
cse357
ARTIFICIAL INTELLIGENCE

Professor Anita Wasilewska

Spring2016

Introduction to Predicate Resolution

PART 1: Introduction

PART 2: Prenex Normal Form and Skolemizatiom

PART 3: Clauses and Unification

PART 4: Resolution

PART 1: Introduction

Introduction

The resolution proof system for Predicate Logic operates, as
in propositional case on sets of clauses and uses a
resolution rule as the only rule of inference.

The first goal of this part is to define an effective process of
transformation of any formula A of a predicate language

L = L{¬,∪,∩,⇒}(P,F,C)

into its logically equivalent set of clauses CA

Introduction

The second goal of this part is extend the definition of the
propositional resolution rule to the case of predicate
languages

Observe that we define, as in propositional case, a clause
as a finite set of literals

We define, as before, a literal as an atomic formula or a
negation of an atomic formula

The difference with propositional resolution is in the
language we work with, i.e. what is a predicate atomic
formula as opposed to propositional atomic formula

Introduction

Definition (Reminder)

An atomic formula of a predicate language L(P,F,C) is
any element of A∗ of the form

R(t1, t2, ..., tn)

where R ∈ P,#R = n and t1, t2, ..., tn ∈ T

I.e. R is n-ary relational symbol and t1, t2, ..., tn are any
terms

The set of all atomic formulas is denoted by AF and is
defined as

AF = {R(t1, t2, ..., tn) ∈ A∗ : R ∈ P, t1, t2, ..., tn ∈ T, n ≥ 1}

Introduction

We use symbols R ,Q ,P, ... with indices if necessary to
denote the atomic formulas

We define formally the set L of all literals of L(P,F,C) as
follows

L = {R : R ∈ AF } ∪ {¬R : R ∈ AF }

Reminder:

A formula of a predicate language is an open formula if it
does not contain any quantifiers, i.e. it is a formula build out of
atomic formulas and propositional connectives only

Introduction

A transformation a formula A of a predicate language into a
logically equivalent set CA of clauses means that we can
represent the formula A as a certain collection of atomic
formulas and negations of atomic formula

This means any formula A of a predicate language can be
that represented as a certain collection of open formulas

In order to achieve this goal we start with of methods that
allow the transformation of any formula A into an open
formula A∗ of some larger language such that A ≡ A∗

The process is described in the following PART 2

PART 2: Prenex Normal Form and Skolemizatiom

Some Basic Notions

Let L = (A,T,F) be a predicate language determined by P,
F, C and the set of propositional connectives {¬,∪,∩,⇒}, i.e.

L = L{¬,∪,∩,⇒}(P,F,C)

Given a formula A(x) ∈ F , t ∈ T, and A(t) be a result of
substituting the term t for all free occurrences of x in A(x)

Definition

We say that a term t ∈ T is free for x in A(x), if no
occurrence of a variable in t becomes a bound occurrence in
the formula A(t)

Some Basic Notions

Let A(x),A(x1, x2, ..., xn) ∈ F and t , t1, t2, ..., tn ∈ T

A(t), A(t1, t2, ..., tn)

denotes the result of replacing respectively all occurrences
of the free variables x, x1, x2, ..., xn, by the terms t , t1, t2, ..., tn
We assume that t , t1, t2, ..., tn are free for x, x1, x2, ..., xn,
respectively, in A

The assumption that t ∈ T is free for x in A(x) while
substituting t for x, is important because otherwise we would
distort the meaning of A(t)

This is illustrated by the following example

Examples

Example 1

Let t = y and A(x) be

∃y(x , y)

Obviously t is not free for y in A

The substitution of t for x produces a formula A(t) of the form

∃y(y , y)

which has a different meaning than ∃y(x , y)

Examples

Example 2

Let A(x) be a formula

(∀yP(x, y) ∩ Q(x, z))

and t = f(x, z)

We substitute t on a place of x in A(x) and we obtain a
formula A(t) of the form

(∀yP(f(x, z), y) ∩ Q(f(x, z), z))

None of the occurrences of the variables x, z of t is bound in
A(t), hence we say that t = f(x, z) is free for x in
(∀yP(x, y) ∩ Q(x, z))

Examples

Example 3

Let A(x) be a formula

(∀yP(x, y) ∩ Q(x, z))

The term t = f(y, z) is not free for x in A(x) because
substituting t = f(y, z) on a place of x in A(x) we obtain
now a formula A(t) of the form

(∀yP(f(y, z), y) ∩ Q(f(y, z), z))

which contain a bound occurrence of the variable y of t in
sub-formula (∀yP(f(y, z), y))

The other occurrence of y in sub-formula (Q(f(y, z), z)) is
free, but it is not sufficient, as for term to be free for x, all
occurrences of its variables has to be free in A(t)

Similar Formulas

Informally, we say that formulas A(x) and A(y) are similar if
and only if A(x) and A(y) are the same except that A(x)
has free occurrences of x in exactly those places where
A(y) has free occurrence of of y

We define it formally as follows

Definition

Let x and y be two different variables. We say that the
formulas A(x) and A(y) = A(x/y) are similar and denote it
by

A(x) ∼ A(y)

if and only if y is free for x in A(x) and A(x) has no free
occurrences of y

Similar Formulas Examples

Example 1

The formulas A(x): ∃z(P(x, z)⇒ Q(x, y)) and

A(y): ∃z(P(y, z)⇒ Q(y, y))

are not similar; y is free for x in A(x) as no occurrence of
y becomes a bound occurrence in the formula A(y) but the
formula A(x) has a free occurrence of y

Example 2

The formulas A(x): ∃z(P(x, z)⇒ Q(x, y)) and

A(w): ∃z(P(w, z)⇒ Q(w, y))

are similar; w is free for x in A(x) as no occurrence of w
becomes a bound occurrence in the formula A(w) and the
formula A(x) has no free occurrence of w

Renaming the Variables

Fact Renaming the Variables

For any formula A(x) ∈ F , if A(x) and A(y) = A(x/y) are
similar, i.e. A(x) ∼ A(y) then the following logical
equivalences hold

∀xA(x) ≡ ∀yA(y) and ∃xA(x) ≡ ∃yA(y)

Example 3

We proved in Example 2 that the formulas A(x) ∼ A(w), i.e.

∃z(P(x, z)⇒ Q(x, y)) ∼ ∃z(P(w, z)⇒ Q(w, y))

Hence by the Fact we get that

∀x∃z(P(x, z)⇒ Q(x, y)) ≡ ∀w∃z(P(w, z)⇒ Q(w, y)),

∃x∃z(P(x, z)⇒ Q(x, y)) ≡ ∃w∃z(P(w, z)⇒ Q(w, y))

Renaming the Variables

Replacement Theorem

For any formulas A ,B ∈ F ,

if B is a sub-formula of A , and A∗ is the result of replacing
zero or more occurrences of B in A by a formula C, and
B ≡ C, then A ≡ A∗

Renaming Variables Theorem

Theorem Renaming Variables

For any formula A(x),A(y),B ∈ F ,

if A(x) and A(x/y) are similar, i.e. A(x) ∼ A(y), and the
formula ∀xA(x) or the formula ∃xA(x) is a sub-formula
of B, and B∗ is the result of replacing zero or more
occurrences of A(x) in B by a formula ∀yA(y) or by a
formula ∃yA(y), then

B ≡ B∗

Naming Variables Apart

Definition Naming Variables Apart

We say that a formula B has its variables named apart if no
two quantifiers in B bind the same variable and no bound
variable is also free

Theorem Naming Variables Apart

Every formula A ∈ F is logically equivalent to one in which
all variables are named apart

We use the above theorems plus the equational laws for
quantifiers to prove, as a next step a so called a Prenex Form
Theorem. In order to do so we first we define an important
notion of prenex normal form of a formula

Prenex Normal Form

Definition Prenex Normal Form

Any formula of the form

Q1x1Q2x2....Qnxn B

where each Qi is a universal or existential quantifier, i.e.

for all 1 ≤ i ≤ n, Qi ∈ {∃,∀},

and xi , xj for i , j,

and the formula B contains no quantifiers,

is said to be in Prenex Normal Form (PNF)

We include the case n = 0 when there are no quantifiers at all

Prenex Normal Form Theorem

Theorem Prenex Normal Form Theorem

There is an effective procedure for transforming any formula
A ∈ F into a formula B in prenex normal form such that

A ≡ B

We describe the procedure by induction on the number k of
occurrences of connectives and quantifiers in A

Let’s consider now few examples

Prenex Normal Form Example 1

Example 1

Given a formula A : ∀x(P(x)⇒ ∃xQ(x))

Find its prenex normal form PNF

Step 1: Naming Variables Apart

We make all bound variables in A different, by substituting
∃xQ(x) by logically equivalent formula ∃yQ(y) in A as Q(x)
and Q(x/y) are similar

We hence transformed A into an equivalent formula A ′

∀x(P(x)⇒ ∃yQ(y))

with all its variables named apart

Prenex Normal Form Example 1

Step 2: Pull Out Quantifiers

Now, we can apply the equational law

(C ⇒ ∃yQ(y)) ≡ ∃y (C ⇒ Q(y))

to the sub-formula B : (P(x)⇒ ∃yQ(y)) of A ′

for C = P(x), as P(x) does not contain the variable y

We get its equivalent formula B∗ : ∃y(P(x)⇒ Q(y))

We substitute now B∗ on place of B in A ′ and get A ′′

∀x∃y(P(x)⇒ Q(y))

such that A ′′ ≡ A ′ ≡ A

A ′′ is a required prenex normal form PNF for A

Prenex Normal Form Example 2

Example 1

Let’s now find PNF for the formula A :

(∃x∀y R(x, y)⇒ ∀y∃x R(x, y))

Step 1: Rename Variables Apart

Take a sub- formula B(x, y) : ∀y∃x R(x, y) of A

Rename variables in B(x, y), i.e. get
B(x/z, y/w) : ∀z∃w R(z,w)

Replace B(x, y) by B(x/z, y/w) in A and get

(∃x∀y R(x, y)⇒ ∀z∃w R(z,w))

Prenex Normal Form Example 2

Step 2: Pull out quantifiers

We use corresponding equational laws for quantifiers to pull
out first quantifiers ∀x∃y and then quantifiers ∀z∃w

and get the following PNF for A

∃x∀y∃z∀w (R(x, y)⇒ R(z,w))

Observe we can also perform Step 2 by pulling out first the
quantifiers ∀z∃w and then quantifiers ∀x∃y and obtain
another PNF for A

∃z∀w∃x∀y (R(x, y)⇒ R(z,w))

Skolemization

As the next step we show how any formula A in its prenex
normal form PNF can be transformed into a certain open
formula A∗, such that A ≡ A∗

The open formula A∗ belongs to a richer language then the
language of the initial formula A

The transformation process adds new constants, called
Skolem constants and new function symbols, called Skolem
function symbols to the initial language to which the formula
A belongs

The whole process is called the Skolemization of the initial
language

Such build extension of the initial language is called the
Skolem extension

Elimination of Quantifiers

Given a formula A be in its Prenex Normal Forma PNF

Q1x1Q2x2 . . .QnxnB(x1, x2, . . . xn)

where each Qi is a universal or existential quantifier, i.e. for
all 1 ≤ i ≤ n, Qi ∈ {∃,∀}, xi , xj for i , j, and B(x1, x2, . . . xn)
contains no quantifiers

We describe now a procedure of elimination of all
quantifiers from the formula PNFA

The procedure transforms PNF A into a logically equivalent
open formula A∗

We assume that A is closed

If it is not closed we form its closure instead

Definition of closure follows

Closure of a Formula

Closure of a Formula

For any formula A ∈ F , a closure of A is a closed formula A ′

obtained from A by prefixing in universal quantifiers all those
variables that a free in A; i.e. the following holds

if A(x1, , xn) then A ′ ≡ A is

∀x1∀x2....∀xnA(x1, x2,, xn)

Example

Let A be a formula

(P(x, y)⇒ ¬∃z R(x, y, z))

its closure i.e. A ′ ≡ A is

∀x∀y(P(x, y)⇒ ¬∃z R(x, y, z))

Elimination of Quantifiers

Given a formula A in its closed PNF form

Q1x1Q2x2 . . .QnxnB(x1, x2, . . . xn)

We considerer 3 cases

Case 1

All quantifiers Qi for 1 ≤ i ≤ n are universal, i.e. the formula
A is

∀x1∀x2 . . .∀xnB(x1, x2, . . . , xn)

We replace the formula A by the open formula A∗

B(x1, x2, , xn)

Elimination of Quantifiers

Case 2

All quantifiers Qi for 1 ≤ i ≤ n are existential, i.e. formula A is

∃x1∃x2....∃xnB(x1, x2, . . . xn)

We replace the formula A by the open formula A∗

B(c1, c2, , cn)

where c1, c2, , cn and new individual constants added
to our original language L

We call such individual constants added to the original
language Skolem constants

Elimination of Quantifiers; Step 1

Case 3
The quantifiers in A are mixed
We eliminate mixed quantifiers one by one and step by step
depending on first, and then the consecutive quantifiers in the
closed PNF formula A

Q1x1Q2x2 . . .QnxnB(x1, x2, . . . xn)

We have two possibilities for the first quantifier Q1x1, namely
P1 Q1x1 is universal or P2 Q1x1 is existential
Consider P1
First quantifier in A is universal, i. e. A is

∀x1Q2x2 . . .QnxnB(x1, x2, . . . xn)

Step 1
We replace A by the following formula A1

Q2x2Q3x3 . . .QnxnB(x1, x2, x3, . . . xn)

We have eliminated the quantifier Q1 in this case

Elimination of Quantifiers; Step 1

Consider P2

First quantifier in A is existential, i. e. A is

∃x1Q2x2 . . .QnxnB(x1, x2, . . . xn)

We replace A by a following formula A1

Q2x2 . . .QnxnB(b1, x2, . . . xn)

where b1 is a new constant symbol added to our original
language L

We call such constant symbol added to the language Skolem
constant symbol

We have eliminated the quantifier Q1 in this case

We have covered all cases and this ends the Step 1

Elimination of Quantifiers; Step 2

Step 2 Elimination of Q2x2

Consider now the PNF formula A1 from Step1- P1

Q2x2 . . .QnxnB(x1, x2, . . . xn)

Remark that the formula A1 might not be closed
We have again two possibilities for elimination of the quantifier
Q2x2, namely P1 Q2x2 is universal or P2 Q2x2 is
existential
Consider P1
First quantifier in A1 is universal, i.e. A1 is

∀x2Q3x3 . . .QnxnB(x1, x2, x3, . . . xn)

We replace A1 by the following A2

Q3x3 . . .QnxnB(x1, x2, x3, . . . xn)

We have eliminated the quantifier Q2 in this case

Elimination of Quantifiers; Step 2

Consider P2

First quantifier in A1 is existential, i.e. A1 is

∃x2Q3x3 . . .QnxnB(x1, x2, x3, . . . xn)

Observe that now the variable x1 is a free variable in
B(x1, x2, x3, . . . xn) and hence in A1 We replace A1 by the
following A2

Q3x3 . . .QnxnB(x1, f(x1), x3, . . . xn)

where f is a new one argument functional symbol added to
our original language L

We call such functional symbols added to the original
language Skolem functional symbols

We have eliminated the quantifier Q2 in this case

Elimination of Quantifiers; Step 2

Consider now the PNF formula A1 from Step1 - P2

Q2x2Q3x3 . . .QnxnB(b1, x2, . . . xn)

Again we have two cases

Consider P1

First quantifier in A1 is universal, i.e. A1 is

∀x2Q3x3 . . .QnxnB(b1, x2, x3, . . . xn)

We replace A1 by the following A2

Q3x3 . . .QnxnB(b1, x2, x3, . . . xn)

We have eliminated the quantifier Q2 in this case

Elimination of Quantifiers; Step 2

Consider P2

First quantifier in A1 is existential, i.e. A1 is

∃x2Q3x3 . . .QnxnB(b1, x2, x3, . . . xn)

We replace A1 by the following A2

Q3x3 . . .QnxnB(b1, b2, x3, . . . xn)

where b2 , b1 is a new Skolem constant symbol added to
our original language L

We have eliminated the quantifier Q2 i n this case

We have covered all cases and this ends the Step 2

Elimination of Quantifiers; Step 3

Step 3 Elimination of Q3x3

Let’s now consider, as an example a formula A2 from Step 2;
P1 i.e. the formula

Q3x3 . . .QnxnB(x1, x2, x3, . . . xn)

We have again 2 choices to consider, but will describe only
the following
P2 First quantifier in A2 is existential, i. e. A2 is

∃x2Q4x4 . . .QnxnB(x1, x2, x3, x4, . . . xn)

Observe that now the variables x1, x2 are free variables in
B(x1, x2, x3, . . . xn) and hence in A2

We replace A2 by the following A3

Q4x3 . . .QnxnB(x1, x2, g(x1, x2), x4 . . . xn)

where g is a new two argument functional symbol added to
our original language L
We have eliminated the quantifier Q3 in this case

Elimination of Quantifiers; Step i

Step i
At each Step i for 1 ≤ i ≤ n) we build a binary tree of
possibilities P1 Qixi is universal or P2 Qixi is existential
and as result we obtain a
formula Ai with one less quantifier
The elimination process builds a sequence of formulas

A , A1, A2, . . . , An = A∗

where the formula A belongs to our original language

L = L{¬,∪,∩,⇒}(P,F,C),

the open formula A∗ belongs to its Skolem extension
The Skolem extension SL is obtained from L in the
quantifiers elimination process and

SL = L{¬,∪,∩,⇒}(P,F ∪ SF, C ∪ SC)

Elimination of Quantifiers Result

Observe that in the elimination process an universal
quantifier introduces free variables in the formula
B(x1, x2, . . . xn)

The elimination of an existential quantifier that follows
universal quantifiers introduces a new functional symbol with
number of arguments equal the number of universal
quantifiers preceding it

The elimination of an existential quantifier that does not
follows any universal quantifiers introduces a new constant
symbol

The resulting open formula A∗ logically equivalent to the P
¯
NF

formula A

Example 1

Example 1

Let A be a closed PNF formula

∀y1∃y2∀y3∃y4 B(y1, y2, y3, y4, y4)

We eliminate ∀y1 and get a formula A1

∃y2∀y3∃y4 B(y1, y2, y3, y4)

We eliminate ∃y2 by replacing y2 by h(y1)

h is a new one argument functional symbol added to our
original language L

We get a formula A2

∀y3∃y4 B(y1, h(y1), y3, y4)

Example 1

Given the formula A2

∀y3∃y4 B(y1, h(y1), y3, y4)

We eliminate ∀y3 and get a formula A3

∃y4 B(y1, h(y1), y3, y4)

We eliminate ∃y4 by replacing y4 by f(y1, y3), where f is a
new two argument functional symbol added to our original
language L

We get a formula A4 that is our resulting open formula A∗

B(y1, h(y1), y3, f(y1, y3))

Example 2

Example 2

Let now A be a PNF formula

∃y1∀y2∀y3∃y4∃y5∀y6 B(y1, y2, y3, y4, y4, y5, y6)

We eliminate ∃y1 and get a formula A1

∀y2∀y3∃y4∃y5∀y6 B(b1, y2, y3, y4, y4, y5, y6)

where b1 is a new constant symbol added to our original
language L

We eliminate ∀y2,∀y3 and get formulas A2,A3; here is the
formula A3

∃y4∃y5∀y6 B(b1, y2, y3, y4, y4, y5, y6)

Example 2

We eliminate ∃y4 and get a formula A4

∃y5∀y6 B(b1, y2, y3, g(y2, y3), y5, y6)

whereg is a new two argumentfunctional symbol added to
our original language L

We eliminate ∃y5 and get a formula A5

∀y6 B(b1, y2, y3, g(y2, y3), h(y2, y3), y6)

where h is a new two argument functional symbol added to
our original language L

We eliminate ∀y6 and get a formula A6 that is the resulting
open formula A∗

B(b1, y2, y3, g(y2, y3), h(y2, y3), y6)

Open Formulas to Clauses

Definition (Reminder)

An atomic formula of a predicate language L(P,F,C) is
any element of A∗ of the form

R(t1, t2, ..., tn)

where R ∈ P,#R = n and t1, t2, ..., tn ∈ T

I.e. R is n-ary relational symbol and t1, t2, ..., tn are any
terms

The set of all atomic formulas is denoted by AF and is
defined as

AF = {R(t1, t2, ..., tn) ∈ A∗ : R ∈ P, t1, t2, ..., tn ∈ T, n ≥ 1}

Literals and Open Formulas

Definition We use symbols R ,Q ,P, ... with indices if
necessary to denote the atomic formulas

We define formally the set L of all literals of L(P,F,C) as
follows

L = {R : R ∈ AF } ∪ {¬R : R ∈ AF }

Definition

A set OF of all open formulas of a predicate language
L = L{¬,∪,∩,⇒}(P,F,C) is the smallest set for which the
following conditions are satisfied

(1) AF ⊆ OF (atomic formulas are open formulas)
(2) If A ∈ OF , then ¬A ∈ OF
(3) If A ,B ∈ OF , then

(A ∪ B), (A ∩ B), (A ⇒ B) ∈ OF

Decomposition Rules for Open Formulas

Here are the decomposition rules needed to transform open
formulas into logically equivalent sets of clauses

Disjunction decomposition rules

(∪)
Γ
′

, (A ∪ B), ∆

Γ′ , A ,B , ∆
, (¬∪)

Γ
′

, ¬(A ∪ B), ∆

Γ′ , ¬A , ∆ ; Γ′ , ¬B , ∆

Conjunction decomposition rules

(∩)
Γ
′

, (A ∩ B), ∆

Γ′ ,A ,∆ ; Γ′ , B ,∆
, (¬∩)

Γ
′

, ¬(A ∩ B), ∆

Γ′ , ¬A ,¬B , ∆

where Γ
′

, ∈ L∗ ∆ ∈ OF ∗, A ,B ∈ OF

Decomposition Rules

Implication decomposition rules

(⇒)
Γ
′

, (A ⇒ B), ∆

Γ′ , ¬A ,B , ∆
, (¬ ⇒)

Γ
′

, ¬(A ⇒ B), ∆

Γ′ ,A ,∆ ; Γ′ , ¬B , ∆

Negation decomposition rule

(¬¬)
Γ
′

, ¬¬A , ∆

Γ′ , A , ∆

where Γ
′

∈ L∗, ∆ ∈ OF ∗, A ,B ∈ OF

Tree Decomposition Rules

We write the decomposition rules in a visual tree form as
follows

Tree Decomposition Rules

(∪) rule

Γ
′

, (A ∪ B), ∆

| (∪)

Γ
′

, A ,B , ∆

Tree Decomposition Rules

(¬∪) rule

Γ
′

, ¬(A ∪ B), ∆∧
(¬∪)

Γ
′

, ¬A , ∆ Γ
′

, ¬B , ∆

(∩) rule

Γ
′

, (A ∩ B), ∆∧
(∩)

Γ
′

, A , ∆ Γ
′

, B , ∆

Tree Decomposition Rules

(¬∪) rule

Γ
′

, ¬(A ∩ B), ∆

| (¬∩)

Γ
′

, ¬A ,¬B , ∆

(⇒) rule

Γ
′

, (A ⇒ B), ∆

| (∪)

Γ
′

, ¬A ,B , ∆

Tree Decomposition Rules

(¬ ⇒) rule

Γ
′

, ¬(A ⇒ B), ∆∧
(¬ ⇒)

Γ
′

, A , ∆ Γ
′

, ¬B , ∆

(¬¬) rule

Γ
′

, ¬¬A , ∆

| (¬¬)

Γ
′

, A , ∆

Decomposable, Indecomposable

Definition: Decomposable Formula

A formula that is not a literal, i.e. A ∈ OF − L is called a
decomposable formula

Definition: Decomposable Sequence

A sequence Γ that contains a decomposable formula is
called a decomposable sequence

Definition: Indecomposable Sequence

A sequence Γ
′

built only out of literals, i.e. Γ
′

∈ L∗ is called
an indecomposable sequence

Definitions and Observations

Observation 1

Decomposition rules are functions with disjoint domains, i.e.

For any decomposable sequence, i.e. for any Γ < L∗

there is exactly one decomposition rule that can be applied
to it

This rule is determined by the first decomposable formula
in Γ and by the main connective of that formula

Observation 2

If the main connective of the first decomposable formula is
∪,∩, ⇒,

then the decomposition rule determined by it is
(∪), (∩), (⇒), respectively

Definitions and Observations

Observation 3

If the main connective of the first decomposable formula A
is negation ¬

then the decomposition rule is determined by the second
connective of the formula A

The corresponding decomposition rules are
(¬∪), (¬∩), (¬¬), (¬ ⇒)

Observation 4

For any sequence Γ ∈ OF ∗,

Γ ∈ L∗ or Γ is in the domain of exactly one of
Decomposition Rules

Decomposition Tree Definition

Definition: Decomposition Tree TA

For each A ∈ OF , a decomposition tree TA is a tree build
as follows

Step 1.

The formula A is the root of TA

For any other node Γ of the tree we follow the steps below

Step 2.

If Γ is indecomposable then Γ becomes a leaf of the tree

Decomposition Tree Definition

Step 3.

If Γ is decomposable, then we traverse Γ from left to
right and identify the first decomposable formula B

We put its premiss as a node below, or its left and right
premisses as the left and right nodes below, respectively

Step 4.

We repeat steps 2 and 3 until we obtain only leaves

Decomposition Tree and Clauses

Directly from Observations 1 - 4 and the fact that premisses
and conclusion in all decomposition rules are logically
equivalent we get the following

Theorem

For any A ∈ OF , its decomposition tree TA is unique and its
leaves form a set of clauses that is logically equivalent to the
formula A

More precisely, let Γ1, Γ2, . . . Γn ∈ L∗ be all leaves of TA

The set of all clauses corresponding to the formula A is

CA = {{Γ1}, {Γ2}, . . . {Γn}}

and
CA ≡ A

Example

The tree TA

(((P(x)⇒ Q(y)) ∩ ¬R(x)) ∪ (P(x)⇒ R(x))

| (∪)

((P(x)⇒ Q(y)) ∩ ¬R(x)), (P(x)⇒ R(x))∧
(∩)

(P(x)⇒ Q(y)), (P(x)⇒ R(x))

| (⇒)

¬P(x),Q(y), (P(x)⇒ R(x))

| (⇒)

¬P(x),Q(y),¬P(x),R(x)

¬R(x), (P(x)⇒ R(x))

| (⇒)

¬R(x),¬P(x),R(x)

Example

The leaves of TA are

¬P(x),Q(y),¬P(x),R(x) and ¬R(x),¬P(x),R(x)

The clauses corresponding to the leaves are

C1 = {¬P(x),Q(y),R(x)} and C2 = {¬R(x),¬P(x),R(x)}

The set of all clauses corresponding to the formula A is

CA = {C1,C2}

CA = {{¬P(x),Q(y),R(x)}, {¬R(x),¬P(x),R(x)}}

Unification

Unification is the process of determining whether two atomic
formulas, i.e. two positive literals can be made identical by
appropriate substitution for their variables

Unification is an essential part of resolution

Unification is defined in terms of a notion of a substitution

Sunstitution

Intuitively, a substitution is is a set of associations between
variables and terms in which

1.each variable is associated with at most one term, and

2. no variable with an associated term occurs within any of
the associated terms

Substitution

Example

The following is a well defined substitution

{x/c, y/f(b), z/w}

and the following is not a substitution

{x/g(y), y/f(x)}

as the variable x which is associated with term g(y), occurs
in the term f(x) associated withy;

the variable y occurs in term g(y) associated with variable x

Unification

Given two positive literals P1 = P(x, y, z) and
P2 = P(c, f(b),w)

The substitution {x/c, y/f(b), z/w} unifies P1 and P2, as
when applied to P1 produces P2, i.e.

P1{x/c, y/f(b), z/w} = P(x, y, z){x/c, y/f(b), z/w}

= P(c, f(b),w) = P2

