cse357 ARTIFICIAL INTELLIGENCE

Professor Anita Wasilewska

Spring2016

Introduction to Predicate Resolution

PART 1: Introduction

PART 2: Prenex Normal Form and Skolemizatiom

PART 3: Clauses and Unification

PART 4: Resolution

PART 1: Introduction

The resolution proof system for Predicate Logic operates, as in propositional case on sets of **clauses** and uses a **resolution rule** as the only rule of inference.

The first goal of this part is to define an effective process of transformation of any formula A of a predicate language

$$\mathcal{L} = \mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}} \big(\textbf{P}, \textbf{F}, \textbf{C} \big)$$

into its logically equivalent set of clauses C_A

The **second goal** of this part is extend the definition of the propositional **resolution rule** to the case of predicate languages

Observe that we define, as in propositional case, a **clause** as a finite set of **literals**

We define, as before, a **literal** as an **atomic formula** or a **negation** of an **atomic** formula

The **difference** with propositional resolution is in the **language** we work with, i.e. what is a predicate atomic formula as opposed to propositional atomic formula

Definition (Reminder)

An atomic formula of a predicate language $\mathcal{L}(P,F,C)$ is any element of \mathcal{A}^* of the form

$$R(t_1, t_2, ..., t_n)$$

where $R \in \mathbf{P}, \#R = n$ and $t_1, t_2, ..., t_n \in \mathbf{T}$

l.e. R is n-ary relational symbol and $t_1, t_2, ..., t_n$ are any terms

The set of all **atomic formulas** is denoted by $A\mathcal{F}$ and is defined as

$$A\mathcal{F} = \{R(t_1, t_2, ..., t_n) \in \mathcal{A}^* : R \in \mathbf{P}, t_1, t_2, ..., t_n \in \mathbf{T}, n \ge 1\}$$

We use symbols R, Q, P, ... with indices if necessary to **denote** the atomic formulas

We define formally the set L of all **literals** of $\mathcal{L}(P, F, C)$ as follows

$$\mathbf{L} = \{R : R \in A\mathcal{F}\} \cup \{\neg R : R \in A\mathcal{F}\}$$

Reminder:

A formula of a predicate language is an **open formula** if it does not contain any quantifiers, i.e. it is a formula build out of atomic formulas and propositional connectives only

A transformation a formula A of a predicate language into a logically equivalent set \mathbf{C}_A of clauses means that we can **represent** the formula A as a certain collection of **atomic formulas** and **negations of atomic formula**

This means any formula A of a predicate language can be that **represented** as a certain collection of **open formulas**. In order to achieve this goal we **start** with of methods that allow the **transformation** of any formula A into an **open formula** A^* of some **larger language** such that $A \equiv A^*$. The process is described in the following PART 2

PART 2: Prenex Normal Form and Skolemizatiom

Some Basic Notions

Let $\mathcal{L} = (\mathcal{A}, \mathsf{T}, \mathcal{F})$ be a predicate language **determined** by **P**, **F**, **C** and the set of propositional connectives $\{\neg, \cup, \cap, \Rightarrow\}$, i.e.

$$\mathcal{L} = \mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})$$

Given a formula $A(x) \in \mathcal{F}$, $t \in \mathbf{T}$, and A(t) be a result of **substituting** the term t for all free occurrences of x in A(x) **Definition**

We say that a term $t \in T$ is free for x in A(x), if no occurrence of a variable in t becomes a bound occurrence in the formula A(t)

Some Basic Notions

Let
$$A(x), A(x_1, x_2, ..., x_n) \in \mathcal{F}$$
 and $t, t_1, t_2, ..., t_n \in \mathbf{T}$

$$A(t), A(t_1, t_2, ..., t_n)$$

denotes the result of replacing respectively all occurrences of the free variables x, x_1 , x_2 , ..., x_n , by the terms t, t_1 , t_2 , ..., t_n We assume that t, t_1 , t_2 , ..., t_n are free for x, x_1 , x_2 , ..., x_n , respectively, in A

The assumption that $t \in T$ is free for x in A(x) while substituting t for x, is important because otherwise we would distort the meaning of A(t)

This is illustrated by the following example

Examples

Example 1

Let t = y and A(x) be

$$\exists y(x \neq y)$$

Obviously *t* is **not free** for *y* **in** *A*

The substitution of t for x produces a formula A(t) of the form

$$\exists y(y \neq y)$$

which has a different meaning than $\exists y(x \neq y)$

Examples

Example 2

Let A(x) be a formula

$$(\forall y P(x, y) \cap Q(x, z))$$

and t = f(x, z)

We **substitute** t on a place of x in A(x) and we obtain a formula A(t) of the form

$$(\forall y P(f(x,z),y) \cap Q(f(x,z),z))$$

None of the occurrences of the variables x, z of t is **bound** in A(t), hence we say that t = f(x, z) is **free** for x in $(\forall y P(x, y) \cap Q(x, z))$

Examples

Example 3

Let A(x) be a formula

$$(\forall y P(x,y) \cap Q(x,z))$$

The term t = f(y, z) is **not free** for x in A(x) because **substituting** t = f(y, z) on a place of x in A(x) we obtain now a formula A(t) of the form

$$(\forall y P(f(y,z),y) \cap Q(f(y,z),z))$$

which contain a **bound** occurrence of the variable y of t in sub-formula $(\forall y P(f(y, z), y))$

The other occurrence of y in sub-formula (Q(f(y,z),z)) is **free**, but it is **not sufficient**, as for term to be **free for** x, **all occurrences** of its variables has to be free in A(t)

Similar Formulas

Informally, we say that formulas A(x) and A(y) are **similar** if and only if A(x) and A(y) are the **same** except that A(x) has free occurrences of x in **exactly** those places where A(y) has free occurrence of of y

We define it formally as follows

Definition

Let x and y be two different variables. We say that the formulas A(x) and A(y) = A(x/y) are **similar** and denote it by

$$A(x) \sim A(y)$$

if and only if y is free for x in A(x) and A(x) has no free occurrences of y

Similar Formulas Examples

Example 1

The formulas
$$A(x)$$
: $\exists z (P(x,z) \Rightarrow Q(x,y))$ and $A(y)$: $\exists z (P(y,z) \Rightarrow Q(y,y))$

are **not similar**; y is **free for** x in A(x) as no occurrence of y becomes a bound occurrence in the formula A(y) but the formula A(x) has a free occurrence of y

Example 2

The formulas
$$A(x)$$
: $\exists z (P(x,z) \Rightarrow Q(x,y))$ and $A(w)$: $\exists z (P(w,z) \Rightarrow Q(w,y))$

are similar; w is free for x in A(x) as no occurrence of w becomes a bound occurrence in the formula A(w) and the formula A(x) has no free occurrence of w

Renaming the Variables

Fact Renaming the Variables

For any formula $A(x) \in \mathcal{F}$, if A(x) and A(y) = A(x/y) are similar, i.e. $A(x) \sim A(y)$ then the following logical equivalences hold

$$\forall x A(x) \equiv \forall y A(y)$$
 and $\exists x A(x) \equiv \exists y A(y)$

Example 3

We proved in **Example 2** that the formulas $A(x) \sim A(w)$, i.e.

$$\exists z (P(x,z) \Rightarrow Q(x,y)) \sim \exists z (P(w,z) \Rightarrow Q(w,y))$$

Hence by the **Fact** we get that

$$\forall x \exists z (P(x,z) \Rightarrow Q(x,y)) \equiv \forall w \exists z (P(w,z) \Rightarrow Q(w,y)),$$
$$\exists x \exists z (P(x,z) \Rightarrow Q(x,y)) \equiv \exists w \exists z (P(w,z) \Rightarrow Q(w,y))$$

Renaming the Variables

Replacement Theorem

For any formulas $A, B \in \mathcal{F}$,

if B is a **sub-formula** of A, and A^* is the result of **replacing** zero or more occurrences of B in A by a formula C, and $B \equiv C$, then $A \equiv A^*$

Renaming Variables Theorem

Theorem Renaming Variables

For any formula A(x), A(y), $B \in \mathcal{F}$,

if A(x) and A(x/y) are similar, i.e. $A(x) \sim A(y)$, and the formula $\forall x A(x)$ or the formula $\exists x A(x)$ is a **sub-formula** of B, and B^* is the result of **replacing** zero or more occurrences of A(x) in B by a formula $\forall y A(y)$ or by a formula $\exists y A(y)$, then

$$B \equiv B^*$$

Naming Variables Apart

Definition Naming Variables Apart

We say that a formula *B* has its variables **named apart** if **no two quantifiers** in *B* bind the same variable and **no bound variable** is also free

Theorem Naming Variables Apart

Every formula $A \in \mathcal{F}$ is **logically equivalent** to one in which all variables are named apart

We use the above theorems plus the **equational laws** for quantifiers to prove, as a next step a so called a **Prenex Form Theorem**. In order to do so we first we define an important notion of prenex normal form of a formula

Prenex Normal Form

Definition Prenex Normal Form

Any formula of the form

$$Q_1x_1Q_2x_2...Q_nx_n$$
 B

where each Q_i is a universal or existential quantifier, i.e.

for all $1 \le i \le n$, $Q_i \in \{\exists, \forall\}$,

and $x_i \neq x_i$ for $i \neq j$,

and the formula B contains no quantifiers,

is said to be in Prenex Normal Form (PNF)

We include the case n = 0 when there are no quantifiers at all

Prenex Normal Form Theorem

Theorem Prenex Normal Form Theorem

There is an effective procedure for transforming any formula $A \in \mathcal{F}$ into a formula B in prenex normal form such that

 $A \equiv B$

We describe the procedure by induction on the number k of occurrences of connectives and quantifiers in ALet's consider now few examples

Example 1

Given a formula A: $\forall x (P(x) \Rightarrow \exists x Q(x))$

Find its prenex normal form PNF

Step 1: Naming Variables Apart

We make all bound variables in A different, by **substituting** $\exists x Q(x)$ by logically equivalent formula $\exists y Q(y)$ in A as Q(x) and Q(x/y) are similar

We hence transformed A into an equivalent formula A'

$$\forall x (P(x) \Rightarrow \exists y Q(y))$$

with all its variables named apart

Step 2: Pull Out Quantifiers

Now, we can apply the equational law

$$(C \Rightarrow \exists y Q(y)) \equiv \exists y \ (C \Rightarrow Q(y))$$

to the sub-formula $B: (P(x) \Rightarrow \exists y Q(y))$ of A' for C = P(x), as P(x) does not contain the variable Y

We get its equivalent formula $B^* : \exists y (P(x) \Rightarrow Q(y))$

We substitute now B^* on place of B in A' and get A''

$$\forall x \exists y (P(x) \Rightarrow Q(y))$$

such that $A'' \equiv A' \equiv A$

A" is a required prenex normal form PNF for A

Example 1

Let's now find **PNF** for the formula **A**:

$$(\exists x \forall y \ R(x,y) \Rightarrow \forall y \exists x \ R(x,y))$$

Step 1: Rename Variables Apart

Take a sub- formula B(x, y): $\forall y \exists x \ R(x, y)$ of A

Rename variables in B(x, y), i.e. get

$$B(x/z, y/w) : \forall z \exists w R(z, w)$$

Replace B(x, y) by B(x/z, y/w) in A and get

$$(\exists x \forall y \ R(x,y) \Rightarrow \forall z \exists w \ R(z,w))$$

Step 2: Pull out quantifiers

We use corresponding equational laws for quantifiers to pull out **first** quantifiers $\forall x \exists y$ and then quantifiers $\forall z \exists w$ and get the following **PNF** for **A**

$$\exists x \forall y \exists z \forall w (R(x, y) \Rightarrow R(z, w))$$

Observe we can also perform **Step 2** by pulling out **first** the quantifiers $\forall z \exists w$ and then quantifiers $\forall x \exists y$ and obtain **another PNF** for **A**

$$\exists z \forall w \exists x \forall y (R(x, y) \Rightarrow R(z, w))$$

Skolemization

As the next step we show how any formula A in its prenex normal form **PNF** can be transformed into a certain **open** formula A^* , such that $A \equiv A^*$

The open formula A* belongs to a **richer language** then the language of the initial formula A

The transformation process adds new constants, called Skolem constants and new function symbols, called Skolem function symbols to the initial language to which the formula A belongs

The whole process is called the **Skolemization** of the initial language

Such build extension of the initial language is called the **Skolem extension**

Elimination of Quantifiers

Given a formula A be in its Prenex Normal Forma PNF

$$Q_1x_1Q_2x_2\ldots Q_nx_nB(x_1,x_2,\ldots x_n)$$

where each Q_i is a **universal** or **existential** quantifier, i.e. for all $1 \le i \le n$, $Q_i \in \{\exists, \forall\}$, $x_i \ne x_j$ for $i \ne j$, and $B(x_1, x_2, ... x_n)$ **contains no quantifiers**

We describe now a procedure of **elimination of all quantifiers** from the formula **PNFA**

The procedure transforms **PNF** A into a logically equivalent **open formula** A^*

We assume that A is **closed**If it is not closed we form its **closure** instead
Definition of **closure** follows

Closure of a Formula

Closure of a Formula

For any formula $A \in \mathcal{F}$, a **closure** of A is a **closed** formula A' obtained from A by **prefixing** in universal quantifiers all those variables that a **free** in A; i.e. the following holds

if
$$A(x_1,...,x_n)$$
 then $A' \equiv A$ is

$$\forall x_1 \forall x_2 ... \forall x_n A(x_1, x_2, ..., x_n)$$

Example

Let A be a formula

$$(P(x,y) \Rightarrow \neg \exists z \ R(x,y,z))$$

its closure i.e. $A' \equiv A$ is

$$\forall x \forall y (P(x, y) \Rightarrow \neg \exists z \ R(x, y, z))$$

Elimination of Quantifiers

Given a formula A in its closed PNF form

$$Q_1 x_1 Q_2 x_2 \dots Q_n x_n B(x_1, x_2, \dots x_n)$$

We considerer 3 cases

Case 1

All quantifiers Q_i for $1 \le i \le n$ are **universal**, i.e. the formula A is

$$\forall x_1 \forall x_2 \dots \forall x_n B(x_1, x_2, \dots, x_n)$$

We replace the formula A by the open formula A*

$$B(x_1, x_2, ..., x_n)$$

Elimination of Quantifiers

Case 2

All quantifiers Q_i for $1 \le i \le n$ are **existential**, i.e. formula A is

$$\exists x_1 \exists x_2 \exists x_n B(x_1, x_2, x_n)$$

We replace the formula A by the open formula A*

$$B(c_1, c_2, \ldots, c_n)$$

where c_1, c_2, \ldots, c_n and **new** individual constants **added** to our original language \mathcal{L}

We call such individual constants added to the original language Skolem constants

Case 3

The quantifiers in A are mixed

We eliminate mixed quantifiers one by one and step by step depending on first, and then the consecutive quantifiers in the closed PNF formula A

$$Q_1x_1Q_2x_2...Q_nx_nB(x_1,x_2,...x_n)$$

We have two possibilities for the first quantifier Q_1x_1 , namely P1 Q_1x_1 is universal or P2 Q_1x_1 is existential Consider P1

First quantifier in A is universal, i. e. A is

$$\forall x_1 Q_2 x_2 \dots Q_n x_n B(x_1, x_2, \dots x_n)$$

Step 1

We replace A by the following formula A₁

$$Q_2 x_2 Q_3 x_3 \dots Q_n x_n B(x_1, x_2, x_3, \dots x_n)$$

We have **eliminated** the quantifier Q_1 in this case

Consider P2

First quantifier in A is existential, i. e. A is

$$\exists x_1 Q_2 x_2 \dots Q_n x_n B(x_1, x_2, \dots x_n)$$

We **replace** A by a following formula A_1

$$Q_2x_2...Q_nx_nB(b_1,x_2,...x_n)$$

where b_1 is a new constant symbol added to our original language \mathcal{L}

We call such constant symbol added to the language Skolem constant symbol

We have **eliminated** the quantifier Q_1 in this case We have covered all cases and this **ends** the **Step 1**

Step 2 Elimination of $Q_2 x_2$

Consider now the PNF formula A₁ from Step1- P1

$$Q_2x_2\ldots Q_nx_nB(x_1,x_2,\ldots x_n)$$

Remark that the formula A₁ might not be closed We have again two possibilities for elimination of the quantifier Q_2x_2 , namely **P1** Q_2x_2 is **universal** or **P2** Q_2x_2 is existential

Consider P1

First quantifier in A_1 is **universal**, i.e. A_1 is

$$\forall x_2 Q_3 x_3 \dots Q_n x_n B(x_1, x_2, x_3, \dots x_n)$$

We replace A_1 by the following A_2

$$Q_3 x_3 \dots Q_n x_n B(x_1, x_2, x_3, \dots x_n)$$

We have **eliminated** the quantifier Q_2 in this case

Consider P2

First quantifier in A_1 is **existential**, i.e. A_1 is

$$\exists x_2 Q_3 x_3 \dots Q_n x_n B(x_1, x_2, x_3, \dots x_n)$$

Observe that now the variable x_1 is a **free** variable in $B(x_1, x_2, x_3, \dots x_n)$ and hence in A_1 We replace A_1 by the following A_2

$$Q_3x_3...Q_nx_nB(x_1, f(x_1), x_3,...x_n)$$

where f is a **new** one argument functional symbol added to our original language \mathcal{L}

We call such functional symbols added to the original language Skolem functional symbols

We have **eliminated** the quantifier Q_2 in this case

Consider now the PNF formula A₁ from Step1 - P2

$$Q_2x_2Q_3x_3...Q_nx_nB(b_1,x_2,...x_n)$$

Again we have two cases

Consider P1

First quantifier in A_1 is **universal**, i.e. A_1 is

$$\forall x_2 Q_3 x_3 \dots Q_n x_n B(b_1, x_2, x_3, \dots x_n)$$

We replace A_1 by the following A_2

$$Q_3x_3...Q_nx_nB(b_1,x_2,x_3,...x_n)$$

We have **eliminated** the quantifier Q_2 in this case

Elimination of Quantifiers; Step 2

Consider P2

First quantifier in A_1 is **existential**, i.e. A_1 is

$$\exists x_2 Q_3 x_3 \dots Q_n x_n B(b_1, x_2, x_3, \dots x_n)$$

We replace A_1 by the following A_2

$$Q_3 x_3 \dots Q_n x_n B(b_1, b_2, x_3, \dots x_n)$$

where $b_2 \neq b_1$ is a **new Skolem constant** symbol **added** to our original language \mathcal{L}

We have **eliminated** the quantifier Q_2 in this case We have covered all cases and this **ends** the **Step 2**

Elimination of Quantifiers; Step 3

Step 3 Elimination of Q_3x_3

Let's now consider, as an **example** a formula A_2 from **Step 2**; P1 i.e. the formula

$$Q_3x_3...Q_nx_nB(x_1,x_2,x_3,...x_n)$$

We have again 2 choices to consider, but will describe only the following

P2 First quantifier in A_2 is **existential**, i. e. A_2 is

$$\exists x_2 Q_4 x_4 \dots Q_n x_n B(x_1, x_2, x_3, x_4, \dots x_n)$$

Observe that now the variables x_1, x_2 are **free** variables in $B(x_1, x_2, x_3, \dots x_n)$ and hence in A_2 We replace A_2 by the following A_3

$$Q_4x_3...Q_nx_nB(x_1,x_2,g(x_1,x_2),x_4...x_n)$$

where g is a **new** two argument functional symbol added to our original language £

We have **eliminated** the quantifier Q_3 in this case

Elimination of Quantifiers; Step i

Step i

At each **Step i** for $1 \le i \le n$) we build a **binary tree** of possibilities **P1** $Q_i x_i$ is **universal** or **P2** $Q_i x_i$ is **existential** and as result we obtain a formula A_i with one less quantifier

The elimination process builds a sequence of formulas

$$A, A_1, A_2, \ldots, A_n = A^*$$

where the formula A belongs to our original language

$$\mathcal{L} = \mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C}),$$

the **open** formula A^* belongs to its Skolem extension The **Skolem extension** $S\mathcal{L}$ is obtained from \mathcal{L} in the quantifiers elimination process and

$$S\mathcal{L} = \mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}(\mathbf{P}, \mathbf{F} \cup S\mathbf{F}, \mathbf{C} \cup S\mathbf{C})$$

Elimination of Quantifiers Result

Observe that in the elimination process an universal quantifier introduces **free** variables in the formula $B(x_1, x_2, ... x_n)$

The **elimination** of an **existential** quantifier that follows **universal** quantifiers introduces a **new functional** symbol with number of arguments equal the number of universal quantifiers preceding it

The **elimination** of an **existential** quantifier that **does not** follows any **universal** quantifiers introduces a **new** constant symbol

The resulting **open** formula A^* logically equivalent to the PNF formula A

Example 1

Let A be a closed PNF formula

$$\forall y_1 \exists y_2 \forall y_3 \exists y_4 \ B(y_1, y_2, y_3, y_4, y_4)$$

We eliminate $\forall y_1$ and get a formula A_1

$$\exists y_2 \forall y_3 \exists y_4 \ B(y_1, y_2, y_3, y_4)$$

We eliminate $\exists y_2$ by replacing y_2 by $h(y_1)$

h is a **new** one argument functional symbol **added** to our original language \mathcal{L}

We get a formula A2

$$\forall y_3 \exists y_4 \ B(y_1, h(y_1), y_3, y_4)$$

Given the formula A2

$$\forall y_3 \exists y_4 \ B(y_1, h(y_1), y_3, y_4)$$

We eliminate $\forall y_3$ and get a formula A_3

$$\exists y_4 \ B(y_1, h(y_1), y_3, y_4)$$

We eliminate $\exists y_4$ by replacing y_4 by $f(y_1, y_3)$, where f is a **new** two argument functional symbol **added** to our original language \mathcal{L}

We get a formula A₄ that is our resulting open formula A*

$$B(y_1, h(y_1), y_3, f(y_1, y_3))$$

Example 2

Let now A be a PNF formula

$$\exists y_1 \forall y_2 \forall y_3 \exists y_4 \exists y_5 \forall y_6 \ B(y_1, y_2, y_3, y_4, y_4, y_5, y_6)$$

We eliminate $\exists y_1$ and get a formula A_1

$$\forall y_2 \forall y_3 \exists y_4 \exists y_5 \forall y_6 \ B(b_1, y_2, y_3, y_4, y_4, y_5, y_6)$$

where b_1 is a **new** constant symbol **added** to our original language \mathcal{L}

We eliminate $\forall y_2, \forall y_3$ and get formulas A_2, A_3 ; here is the formula A_3

$$\exists y_4 \exists y_5 \forall y_6 \ B(b_1, y_2, y_3, y_4, y_4, y_5, y_6)$$

We eliminate $\exists y_4$ and get a formula A_4

$$\exists y_5 \forall y_6 \ B(b_1, y_2, y_3, g(y_2, y_3), y_5, y_6)$$

where g is a **new** two argument functional symbol added to our original language \mathcal{L}

We eliminate $\exists y_5$ and get a formula A_5

$$\forall y_6 \ B(b_1, y_2, y_3, g(y_2, y_3), h(y_2, y_3), y_6)$$

where h is a **new** two argument functional symbol **added** to our original language \mathcal{L}

We eliminate $\forall y_6$ and get a formula A_6 that is the resulting **open** formula A^*

$$B(b_1, y_2, y_3, g(y_2, y_3), h(y_2, y_3), y_6)$$

Open Formulas to Clauses

Definition (Reminder)

An atomic formula of a predicate language $\mathcal{L}(P,F,C)$ is any element of \mathcal{A}^* of the form

$$R(t_1, t_2, ..., t_n)$$

where $R \in \mathbf{P}, \#R = n$ and $t_1, t_2, ..., t_n \in \mathbf{T}$

l.e. R is n-ary relational symbol and $t_1, t_2, ..., t_n$ are any terms

The set of all **atomic formulas** is denoted by $A\mathcal{F}$ and is defined as

$$A\mathcal{F} = \{R(t_1, t_2, ..., t_n) \in \mathcal{A}^* : R \in \mathbf{P}, t_1, t_2, ..., t_n \in \mathbf{T}, n \ge 1\}$$

Literals and Open Formulas

Definition We use symbols R, Q, P, ... with indices if necessary to **denote** the atomic formulas

We define formally the set L of all **literals** of $\mathcal{L}(P, F, C)$ as follows

$$\mathbf{L} = \{R : R \in A\mathcal{F}\} \cup \{\neg R : R \in A\mathcal{F}\}$$

Definition

A set \mathcal{OF} of all **open formulas** of a predicate language $\mathcal{L} = \mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})$ is the **smallest** set for which the following conditions are satisfied

- (1) $A\mathcal{F} \subseteq O\mathcal{F}$ (atomic formulas are open formulas)
- (2) If $A \in O\mathcal{F}$, then $\neg A \in O\mathcal{F}$
- (3) If $A, B \in O\mathcal{F}$, then $(A \cup B), (A \cap B), (A \Rightarrow B) \in O\mathcal{F}$

Decomposition Rules for Open Formulas

Here are the **decomposition rules** needed to transform open formulas into logically equivalent sets of clauses

Disjunction decomposition rules

$$(\cup) \ \frac{\Gamma', \ (A \cup B), \ \Delta}{\Gamma', \ A, B, \ \Delta}, \qquad (\neg \cup) \ \frac{\Gamma', \ \neg (A \cup B), \ \Delta}{\Gamma', \ \neg A, \ \Delta \ ; \ \Gamma', \ \neg B, \ \Delta}$$

Conjunction decomposition rules

$$(\cap) \ \frac{\Gamma^{'}, \ (A \cap B), \ \Delta}{\Gamma^{'}, A, \Delta \ ; \ \Gamma^{'}, B, \Delta}, \qquad (\neg \cap) \ \frac{\Gamma^{'}, \ \neg (A \cap B), \ \Delta}{\Gamma^{'}, \ \neg A, \neg B, \ \Delta}$$

where
$$\Gamma', \in \mathbf{L}^* \Delta \in \mathcal{OF}^*, A, B \in \mathcal{OF}$$

Decomposition Rules

Implication decomposition rules

$$(\Rightarrow) \ \frac{\Gamma^{'}, \ (A\Rightarrow B), \ \Delta}{\Gamma^{'}, \ \neg A, B, \ \Delta}, \qquad (\neg\Rightarrow) \ \frac{\Gamma^{'}, \ \neg (A\Rightarrow B), \ \Delta}{\Gamma^{'}, A, \Delta \ ; \ \Gamma^{'}, \ \neg B, \ \Delta}$$

Negation decomposition rule

$$(\neg\neg)$$
 $\frac{\Gamma', \neg\neg A, \Delta}{\Gamma', A, \Delta}$

where $\Gamma' \in \mathbf{L}^*$, $\Delta \in \mathcal{OF}^*$, $A, B \in \mathcal{OF}$

We write the decomposition rules in a visual tree form as follows

Tree Decomposition Rules

(∪) rule

$$\Gamma'$$
, $(A \cup B)$, Δ

$$|(\cup)$$

$$\Gamma'$$
, A , B , Δ

(¬∪) rule

$$\Gamma', \neg (A \cup B), \Delta$$

$$\wedge (\neg \cup)$$

$$\Gamma'$$
, $\neg A$, Δ Γ' , $\neg B$, Δ

(∩) rule

$$\Gamma'$$
, $(A \cap B)$, Δ

$$\land (\cap)$$

$(\neg \cup)$ rule

$$\Gamma'$$
, $\neg(A \cap B)$, Δ

$$|(\neg \cap)$$

$$\Gamma'$$
, $\neg A$, $\neg B$, Δ

(⇒) rule

$$\Gamma'$$
, $(A \Rightarrow B)$, Δ

$$|(\cup)$$

$$\Gamma'$$
, $\neg A$, B , Δ

$(\neg \Rightarrow)$ rule

$$\Gamma', \neg (A \Rightarrow B), \Delta$$

$$\wedge (\neg \Rightarrow)$$

$$\Gamma', A, \Delta \qquad \Gamma', \neg B, \Delta$$

 $(\neg\neg)$ rule

$$\Gamma'$$
, $\neg \neg A$, Δ

$$|(\neg \neg)$$

$$\Gamma'$$
, A , Δ

Decomposable, Indecomposable

Definition: Decomposable Formula

A formula that is not a literal, i.e. $A \in \mathcal{OF} - \mathbf{L}$ is called a decomposable formula

Definition: Decomposable Sequence

A sequence Γ that contains a decomposable formula is called a decomposable sequence

Definition: Indecomposable Sequence

A sequence Γ' built only out of literals, i.e. $\Gamma' \in \mathbf{L}^*$ is called an **indecomposable sequence**

Definitions and Observations

Observation 1

Decomposition rules are functions with disjoint domains, i.e.

For any **decomposable** sequence, i.e. for any $\Gamma \notin L^*$

there is **exactly one** decomposition rule that can be applied to it

This rule is **determined** by the first decomposable formula in Γ and by the main connective of that formula

Observation 2

If the main connective of the **first** decomposable formula is \cup, \cap, \Rightarrow ,

then the **decomposition rule** determined by it is $(\cup), (\cap), (\Rightarrow)$, respectively

Definitions and Observations

Observation 3

If the main connective of the **first** decomposable formula A is negation ¬

then the **decomposition rule** is determined by the **second connective** of the formula A

The corresponding **decomposition rules** are

$$(\neg \cup), (\neg \cap), (\neg \neg), (\neg \Rightarrow)$$

Observation 4

For any sequence $\Gamma \in \mathcal{OF}^*$,

 $\Gamma \in \mathbf{L}^*$ or Γ is in the domain of exactly one of Decomposition Rules

Decomposition Tree Definition

Definition: Decomposition Tree T_A

For each $A \in \mathcal{OF}$, a **decomposition tree T**_A is a tree build as follows

Step 1.

The formula A is the **root** of T_A

For any other **node** Γ of the tree we follow the steps below **Step 2**.

If Γ is **indecomposable** then Γ becomes a **leaf** of the tree

Decomposition Tree Definition

Step 3.

If Γ is **decomposable**, then we **traverse** Γ from **left** to **right** and identify the **first decomposable formula** B **We put** its premiss as a **node below**, or its left and right premisses as the left and right **nodes below**, respectively **Step 4.**

We repeat steps 2 and 3 until we obtain only leaves

Decomposition Tree and Clauses

Directly from **Observations 1 - 4** and the fact that premisses and conclusion in all decomposition rules are logically equivalent we get the following

Theorem

For any $A \in \mathcal{OF}$, its decomposition tree T_A is unique and its leaves form a set of clauses that is logically equivalent to the formula A

More precisely, let $\Gamma_1, \Gamma_2, \dots \Gamma_n \in \mathbf{L}^*$ be all leaves of \mathbf{T}_A . The set of all clauses corresponding to the formula \mathbf{A} is

$$\mathbf{C}_A = \{ \{ \Gamma_1 \}, \ \{ \Gamma_2 \}, \ \dots \ \{ \Gamma_n \} \}$$

and

$$\mathbf{C}_A \equiv A$$

The tree T_A

$$(((P(x) \Rightarrow Q(y)) \cap \neg R(x)) \cup (P(x) \Rightarrow R(x))$$

$$| (\cup) \rangle$$

$$((P(x) \Rightarrow Q(y)) \cap \neg R(x)), (P(x) \Rightarrow R(x))$$

$$| (\cap) \rangle$$

$$(P(x) \Rightarrow Q(y)), (P(x) \Rightarrow R(x)) \qquad \neg R(x), (P(x) \Rightarrow R(x))$$

$$| (\Rightarrow) \qquad | (\Rightarrow) \qquad \neg P(x), Q(y), (P(x) \Rightarrow R(x)) \qquad \neg R(x), \neg P(x), R(x)$$

$$| (\Rightarrow) \qquad \neg P(x), Q(y), \neg P(x), R(x)$$

The leaves of T_A are

$$\neg P(x), Q(y), \neg P(x), R(x)$$
 and $\neg R(x), \neg P(x), R(x)$

The clauses corresponding to the leaves are

$$C_1 = {\neg P(x), Q(y), R(x)}$$
 and $C_2 = {\neg R(x), \neg P(x), R(x)}$

The set of all clauses corresponding to the formula A is

$$\mathbf{C}_A = \{C_1, C_2\}$$

$$\mathbf{C}_A = \{ \{ \neg P(x), Q(y), R(x) \}, \{ \neg R(x), \neg P(x), R(x) \} \}$$

Unification

Unification is the process of determining whether **two** atomic formulas, i.e. **two** positive literals can be made identical by appropriate **substitution** for their variables

Unification is an essential part of resolution

Unification is defined in terms of a notion of a **substitution**

Sunstitution

Intuitively, a **substitution** is is a set of associations between **variables** and **terms** in which

- 1.each variable is associated with at most one term, and
- 2. no variable with an associated term occurs within any of the associated terms

Substitution

Example

The following is a well defined **substitution**

$$\{x/c, y/f(b), z/w\}$$

and the following is not a substitution

$$\{x/g(y), y/f(x)\}$$

as the variable x which is **associated** with term g(y), occurs in the term f(x) **associated** withy;

the variable y occurs in term g(y) associated with variable x

Unification

Given two positive literals $P_1 = P(x, y, z)$ and $P_2 = P(c, f(b), w)$

The substitution $\{x/c, y/f(b), z/w\}$ unifies P_1 and P_2 , as when **applied** to P_1 produces P_2 , i.e.

$$P_1\{x/c, y/f(b), z/w\} = P(x, y, z)\{x/c, y/f(b), z/w\}$$

= $P(c, f(b), w) = P_2$