
1 Equational Laws for Quantifiers

Theorem 1 (Propositional Substitutions) If a formula A is a propositional
tautology, then by substituting for propositional variables in A any formula of
the first order language we obtain a formula which is a first order tautology.

Example 1 Consider the following propositional tautology: ((a⇒ b)⇒ (¬a∪
b)). Substituting ∃xP (x, z) for a, and ∀yR(y, z) for b, we obtain the formula

((∃xP (x, z)⇒ ∀yR(y, z))⇒ (¬∃xP (x, z) ∪ ∀yR(y, z))).

The theorem 1 guarantee that this formula is a predicate language (first order)
tautology.

We will consider here only tautologies which have a form of a logical equiv-
alence and write A ≡ B to denote that formulas A and B are logically
equivalent.
Definition Reminder: A ≡ B if and only of the formula ((A⇒ B)∩(B ⇒ A))
is a tautology. Directly from the theorem 1 we get that the following is true.

Fact 1 If A ≡ B is a propositional equivalence, A′, B′ are first order formulas
obtained by a substitution of any formula of the first order language for propo-
sitional variables in A and B, respectively, then A′ ≡ B′ also holds in the first
order logic.

Example 2 Consider the following propositional logical equivalence: (a ⇒
b) ≡ (¬a ∪ b). Substituting ∃xP (x, z) for a, and ∀yR(y, z) for b, we get from
the fact 1 that the following equivalence holds:

(∃xP (x, z)⇒ ∀yR(y, z)) ≡ (¬∃xP (x, z) ∪ ∀yR(y, z)).

We will prove also the following, intuitively quite obvious theorem which helps
to build new logical equivalences from the old, known ones.

Theorem 2 For any formulas A(x), B(x) ∈ F , if A(x) and B(x) are log-
ically equivalent, so are the formulas ∀xA(x) and ∀xB(x), and ∃xA(x) and
∃xB(x),respectively. I.e., the following holds.

If A(x) ≡ B(x), then ∀xA(x) ≡ ∀xB(x) and ∃xA(x) ≡ ∃xB(x).

Example 3 We know from the example 2 that the formulas (∃xP (x, z) ⇒
∀yR(y, z)) and (¬∃xP (x, z) ∪ ∀yR(y, z)) are logically equivalent. We get, as
the direct consequence of the theorem 2 the following equivalences:

∀z(∃xP (x, z)⇒ ∀yR(y, z)) ≡ ∀z(¬∃xP (x, z) ∪ ∀yR(y, z)),

∃z(∃xP (x, z)⇒ ∀yR(y, z)) ≡ ∃z(¬∃xP (x, z) ∪ ∀yR(y, z)).
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The Theorem 1 and Theorem 2 show us how to use the propositional tau-
tologies and simple use of quantifiers to build first order tautologies. The sub-
stitution technique is valid not for logical equivalences only, but we will con-
centrate here on them. We will show now that we can use only the proposi-
tional tautologies and theorems 1, 2 to prove the formulas ¬∀x¬(A(x)∪B) and
¬∀x(¬A(x) ∩ ¬B) are logically equivalent.

Example 4 By the substituting A(x) for a, and any formula B for b, in the
propositional de Morgan law: ¬(a ∪ b) ≡ (¬a ∩ ¬b), we get that

¬(A(x) ∪B) ≡ (¬A(x) ∩ ¬B).

Applying the theorem 2 to the above we obtain that

∀x¬(A(x) ∪B) ≡ ∀x(¬A(x) ∩ ¬B).

We know, from the propositional logic, that for any variables a, b, a ≡ b if and
only if ¬a ≡ ¬b. Substituting ∀x¬(A(x) ∪ B) and ∀x(¬A(x) ∩ ¬B) for a and
b, respectively, we get that ∀x¬(A(x) ∪ B) ≡ ∀x(¬A(x) ∩ ¬B) if and only if
¬∀x¬(A(x) ∪ B) ≡ ¬∀x(¬A(x) ∩ ¬B). But we know, that ∀x¬(A(x) ∪ B) ≡
∀x(¬A(x) ∩ ¬B) holds, so we conclude that the equivalence

¬∀x¬(A(x) ∪B) ≡ ¬∀x(¬A(x) ∩ ¬B)

is true.

As we can see, it is possible to obtain a fair amount of laws of quantifiers from
the propositional tautologies and theorems 1 and 2, but obviously, we will for
example never obtain a following, intuitively true law:

(∀xA(x)⇒ ∃xA(x)).

Some more examples of important first order tautologies ( laws of quantifiers)
which cannot be obtained by application of the above theorems 1, 2 to the
propositional tautologies will be given later. We will concentrate now only on
those laws which have a form of a logical equivalence. One of the most important
are the following De Morgan’s Laws.

De Morgan’s Laws
¬∀xA(x) ≡ ∃x¬A(x) (1)

¬∃xA(x) ≡ ∀x¬A(x) (2)

We will prove the De Morgan’s Laws later and now we will apply them to show
that the quantifiers can be defined one by the other i.e. that the following
Definability Laws hold.
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Definability Laws
∀xA(x) ≡ ¬∃x¬A(x) (3)

∃xA(x) ≡ ¬∀x¬A(x) (4)

The law (3) is often used as a definition of the universal quantifier in terms of
the existential one (and negation), the law (4) as a definition of the existential
quantifier in terms of the universal one (and negation).

Proof of (3) Substituting any formula A(x) for a variable a in the propo-
sitional tautology ((a ⇒ ¬¬a) ∩ (¬¬a ⇒ a)) we get the following first
order logical equivalence: A(x) ≡ ¬¬A(x). Applying the theorem 2 to
the above we obtain ∃xA(x) ≡ ∃¬¬A(x). By the de Morgan Law 1
∃¬¬A(x) ≡ ¬∀¬A(x) and hence ∃xA(x) ≡ ¬∀¬A(x), what ends the proof.

Proof of (3) We obtain ∀xA(x) ≡ ∀¬¬A(x) in a similar way as above. By the
de Morgan Law 2, ∀¬¬A(x) ≡ ¬∃¬A(x) and hence ∀xA(x) ≡ ¬∃¬A(x),
what ends the proof.

Other important equational laws are the following Introduction and Elimination
Laws. We will prove later the first two of them. We will show here that the
laws (7) - (12) can be deduced from laws (5) and (6), the de Morgan Laws,
Definability Laws, propositional tautologies and theorems1, 2.

Introduction and Elimination Laws

If B is a formula such that B does not contain any free occurrence
of x, then the following logical equivalences hold.

∀x(A(x) ∪B) ≡ (∀xA(x) ∪B) (5)

∀x(A(x) ∩B) ≡ (∀xA(x) ∩B) (6)

∃x(A(x) ∪B) ≡ (∃xA(x) ∪B) (7)

∃x(A(x) ∩B) ≡ (∃xA(x) ∩B) (8)

∀x(A(x)⇒ B) ≡ (∃xA(x)⇒ B) (9)
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∃x(A(x)⇒ B) ≡ (∀xA(x)⇒ B) (10)

∀x(B ⇒ A(x)) ≡ (B ⇒ ∀xA(x)) (11)

∃x(B ⇒ A(x)) ≡ (B ⇒ ∃xA(x)) (12)

The equivalences (5 )- (8) make it possible to introduce a quantifier that precedes
a disjunction or a conjunction into one component on the condition that the
other component does not contain any free occurrence of a variable which is
bound by that quantifier. These equivalences also make possible to eliminate
a quantifier from a component of a disjunction or a conjunction and to place
it before that disjunction or conjunction as a whole, on the condition that the
other component does not contain any free occurrence of a variable which that
quantifier would then bind.

The equivalences (9) - (12 )make it possible to introduce a quantifier preced-
ing an implication into the consequent of that implication, on the condition
that that antecedent does not contain any free occurrence of a variable which
is bound by that quantifier; they also make it possible to introduce a univer-
sal quantifier preceding an implication into the consequent of that implication
while changing it into an existential quantifier in the process,on the condition
that the consequent of that implication does not contain any free occurrence of
a variable bound by that quantifier. Equivalences (9) - (12) further enable us
to eliminate quantifiers from the antecedent of an implication to the position
preceding the whole implication, while changing a universal quantifier into an
existential one, and vice versa, in the process, and also to eliminate quantifiers
from the consequent of an implication to the position preceding the whole impli-
cation; the conditions that the other component of the implication in question
does not contain any free occurrence of a variable which that quantifier would
then bind, must be satisfied, respectively.

As we said before, the equivalences (5)-(12) are not independent, some of them
are the consequences of the others. Assuming that we have already proved (5)
and (6), the proofs of (7)-(12) are the following.

Proof of (7) ∃x(A(x) ∪B) is logically equivalent, by the Definability Law 4
to ¬∀x¬(A(x)∪B). By the reasoning presented in the example 4, we have
that ¬∀x¬(A(x) ∪ B) ≡ ¬∀x(¬A(x) ∩ ¬B). By the Introduction Law 6,
¬∀x(¬A(x) ∩ ¬B) ≡ ¬(∀x¬A(x) ∩ ¬B). Substituting ∀x¬A(x) for a and
¬B) for b in propositional equivalence ¬(a∩¬b) ≡ (¬a∪¬¬b), we get, by
the Fact1 that ¬(∀x¬A(x)∩¬B) ≡ ¬∀x¬A(x)∪¬¬B. In a similar way we
prove that ¬¬B ≡ B, by the Definability Law (4) ¬∀x¬A(x) ≡ ∃xA(x),
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hence ¬∀x¬A(x) ∪ ¬¬B ≡ (∃xA(x) ∪ B) and finally, ∃x(A(x) ∪ B) ≡
(∃xA(x) ∪B), what end the proof.

We can write this proof in a shorter, symbolic way as follows:

∃x(A(x) ∪B)
law 4≡ ¬∀x¬(A(x) ∪B)

thm 1, 2
≡ ¬∀x(¬A(x) ∩ ¬B)

law 6≡ ¬(∀x¬A(x) ∩ ¬B)
fact 1≡ ¬∀x¬A(x) ∪ ¬¬B
law 1≡ (∃xA(x) ∪B)

Distributivity Laws
Let A(x), B(x) be any formulas with a free variable x.
Law of distributivity of universal quantifier over conjunction

∀x (A(x) ∩B(x)) ≡ (∀xA(x) ∩ ∀xB(x)) (13)

Law of distributivity of existential quantifier over disjunction.

∃x (A(x) ∪B(x)) ≡ (∃xA(x) ∪ ∃xB(x)) (14)

Alternations of Quantifiers Let A(x, y) be any formula with a free variables
x,y.

∀x∀y (A(x, y) ≡ ∀y∀x (A(x, y) (15)

∃x∃y (A(x, y) ≡ ∃y∃x (A(x, y) (16)

Renaming the Variables
Let A(x) be any formula with a free variable x and let y be a variable that does
not occur in A(x).
Let A(x/y) be a result of replacement of each occurrence of x by y, then the
following holds.

∀xA(x) ≡ ∀yA(y), (17)

∃xA(x) ≡ ∃yA(y). (18)
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