1 and get a formula A1

∃y2∀y3∃y4 B(y1, y2, y3, y4)

We eliminate ∃y2 by replacing y2 by h(y1) where h is a new one argument
functional symbol added to our original language L.
We get a formula A2

∀y3∃y4 B(y1, h(y1), y3, y4)

We eliminate ∀y3 and get a formula A3

∃y4 B(y1, h(y1), y3, y4)

We eliminate ∃y4 by replacing y4 by f(y1, y3), where f is a new two argument
functional symbol added to our original language L.
We get a formula A4 that is our resulting open formula A∗

B(y1, h(y1), y3, f(y1, y3))

Example 2
Let now A be a PNF formula

∃y1∀y2∀y3∃y4∃y5∀y6 B(y1, y2, y3, y4, y4, y5, y6)

We eliminate ∃y1 and get a formula A1

∀y2∀y3∃y4∃y5∀y6 B(b1, y2, y3, y4, y4, y5, y6)
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where b1 is a new constant symbol added to our original language L.
We eliminate ∀y2, forally3 and get a formulas A2, A3; here is the formula A3

∃y4∃y5∀y6 B(b1, y2, y3, y4, y4, y5, y6)

We eliminate ∃y4 and get a formula A4

∃y5∀y6 B(b1, y2, y3, g(y2, y3), y5, y6)

where g is a new two argument functional symbol added to our original
language L.
We eliminate ∃y5 and get a formula A5

∀y6 B(b1, y2, y3, g(y2, y3), h(y2, y3), y6)

where h is a new two argument functional symbol added to our original
language L.
We eliminate ∀y6 and get a formula A6 that is the resulting open formula A∗

B(b1, y2, y3, g(y2, y3), h(y2, y3), y6)

4 Clausual Form of Formulas

5 Unification

Unification is the process of determining whether two atomic formulas, i.e.
two positive literals can be made identical by appropriate substitution for
their variables. Unification is an essential part of resolution.
Intuitively, a substitution is is a set of associations between variables and
terms in which 1. each variable is associated with at most one term, and 2. no
variable with an associated term occurs within any of the associated terms.
For example, the following is a well defined substitution

{x/c, y/f(b), z/w}

and the following is not a substitution

{x/g(y), y/f(x)}

as the variable x which is associated with term g(y), occurs in the term f(x)
associated with y; the variable y occurs in term g(y) associated with variable x.
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Given two atomic formulas (positive literals) P1 = P (x, y, z) and P2 = P (c, f(b), w).
The substitution {x/c, y/f(b), z/w} unifies P1 and P2, as when applied to P1

produces P2, i.e.

P1 = P (x, y, z){x/c, y/f(b), z/w} = P (x, y, z){x/c, y/f(b), z/w} = P (c, f(b), w) = P2

We often speak of terms associated with variables in a substitution as bindings
for those variables; the substitution itself is called a binding list ; the variables
with bindings are said to be bound.

We apply substitution to literals in the clauses and produce new clauses. For
example,
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