Cse537 Lecture Notes

Introduction to Learning

Professor Anita Wasilewska
Computer Science Department
Stony Brook University
Learning Main Objectives

• **Indentification** of data as a source of useful information, called also a knowledge

• **Use** of “learned” information (knowledge) for different applications
Data – Information - Knowledge

- **Data** – as in databases
- **Information, or knowledge** is a meta information ABOUT the *patterns* hidden in the data
- **The patterns** must be discovered automatically
Learning : Intuitive Definition

• **Learning** is a process that extracts previously unknown knowledge from the data

• It requires *special* algorithms, technologies and methods
Learning

• There are many types of learning.
• We will cover two:
 • **SUPERVISED LEARNING**: classification
 • **UNSUPERVISED LEARNING**: clustering
• The knowledge obtained in the learning process is often presented as a set of rules of the form:

 IF.... **THEN**.....

 In this case it is called **Descriptive Learning**

• It also finds **other relationships** in data
Some Commercial Applications

• Market analysis and management
 • target marketing, customer relation management

• Risk analysis and management
 • Forecasting, customer retention, improved underwriting, quality control, competitive analysis
More Applications

- Buying patterns
- Fraud detection
- Customer Campaings
- Decision support
- Medical applications
- Marketing
- and more
Fraud Detection and Management

• **Applications**
 widely used in health care, retail, credit card services, telecommunications (phone card fraud), etc.

• **Approach**
 use historical data to build models of fraudulent behavior and use learned knowledge to help identify similar instances
Fraud Detection and Management

• Examples (historical)

 auto insurance: learn characteristics of group of people who stage accidents to collect on insurance and use them automatically to prevent fraud

 money laundering: learn characteristics of suspicious money transactions (US Treasury's Financial Crimes Enforcement Network)

 medical insurance: learn characteristics of fraudulent patients and doctors
Fraud Detection and Management

• **Detecting telephone fraud**
 Use learning methods to describe telephone call model: destination of the call, duration, time of day or week. Detects patterns that deviate from an expected norm. British Telecom identified discrete groups of callers with frequent intra-group calls, especially mobile phones, and broke a multimillion dollar fraud.

• **Detecting Credit Card fraud**
 Use learning methods to describe a given person (or general) credit card usage model. Detect patterns that deviate from an expected norm.
Market Analysis and Management

- Customer profiling

We use learning algorithms (clustering or classification) to identify:

1. what types of customers buy what products;
2. customer preferences;
3. the best products for different customers
Business Summary

• Learning Process (called also Data Mining in a case of very large data sets)
• helps to improve competitive advantage of organizations in dynamically changing environment;
• it improves clients retention and conversion
• Different methods are needed for different kind of data and different goals
Scientific Applications

• Networks failure detection
• Controllers
• Geographic Information Systems
• Genome- Bioinformatics
• Intelligent robots
• Intelligent rooms
• etc… etc ….
What is **NOT** Learning

- Once the **patterns** are **FOUND** and **TESTED** the learning process is finished
- **Use** of the patterns is **not** Learning
- **Queries** to the database **are not** Learning
Evolution of Database Technology

- **1960s:**
 Data collection, database creation, IMS and network DBMS

- **1970s:**
 Relational data model, relational DBMS implementation
Evolution of Database Technology c.d.

- **1980s:**
 RDBMS, advanced data models (extended-relational, OO, deductive, etc.) and application-oriented DBMS (spatial, scientific, engineering, etc.)

- **1990s—2000s:**
 Data mining - learning is an integral part of it) and data warehousing, multimedia databases, and Web databases

 BIG DATA - learning is also an integral part of it – new name - NEW algorithms, new new problems
Learning Process LP

• Learning Process is a **non trivial** process for identification of:
 - Valid (tested)
 - New
 - Potentially useful
 - Understandable (when possible)

patterns in data

We talk about the Learning Process – but the same applies to Data Mining Process (as in our Book)
The Learning Process (LP)

1. Data Selection
2. Data Cleaning
3. Preprocessing
4. Processing
5. Learning
6. Testing and Evaluation

Target data → Processed data → Transformed data → Rules or Descriptions → Knowledge
LEARNING

• **Learning** is a step of the LP process in which algorithms are applied to look for **patterns in data**

• It is necessary to **TEST** and **EVALUATE** obtained **patterns**

• It is also necessary to **apply first** the **preprocessing** operation;
• to **clean and preprocess** the data in order to obtain **significant patterns**
Steps of the Learning Process

Preprocessing: includes all the operations that have to be performed before a learning algorithm is applied.

Training: algorithms are applied to training data in order to obtain (learn) the patterns.

Testing: testing methods are applied to test the learned patterns.

Interpretation: discovered patterns are presented in a proper format and the user decides if it is necessary to re-iterate the algorithms.
Architecture of a Typical Learning System

Graphical user interface

Pattern evaluation

Learning engine

Database or data warehouse server

Knowledge-base

Data cleaning & data integration

Databases

Filtering

Data Warehouse
Learning
What Kind of Data?

• Relational Databases
• Data warehouses (Data Mining)
• Transactional databases
• Advanced DB and information repositories
 Object-oriented and object-relational databases
 Spatial databases
 Time-series data and temporal data
 Text databases and multimedia databases
 Heterogeneous and legacy databases
 WWW
RELATIONAL DATA

• We assume for our considerations that data used in the learning algorithms are presented in a form of a relational table with the key attribute removed
Learning the **Characteristic Rules**

- **It is a process which aim is to find rules that describe characteristic properties of a concept. They take the form**

 \[\text{If concept then characteristics}\]

- \(C=1 \rightarrow A=1 \& B=3\) 25% (support: there are 25% of the records for which the rule is true)
- \(C=1 \rightarrow A=1 \& B=4\) 17%
- \(C=1 \rightarrow A=0 \& B=2\) 16%
Learning the Discriminant Rules

• *It is a process which aim is to find rules that allow us to discriminate the objects (records) belonging to a given concept (one class) from the rest of records (classes)*

If characteristics then concept

• A=0 & B=1 → C=1 33% 83% (support, confidence: the conditional probability of the concept given the characteristics)
• A=2 & B=0 → C=1 27% 80%
• A=1 & B=1 → C=1 12% 76%
• Discriminant rules can be accepted even if they have a low support (and high confidence)
Learning Functionalities

• **Classification, Classification Prediction** is also called **Supervised Learning**

• **Supervised Learning**

 Finding models (rules) that describe (characterize) or/and distinguish (discriminate) classes or concepts for future prediction

 Example: classify countries based on climate (characteristics), or classify cars based on gas mileage and use it to predict classification of a new car

 Models, algorithms, methods: decision-tree, neural network, Bayes Network, Rough Sets, genetic algorithms

 Presentation of results: characteristic and/or discriminant rules-converged neural network, or Bayes network
Clustering
Unsupervised Learning

• **Cluster analysis (statistical method)**

 Class label is unknown;
 algorithms group data to form new classes;
 It is also called **unsupervised learning**

 For example: cluster houses to find distribution patterns

 Clustering is based on the principle:
 maximizing the intra-class similarity and
 minimizing the interclass similarity
Clustering

- Database segmentation

- Given a set of objects (records) the algorithm obtains a division of the objects into clusters in which the distance of objects inside a cluster is minimal and the distance among objects of different clusters is maximal

- Unsupervised learning
Classification
Supervised Learning

• **Given** a set of objects a **classification algorithm** builds a set of **discriminant** and /or **characterization rules**

• **or other descriptions** in order to be able, as the next step, to **classify** unknown sets of objects

• This is also called a **supervised learning**
Classification Methods, Models, Algorithms

- **DESCRIPTIVE:**
 - Decision Trees (ID3, C4.5)
 - Rough Sets
 - Genetic Algorithms

- **STATISTICAL:**
 - Neural Networks
 - Bayesian Networks
Summary

- **Learning**: discovering interesting patterns from often large amounts of data
- A natural evolution of database technology, in great demand, with wide applications
- **Learning process LP** includes data cleaning, data integration, data selection, transformation, training, testing, pattern evaluation, and knowledge presentation
- **Learning** can be performed in a variety of information repositories
Preprocessing
Preprocessing

- Preprocessing is a process in which we
- select, integrate, and clean the data;
- decide which kind of patterns are needed;
- decide which algorithm is the best;
- prepare data for algorithms
Implementation Preparation (1)

- **Identify** the problem to be solved.
- **Study** it in detail
- **Explore** the solution space,
- **Find** one acceptable solution (feasible to implement)
- **Specify** the solution
- **Prepare and preprocess** the data
Preparation

• Remember GIGO! (garbage in gabage out)
• Add some data, if necessary
• Structure the data in a proper form
• Be careful with incomplete and noisy data
Studying the data

• The surrounding world consists of objects (data) and the Learning Process goal is to find the relationships among objects

• The objects are characterized by properties (attributes, values of attributes) that have to be analyzed

• The results (rules, other descriptions) are valid (true) under certain circumstances (data we learn from) and in certain moments (available data at the moment)
Types of data

• Generally we distinguish:
 Quantitative Data
 Qualitative Data

• Bivaluated: often very useful
• Null Values are not applicable
• Missing data usually not acceptable
What to take into account

• Eliminate redundant records
• Eliminate out of range values of attributes
• Decide a generalization level
• Decide on the accuracy level
Summary

• The preprocessing is usually required and is an essential part of the LP process

• If preprocessing is not well performed the patterns obtained could be of no use

• Preprocessing is a tedious task that could even take more time than the Learning proper